Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 241
Filter
1.
J Agric Food Chem ; 72(28): 15715-15724, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38961631

ABSTRACT

Neohesperidin dihydrochalcone (NHDC) is a citrus-originated, seminatural sweetener. There is no investigation concerning the effect of NHDC on ulcerative colitis. The purpose of this study was to determine the therapeutic and protective effects of NHDC in Wistar Albino rats. NHDC was given for 7 days after or before colitis induction. The results showed that NHDC significantly reduced the interleukin-6 (IL-6), interleukin-10 (IL-10), transforming growth factor-ß1 (TGF-ß1), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ) levels. Catalase levels did not show a significant difference between the groups. NHDC provided a remarkable decrease in the expression levels of cyclooxygenase-2 (COX-2), myeloperoxidase (MPO), malondialdehyde (MDA), 8-hydroxy-2'-deoxyguanosine (8-OHdG), and nuclear factor kappa B (NF-κB). Total antioxidant status (TAS) levels were significantly elevated in NHDC treatment groups, while total oxidant status (TOS) and oxidative stress index (OSI) levels were significantly decreased. NHDC provided remarkable improvement in histological symptoms such as epithelial erosion, edema, mucosal necrosis, inflammatory cell infiltration, and hemorrhage. Also, caspase-3 expression levels were statistically decreased in NHDC treatment groups. The results indicated that NHDC might be a protection or alternative treatment for ulcerative colitis.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Apoptosis , Chalcones , Hesperidin , NF-kappa B , Rats, Wistar , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/administration & dosage , Rats , Antioxidants/pharmacology , Male , Apoptosis/drug effects , Chalcones/pharmacology , Chalcones/administration & dosage , Hesperidin/analogs & derivatives , Hesperidin/pharmacology , Hesperidin/administration & dosage , NF-kappa B/genetics , NF-kappa B/metabolism , Humans , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Oxidative Stress/drug effects , Interleukin-6/genetics , Interleukin-6/metabolism , Colitis/drug therapy , Colitis/chemically induced , Colitis/metabolism , Interleukin-10/genetics , Interleukin-10/metabolism , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/genetics , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/chemically induced , Malondialdehyde/metabolism , Peroxidase/metabolism , Interferon-gamma/genetics , Interferon-gamma/metabolism , Interferon-gamma/immunology , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics
2.
Mikrochim Acta ; 191(8): 443, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38955844

ABSTRACT

CoFe@C was first prepared by calcining the precursor of CoFe-metal-organic framework-74 (CoFe-MOF-74), then an electrochemical sensor for the determination of neohesperidin dihydrochalcone (NHDC) was constructed, which was stemmed from the novel CoFe@C/Nafion composite film modified glassy carbon electrode (GCE). The CoFe@C/Nafion composite was verified by field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). Electrochemical impedance spectroscopy (EIS) was used to evaluate its electrical properties as a modified material for an electrochemical sensor. Compared with CoFe-MOF-74 precursor modified electrode, CoFe@C/Nafion electrode exhibited a great synergic catalytic effect and extremely increased the oxidation peak signal of NHDC. The effects of various experimental conditions on the oxidation of NHDC were investigated and the calibration plot was tested. The results bespoken that CoFe@C/Nafion GCE has good reproducibility and anti-interference under the optimal experimental conditions. In addition, the differential pulse current response of NHDC was linear with its concentration within the range 0.08 ~ 20 µmol/L, and the linear regression coefficient was 0.9957. The detection limit was as low as 14.2 nmol/L (S/N = 3). In order to further verify the feasibility of the method, it was successfully used to determine the content of NHDC in Chinese medicine, with a satisfactory result, good in accordance with that of high performance liquid chromatography (HPLC).


Subject(s)
Chalcones , Cobalt , Electrochemical Techniques , Electrodes , Limit of Detection , Metal-Organic Frameworks , Cobalt/chemistry , Metal-Organic Frameworks/chemistry , Chalcones/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Hesperidin/analogs & derivatives , Hesperidin/analysis , Hesperidin/chemistry , Fluorocarbon Polymers/chemistry , Oxidation-Reduction , Carbon/chemistry , Reproducibility of Results , Iron/chemistry
3.
J Agric Food Chem ; 72(19): 11174-11184, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38687489

ABSTRACT

Polyphenols with a typical meta-phenol structure have been intensively investigated for scavenging of methylglyoxal (MGO) to reduce harmful substances in food. However, less attention has been paid to the formation level of polyphenol-MGO adducts in foods and in vivo and their absorption, metabolism, and health impacts. In this study, hesperitin (HPT) was found to scavenge MGO by forming two adducts, namely, 8-(1-hydroxyacetone)-hesperetin (HPT-mono-MGO) and 6-(1-hydroxyacetone)-8-(1-hydroxyacetone)-hesperetin (HPT-di-MGO). These two adducts were detected (1.6-15.9 mg/kg in total) in cookies incorporated with 0.01%-0.5% HPT. HPT-di-MGO was the main adduct detected in rat plasma after HPT consumption. The adducts were absorbed 8-30 times faster than HPT, and they underwent glucuronidation and sulfation in vivo. HPT-mono-MGO would continue to react with endogenous MGO in vivo to produce HPT-di-MGO, which effectively reduced the cytotoxicity of HPT and HPT-mono-MGO. This study provided data on the safety of employing HPT as a dietary supplement to scavenge MGO in foods.


Subject(s)
Hesperidin , Pyruvaldehyde , Animals , Pyruvaldehyde/metabolism , Pyruvaldehyde/chemistry , Hesperidin/metabolism , Hesperidin/chemistry , Hesperidin/analogs & derivatives , Rats , Male , Rats, Sprague-Dawley , Humans
4.
J Agric Food Chem ; 72(14): 8027-8038, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38529939

ABSTRACT

There is considerable research evidence that α-dicarbonyl compounds, including glyoxal (GO) and methylglyoxal (MGO), are closely related to many chronic diseases. In this work, after comparison of the capture capacity, reaction pathway, and reaction rate of synephrine (SYN) and neohesperidin (NEO) on GO/MGO in vitro, experimental mice were administrated with SYN and NEO alone and in combination. Quantitative data from UHPLC-QQQ-MS/MS revealed that SYN/NEO/HES (hesperetin, the metabolite of NEO) could form the GO/MGO-adducts in mice (except SYN-MGO), and the levels of GO/MGO-adducts in mouse urine and fecal samples were dose-dependent. Moreover, SYN and NEO had a synergistic scavenging effect on GO in vivo by promoting each other to form more GO adducts, while SYN could promote NEO to form more MGO-adducts, although it could not form MGO-adducts. Additionally, human experiments showed that the GO/MGO-adducts of SYN/NEO/HES found in mice were also detected in human urine and fecal samples after drinking flowers of Citrus aurantium L. var. amara Engl. (FCAVA) tea using UHPLC-QTOF-MS/MS. These findings provide a novel strategy to reduce endogenous GO/MGO via the consumption of dietary FCAVA rich in SYN and NEO.


Subject(s)
Citrus , Hesperidin/analogs & derivatives , Pyruvaldehyde , Humans , Animals , Mice , Glyoxal , Synephrine , Tandem Mass Spectrometry , Magnesium Oxide , Flowers
5.
J Agric Food Chem ; 72(11): 5828-5841, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38442256

ABSTRACT

α-Dicarbonyl compounds, such as glyoxal (GO) and methylglyoxal (MGO), are a series of chemical hazards that exist in vivo and in vitro, posing a threat to human health. We aimed to explore the scavenging effects on GO/MGO by synephrine (SYN) alone or in combination with neohesperidin (NEO). First, through LC-MS/MS, we confirmed that both SYN and NEO could effectively remove GO and form GO adducts, while NEO could also clear MGO by forming MGO adducts, and its ability to clear MGO was stronger than that of GO. Second, a synergistic inhibitory effect on GO was found when SYN and NEO were used in combination by using the Chou-Talalay method; on the other hand, SYN could promote NEO to clear more MGO, although SYN could not capture MGO. Third, after synthesizing four GO/MGO-adducts (SYN-GO-1, SYN-GO-3, NEO-GO-7, and NEO-MGO-2) and identifying their structure through NMR, strict correlations between the GO/MGO-adducts and the GO/MGO-clearance rate were found when using SYN and NEO alone or in combination. Furthermore, it was inferred that the synergistic effect between SYN and NEO stems from their mutual promotion in capturing more GO by the quantitative analysis of the adducts in the combined model. Finally, a study was conducted on flowers of Citrus aurantium L. var. amara Engl. (FCAVA, an edible tea) rich in SYN and NEO, which could serve as an effective GO and MGO scavenger in the presence of both GO and MGO. Therefore, our study provided well-defined evidence that SYN and NEO, alone or in combination, could efficiently scavenge GO/MGO at high temperatures, whether in the pure form or located in FCAVA.


Subject(s)
Glyoxal , Hesperidin/analogs & derivatives , Pyruvaldehyde , Humans , Pyruvaldehyde/chemistry , Glyoxal/chemistry , Synephrine , Chromatography, Liquid , Magnesium Oxide , Temperature , Tandem Mass Spectrometry
6.
J Sci Food Agric ; 104(10): 5846-5859, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38385802

ABSTRACT

BACKGROUND: Allergic conjunctivitis is one of the most common eye disorders. Different drugs are used for its treatment. Hesperidin is an active substance isolated from Citrus sinensis L. (Rutaceae) fruit peels, with known anti-inflammatory activity but low solubility. It was complexed with cyclodextrin and encapsulated in situ gel to extend its duration in the eye. RESULTS: The optimized formulation comprised 1% hesperidin, 1.5% hydroxyethyl cellulose, and 16% poloxamer 407. The viscosity at 25 °C was 492 ± 82 cP, and at 35 °C it was 8875 ± 248 cP, the pH was 7.01 ± 0.03, gelation temperature was 34 ± 1.3 °C, and gelation time was 33 ± 1.2 s. There was a 66% in vitro release in the initial 2 h, with a burst effect. A lipoxygenase (LOX) inhibition test determined that hesperidin was active at high doses on leukotyrens seen in the body in allergic diseases. In cell-culture studies, the hesperidin cyclodextrin complex loaded in situ gel, BRN9-CD (poloxamer 16%, hydroxy ethyl cellulose (HEC) 1.5%), enhanced cell viability in comparison with the hesperidin solution. It was determined that BRN9-CD did not cause any irritation in the ocular tissues in the Draize test. CONCLUSION: The findings of this study demonstrate the potential of the in situ gel formulation of hesperidin in terms of ease of application and residence time on the ocular surface. Due to its notable LOX inhibition activity and positive outcomes in the in vivo Draize test, it appears promising for incorporation into pharmaceutical formulations. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Drug Delivery Systems , Gels , Hesperidin , Hesperidin/chemistry , Hesperidin/pharmacology , Hesperidin/analogs & derivatives , Gels/chemistry , Animals , Humans , Citrus sinensis/chemistry , Conjunctivitis, Allergic/drug therapy , Drug Compounding , Viscosity , Mice , Plant Extracts/chemistry , Plant Extracts/pharmacology , Cell Survival/drug effects , Chemistry, Pharmaceutical
7.
J Agric Food Chem ; 72(8): 4246-4256, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38317352

ABSTRACT

A novel yeast-mediated hydrogenation was developed for the synthesis of neohesperidin dihydrochalcone (NHDC) in high yields (over 83%). Moreover, whole-cell catalytic hydrolysis was also designed to hydrolyze NHDC into potential sweeteners, hesperetin dihydrochalcone-7-O-glucoside (HDC-G) and hesperetin dihydrochalcone (HDC). The biohydrogenation was further combined with whole-cell hydrolysis to achieve a one-pot two-step biosynthesis, utilizing yeast to hydrogenate C═C in the structure, while Aspergillus niger cells hydrolyze glycosides. The conversion of NHDC and the proportion of hydrolysis products could be controlled by adjusting the catalysts, the components of the reaction system, and the addition of glucose. Furthermore, yeast-mediated biotransformation demonstrated superior reaction stability and enhanced safety and employed more cost-effective catalysts compared to the traditional chemical hydrogenation of NHDC synthesis. This research not only provides a new route for NHDC production but also offers a safe and flexible one-pot cascade biosynthetic platform for the production of high-value compounds from citrus processing wastes.


Subject(s)
Chalcones , Hesperidin , Hesperidin/analogs & derivatives , Saccharomyces cerevisiae , Hydrolysis , Saccharomyces cerevisiae/metabolism , Feasibility Studies , Hesperidin/chemistry , Biotransformation
8.
Food Funct ; 15(3): 1460-1475, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38226659

ABSTRACT

Parkinson's disease (PD), a neurodegenerative disease, is the leading cause of movement disorders. Neuroinflammation plays a critical role in PD pathogenesis. Neohesperidin (Neo), a natural flavonoid extracted from citric fruits exhibits anti-inflammatory effects. However, the effect of Neo on PD progression is unclear. This study aimed to investigate the effects of Neo on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD in mice and its underlying mechanism. Our results indicated that Neo administration ameliorated motor impairment and neural damage in MPTP-injected mice, by inhibiting neuroinflammation and regulating gut microbial imbalance. Additionally, Neo administration reduced colonic inflammation and tissue damage. Mechanistic studies revealed that Neo suppressed the MPTP-induced inflammatory response by inhibiting excessive activation of NF-κB and MAPK pathways. In summary, the present study demonstrated that Neo administration attenuates neurodegeneration in MPTP-injected mice by inhibiting inflammatory responses and regulating the gut microbial composition. This study may provide the scientific basis for the use of Neo in the treatment of PD and other related diseases.


Subject(s)
Gastrointestinal Microbiome , Hesperidin/analogs & derivatives , Neurodegenerative Diseases , Neuroprotective Agents , Parkinson Disease , Mice , Animals , Neurodegenerative Diseases/drug therapy , Neuroinflammatory Diseases , Parkinson Disease/metabolism , Mice, Inbred C57BL , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/adverse effects , Disease Models, Animal , Neuroprotective Agents/pharmacology
9.
Biosci Biotechnol Biochem ; 87(12): 1470-1477, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37715303

ABSTRACT

Neohesperidin dihydrochalcone (NHDC) is a sweetener, which interacts with the transmembrane domain (TMD) of the T1R3 subunit of the human sweet taste receptor. Although NHDC and a sweet taste inhibitor lactisole share similar structural motifs, they have opposite effects on the receptor. This study involved the creation of an NHDC-docked model of T1R3 TMD through mutational analyses followed by in silico simulations. When certain NHDC derivatives were docked to the model, His7345.44 was demonstrated to play a crucial role in activating T1R3 TMD. The NHDC-docked model was then compared with a lactisole-docked inactive form, several residues were characterized as important for the recognition of NHDC; however, most of them were distinct from those of lactisole. Residues such as His6413.33 and Gln7947.38 were found to be oriented differently. This study provides useful information that will facilitate the design of sweeteners and inhibitors that interact with T1R3 TMD.


Subject(s)
Chalcones , Receptors, G-Protein-Coupled , Molecular Dynamics Simulation , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/genetics , Hesperidin/analogs & derivatives , Chalcones/chemistry , Molecular Docking Simulation , Humans , Sweetening Agents/chemistry , Molecular Structure
10.
Zhongguo Zhong Yao Za Zhi ; 47(16): 4372-4376, 2022 Aug.
Article in Chinese | MEDLINE | ID: mdl-36046864

ABSTRACT

The present study established an RP-HPLC method for simultaneous determination of two active components in Qingfei Paidu Granules and investigated the transfer rates of neohesperidin and naringin in the preparation process to provide references for improving the quality control standard and production of Qingfei Paidu Granules.RP-HPLC was performed on a YMC Triart C_(18) column(4.6 mm×150 mm, 5 µm)with column temperature of 30 ℃, acetonitrile(A) and 0.2% phosphoric acid solution(B) as mobile phases for gradient elution at a flow rate of 1.0 mL·min~(-1) and detection wavelength of 284 nm.Good linearity was observed for naringin at 0.10-1.0 µg(R~2=0.999 9) and neohesperidin at 0.12-1.2 µg(R~2=0.999 9).The average recovery of naringin was 99.52% with an RSD of 1.2%, and that of neohesperidin was 100.8% with an RSD of 1.2%.The transfer rates of naringin and neohesperidin between medicinal materials, extracts, concentrates, and granules were measured by this method.The average transfer rate of naringin from medicinal materials to granules was 54.89%±4.38%, and that of neohesperidin was 57.63%±5.88%.The process from medicinal materials to extracts was presumedly the key link affecting the whole preparation process.The established method is simple and sensitive and can be adopted for the quality control of Qingfei Paidu Granules.Meanwhile, it can be used to investigate the transfer rate of neohesperidin and naringin in the preparation of Qingfei Paidu Granules, and further improve the quality control standard of Aurantii Fructus Immaturus in Qingfei Paidu Granules.


Subject(s)
Drugs, Chinese Herbal , Flavanones , Hesperidin , Chromatography, High Pressure Liquid/methods , Hesperidin/analogs & derivatives
11.
J Agric Food Chem ; 70(30): 9421-9431, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35862634

ABSTRACT

High-fat diet (HFD) is closely related to the formation of metabolic diseases. Studies have confirmed that neohesperidin dihydrochalcone (NHDC) possesses the biological activity of preventing glycolipid metabolism disorder. To explore the mechanism of its preventive activity against glucolipid metabolism disorder, HFD-treated rats were orally administered with NHDC for 12 weeks continuously. The results showed that, compared with the HFD group, the intervention of 40-80 mg/kg body weight of NHDC effectively downregulated the level of fasting blood glucose. Western blot analysis revealed that the treatment of NHDC alleviated the inhibitory effect of HFD on the expression of hepatic GLUT-4 and IRS-1. Further studies confirmed that NHDC reduced the degree of HFD-stimulated inflammation of ileum through the TLR4/MyD88/NF-κB signaling pathway. Moreover, ileum intestinal flora analysis showed that intragastric administration of NHDC reversed the change of Proteobacteria abundance and the Firmicutes/Bacteroidetes (F/B) ratio caused by HFD. At the generic level, NHDC promoted the relative abundance of Coprococcus, Bifidobacterium, Clostridium, Oscillospira, and [Eubacterium], while reducing the relative abundance of Defluviitalea and Prevotella. Taken together, these findings suggest that NHDC possesses the biological activity of improving HFD-induced glycolipid metabolism disorder.


Subject(s)
Hesperidin , Metabolic Diseases , Animals , Chalcones , Diet, High-Fat/adverse effects , Glycolipids , Hesperidin/analogs & derivatives , Hesperidin/pharmacology , Mice , Mice, Inbred C57BL , Rats
12.
Biomolecules ; 12(5)2022 04 23.
Article in English | MEDLINE | ID: mdl-35625554

ABSTRACT

Flavonoids are natural phytochemicals that have therapeutic effects and act in the prevention of several pathologies. These phytochemicals can be found in seeds, grains, tea, coffee, wine, chocolate, cocoa, vegetables and, mainly, in citrus fruits. Neohesperidin, hesperidin and hesperetin are citrus flavonoids from the flavanones subclass that have anti-inflammatory and antioxidant potential. Neohesperidin, in the form of neohesperidin dihydrochalcone (NHDC), also has dietary properties as a sweetener. In general, these flavanones have been investigated as a strategy to control bone diseases, such as osteoporosis and osteoarthritis. In this literature review, we compiled studies that investigated the effects of neohesperidin, hesperidin and its aglycone, hesperetin, on bone health. In vitro studies showed that these flavanones exerted an antiosteoclastic and anti- inflammatory effects, inhibiting the expression of osteoclastic markers and reducing the levels of reactive oxygen species, proinflammatory cytokines and matrix metalloproteinase levels. Similarly, such studies favored the osteogenic potential of preosteoblastic cells and induced the overexpression of osteogenic markers. In vivo, these flavanones favored the regeneration of bone defects and minimized inflammation in arthritis- and periodontitis-induced models. Additionally, they exerted a significant anticatabolic effect in ovariectomy models, reducing trabecular bone loss and increasing bone mineral density. Although research should advance to the clinical field, these flavanones may have therapeutic potential for controlling the progression of metabolic, autoimmune or inflammatory bone diseases.


Subject(s)
Citrus , Flavanones , Hesperidin , Osteoporosis , Bone Density , Citrus/chemistry , Flavanones/pharmacology , Flavanones/therapeutic use , Flavonoids/pharmacology , Flavonoids/therapeutic use , Hesperidin/analogs & derivatives , Hesperidin/pharmacology , Hesperidin/therapeutic use , Osteoporosis/drug therapy
13.
Food Chem ; 390: 133104, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35561507

ABSTRACT

In this study, ovalbumin (OVA) formed a complex with neohesperidin (NH) via a pH-shifting method. The NH-OVA complex self-assembled into NH-OVA nano-particles, which were then characterized and whose binding mechanism was evaluated by using multi-spectroscopic, thermodynamics, and molecular docking simulation methods. Fluorescence intensity decreased after OVA was complexed with NH. The binding constant of the OVA-NH complex was in the order of 6.32 × 105 M-1 suggesting that the complex is stable. Circular dichroism (CD) analysis showed that α -helix content increased, ß-folding, ß -turning, and irregular crimp content decreased after OVA and NH binding. Isothermal titration calorimetry results showed that hydrophobic interactions and hydrogen bonds made an important impact in the complex formation. The molecular docking results revealed that Van der Waals forces and hydrogen bonds contributed to the free binding energy of the complex. There were multiple possible surface binding sites between OVA with NH. The obtained results provide new insights into the interaction mechanism of OVA and NH, and as a vehicle for NH, the OVA has shown promising applications in functional foods.


Subject(s)
Ovalbumin , Binding Sites , Circular Dichroism , Hesperidin/analogs & derivatives , Hydrogen-Ion Concentration , Molecular Docking Simulation , Ovalbumin/chemistry , Protein Binding , Spectrometry, Fluorescence , Thermodynamics
14.
Am J Chin Med ; 50(2): 351-369, 2022.
Article in English | MEDLINE | ID: mdl-35232329

ABSTRACT

The development of anti-COVID-19 drugs has become the top priority since the outbreak of the epidemic, and Traditional Chinese medicine plays an important role in reducing mortality. Here, hesperidin and its glycosylation product, glucosyl hesperidin were selected to determine their antiviral activity against SARS-CoV-2 due to their structural specificity as reported. To be specific, their binding ability with ACE2, M, S, RBD and N proteins were verified with both in silico and wet lab methods, i.e., molecular docking and binding affinity tests, including biolayer interferometry assay (BLI) and isothermal titration calorimetry assay (ITC). Moreover, systematic pharmacological analysis was conducted to reveal their pharmacological mechanism in treating COVID-19. Finally, their antiviral activity against SARS-CoV-2 was determined in vitro in a biosafety level 3 (BSL3) laboratory. The results demonstrated their outstanding binding affinity with ACE2, M, S and RBD proteins, while showed barely unobserved binding with N protein, indicating their key roles in influencing the invasion and early replication phase of SARS-CoV-2. In addition, both hesperidin and glucosyl hesperidin were shown to have a great impact on immune, inflammation and virus infection induced by COVID-19 according to the systematic pharmacological analysis. Moreover, the IC50s of hesperidin and glucosyl hesperidin against SARS-CoV-2 were further determined (51.5 [Formula: see text]M and 5.5 mM, respectively) with cell-based in vitro assay, suggesting their great anti-SARS-CoV-2 activity. All in all, present research was the first to verify the binding ability of hesperidin and glucosyl hesperidin with SARS-CoV-2 proteins with both in silico and wet-lab methods and proposed the possibility of applying hesperidin and glucosyl hesperidin to treat COVID-19.


Subject(s)
COVID-19 Drug Treatment , Hesperidin , Antiviral Agents/pharmacology , Computational Biology , Glucosides , Hesperidin/analogs & derivatives , Hesperidin/pharmacology , Humans , Molecular Docking Simulation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
15.
Nutrients ; 14(5)2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35268062

ABSTRACT

Neohesperidin dihydrochalcone (NHDC), a semi-natural compound from bitter orange, is an intense sweetener. The anti-obesity effects of NHDC and its glycosidic compound, NHDC-O-glycoside (GNHDC), were investigated. C57BLKS/J db/db mice were supplemented with NHDC or GNHDC (100 mg/kg b.w.) for 4 weeks. Body weight gain, subcutaneous tissues, and total adipose tissues (sum of perirenal, visceral, epididymal, and subcutaneous adipose tissue) were decreased in the NHDC and GNHDC groups. Fatty acid uptake, lipogenesis, and adipogenesis-related genes were decreased, whereas ß-oxidation and fat browning-related genes were up-regulated in the sweetener groups. Furthermore, both sweeteners suppressed the level of triacylglycerol accumulation, lipogenesis, adipogenesis, and proinflammatory cytokines in the 3T3-L1 cells. The PI3K/AKT/mTOR pathway was also down-regulated, and AMP-acttvated protein kinase (AMPK) was phosphorylated in the treatment groups. These results suggest that NHDC and GNHDC inhibited subcutaneous fat and lipid accumulation by regulating the PI3K/AKT/mTOR pathway and AMPK-related lipogenesis and fat browning.


Subject(s)
Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , TOR Serine-Threonine Kinases , Animals , Chalcones , Glycosides , Hesperidin/analogs & derivatives , Lipids , Mice , Phosphatidylinositol 3-Kinases/genetics , Subcutaneous Fat/metabolism , TOR Serine-Threonine Kinases/metabolism
16.
Matrix Biol ; 107: 97-112, 2022 03.
Article in English | MEDLINE | ID: mdl-35167945

ABSTRACT

Dysregulation of cathepsin S (Cat S), a cysteine protease involved in extracellular-matrix and basement membrane (BM) degradation, is a concomitant feature of several inflammatory skin diseases. Therefore, Cat S has been suggested as a potential therapeutic target. Flavonoids, which were identified as regulatory molecules of various proteolytic enzymes, exert beneficial effects on skin epidermis. Herein, thirteen flavonoid compounds were screened in vitro and in silico and neohesperidin dihydrochalcone (NHDC) was identified as a potent, competitive, and selective inhibitor (Ki=8±1 µM) of Cat S. Furthermore, Cat S-dependent hydrolysis of nidogen-1, a keystone protein of BM architecture, as well elastin, collagens I and IV was impaired by NHDC, while both expression and activity of Cat S were significantly reduced in NHDC-treated human keratinocytes. Moreover, a reconstructed human skin model showed a significant decrease of both mRNA and protein levels of Cat S after NHDC treatment. Conversely, the expression of nidogen-1 was significantly increased. NHDC raised IL-10 expression, an anti-inflammatory cytokine, and mediated STAT3 signaling pathway, which in turn dampened Cat S expression. Our findings support that NHDC may represent a valuable scaffold for structural improvement and development of Cat S inhibitors to preserve the matrix integrity and favor skin homeostasis during inflammatory events.


Subject(s)
Chalcones , Hesperidin , Cathepsins/genetics , Chalcones/pharmacology , Chalcones/therapeutic use , Hesperidin/analogs & derivatives , Hesperidin/pharmacology , Hesperidin/therapeutic use , Humans
17.
Microvasc Res ; 139: 104274, 2022 01.
Article in English | MEDLINE | ID: mdl-34717967

ABSTRACT

OBJECTIVE: Besides actions including their venotonic, anti-inflammatory, and anti-oxidant effects, venoactive drugs are expected to act on edema via their action on lymphatics. The objective of this study was to evaluate the effect of the combination of Ruscus, hesperidin methyl chalcone and Vitamin C (Ruscus/HMC/Vit C) on intracellular calcium mobilization and contraction of human lymphatic smooth muscle cells (LSMCs) to better characterize the mechanism of its lymphotonic activity. METHODS: Calcium mobilization was evidenced by videomicroscopy analysis of the fluorescence emitted by a specific Ca2+ sensitive dye and measured after injection of Ruscus/HMC/Vit C at 0.1, 0.3, 1.0, and 3.0 mg/mL into LSMCs. RESULTS: Ruscus/HMC/Vit C induced a strong and reproducible concentration-dependent calcium mobilization in LSMCs. On the contrary, another venoactive drug used as comparator, micronized purified flavonoid fraction (MPFF), did not induce calcium mobilization whatever the tested concentration. CONCLUSION: Although alternative mechanisms of action may result in potential lymphotonic effects, the efficacy of lymphotonic products is nonetheless related to their stimulating effect on the contractile activity of the smooth muscle cells surrounding lymphatic vessels. In the light of the results obtained in this study, the direct effect of Ruscus/HMC/Vit C on LSMC contraction may partially explain its clinical efficacy on lymphotonic activity, as has been observed in terms of objective signs of edema as reported in the recent guidelines on chronic venous disease.


Subject(s)
Ascorbic Acid/pharmacology , Chalcones/pharmacology , Hesperidin/analogs & derivatives , Lymphatic Vessels/drug effects , Muscle Contraction/drug effects , Myocytes, Smooth Muscle/drug effects , Plant Extracts/pharmacology , Ruscus , Calcium/metabolism , Calcium Signaling , Cells, Cultured , Diosmin/pharmacology , Dose-Response Relationship, Drug , Drug Combinations , Gene Expression Regulation , Hesperidin/pharmacology , Humans , Lymphatic Vessels/metabolism , Male , Middle Aged , Myocytes, Smooth Muscle/metabolism , Plant Extracts/isolation & purification , Ruscus/chemistry , Time Factors
18.
Cell Cycle ; 21(2): 187-201, 2022 01.
Article in English | MEDLINE | ID: mdl-34919014

ABSTRACT

The present study aimed to investigate the role of neohesperidin (NH) in mice with steroid-induced femoral head necrosis (SONFH) and in bone marrow stromal cells (BMSCs). The SONFH model was established. The effects of NH on SONFH mice were detected by hematoxylin-eosin (HE) staining and micro-CT, while those on proliferation, osteogenic differentiation and associated pathways of BMSCs were detected by molecular experiments. Besides, the effects of NH on ß-catenin nuclear translocation and the H3K27me3 abundance on the transcriptional start site of Bone Morphogenetic Protein 2 (BMP2) were also determined by immunofluorescence staining and Chromatin Immunoprecipitation. Results indicated that NH not only reduced histopathological changes and improved the structures of the femoral heads of the SONFH mice but also promoted the proliferation and osteogenic differentiation of mouse BMSCs, enhanced alkaline phosphatase (ALP) activity, and upregulated expressions of osteoblast markers in a dose-dependent manner. Moreover, NH was also confirmed to upregulate the expressions of genes related to osteogenesis and Wnt/ß-catenin pathway of BMSCs, which, however, were all noticeably downregulated by Noggin and DKK1. Additionally, Noggin and DKK1 in combination further promoted the suppressive effect on genes related to osteogenesis and Wnt/ß-catenin pathway than alone. Besides, NH induced nuclear translocation of ß-catenin in BMSCs and further reduced H3K27me3-triggered enrichment of BMP2. In conclusion, NH could promote proliferation and osteogenic differentiation of BMSCs via BMP2-Wnt/ß-catenin pathway.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Animals , Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 2/metabolism , Cell Differentiation/genetics , Cell Proliferation , Cells, Cultured , Hesperidin/analogs & derivatives , Histones/metabolism , Mesenchymal Stem Cells/metabolism , Mice , Osteogenesis/genetics , Wnt Signaling Pathway , beta Catenin/metabolism
19.
Molecules ; 26(24)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34946519

ABSTRACT

In the present study, we investigated the structure-activity relationship of naturally occurring hesperetin derivatives, as well as the effects of their glycosylation on the inhibition of diabetes-related enzyme systems, protein tyrosine phosphatase 1B (PTP1B) and α-glycosidase. Among the tested hesperetin derivatives, hesperetin 5-O-glucoside, a single-glucose-containing flavanone glycoside, significantly inhibited PTP1B with an IC50 value of 37.14 ± 0.07 µM. Hesperetin, which lacks a sugar molecule, was the weakest inhibitor compared to the reference compound, ursolic acid (IC50 = 9.65 ± 0.01 µM). The most active flavanone hesperetin 5-O-glucoside suggested that the position of a sugar moiety at the C-5-position influences the PTP1B inhibition. It was observed that the ability to inhibit PTP1B is dependent on the nature, position, and number of sugar moieties in the flavonoid structure, as well as conjugation. In the kinetic study of PTP1B enzyme inhibition, hesperetin 5-O-glucoside led to mixed-type inhibition. Molecular docking studies revealed that hesperetin 5-O-glucoside had a higher binding affinity with key amino residues, suggesting that this molecule best fits the PTP1B allosteric site cavity. The data reported here support hesperetin 5-O-glucoside as a hit for the design of more potent and selective inhibitors against PTP1B in the search for a new anti-diabetic treatment.


Subject(s)
Enzyme Inhibitors/chemistry , Hesperidin/analogs & derivatives , Molecular Docking Simulation , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Hesperidin/chemistry , Humans , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 1/chemistry , Structure-Activity Relationship
20.
Chin J Nat Med ; 19(10): 741-749, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34688464

ABSTRACT

During the pathogensis of rheumatoid arthritis (RA), activated RA fibroblast-like synoviocytes (RA-FLSs) combines similar proliferative features as tumor and inflammatory features as osteoarthritis, which eventually leads to joint erosion. Therefore, it is imperative to research and develop new compounds, which can effectively inhibit abnormal activation of RA-FLSs and retard RA progression. Neohesperidin (Neo) is a major active component of flavonoid compounds with anti-inflammation and anti-oxidant properties. In this study, the anti-inflammation, anti-migration, anti-invasion, anti-oxidant and apoptosis-induced effects of Neo on RA-FLSs were explored to investigate the underlying mechanism. The results suggested that Neo decreased the levels of interleukin IL-1ß, IL-6, IL-8, TNF-α, MMP-3, MMP-9 and MMP-13 in FLSs. Moreover, Neo blocked the activation of the MAPK signaling pathway. Furthermore, treatment with Neo induced the apoptosis of FLSs, and inhibited the migration of FLSs. It was also found that Neo reduced the accumulation of reactive oxygen species (ROS) induced by TNF-α. Taken together, our results highlighted that Neo may act as a potential and promising therapeutic drug for the management of RA.


Subject(s)
Arthritis, Rheumatoid , Synoviocytes , Arthritis, Rheumatoid/drug therapy , Cell Movement , Cell Proliferation , Cells, Cultured , Fibroblasts , Hesperidin/analogs & derivatives , Humans , Tumor Necrosis Factor-alpha/genetics
SELECTION OF CITATIONS
SEARCH DETAIL