Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 364
Filter
1.
Zhongguo Zhong Yao Za Zhi ; 49(16): 4477-4487, 2024 Aug.
Article in Chinese | MEDLINE | ID: mdl-39307784

ABSTRACT

Aurantii Fructus Immaturus(AFI) is a traditional Chinese herbal medicine with multiple origins from Citrus aurantium and its legally cultivated variants. With advancements in agricultural biotechnology, many new cultivated varieties have sprung up,leading to an abundance of AFI adulterants and chaos in the herbal medicine markets. This study developed a specific identification method for AFI and its closely related adulterants by examining the appearance trait, content of extract, and multiple ingredients,involving indicators such as the ratio of pulp capsule to cross section diameter(Pc/Cs ratio), the content of extract, and the profile of 11 ingredients. The research finds that:(1) Pc/Cs ratio can conveniently identify adulterants such as Poncirus trifoliata, Ju, and Babagan from the genuine AFI.(2) The extract content can be used to identify adulterants originated from C. wilsonii with C. aurantium.(3) The contents of synephrine in all the samples were in accordance with the Chinese Pharmacopoeia except for the adulterants from P. trifoliata, C. wilsonii, C. aurantium 'Changshanhuyou' and orah mandarins. The synephrine content was high as 1. 40% in some C. sinensis varieties. The mass fraction of hesperidin was over 10. 00% in C. sinensis, while it was below 2. 50% in C. aurantium. C. aurantium contained high levels of naringin(3. 96%-15. 21%) and neo-hesperidin(9. 38%-21. 93%).(4) The compositions of adulterants from P. trifoliata and C. wilsonii were more similar to that of C. aurantium 'Daidai', but with significantly lower neo-hesperidin content(0. 03%-0. 14%) than that in C. aurantium, and they lacked hesperetin and tangeretin. C. maxima(originating from C. maxima) showed closer composition to Choucheng and hybrid originated from Citrus aurantium × Poncirus trifoliata, but had higher hesperidin content(3. 13%) than that in C. aurantium. Ju was closely related to C. sinensis and neither contained naringin nor neo-hesperidin. Hesperidins in Babagan and orah mandarins were similar to that in C. sinensis, with none containing rhoifolin. These quality indicators in combination can accurately distinguish between C. sinensis, C. aurantium, and their closely related adulterants(P. trifoliata, C. wilsonii, C. maxima, orah mandarins and C. reticulata), which are expected to provide a systematic method for quality control of AFI.


Subject(s)
Citrus , Drug Contamination , Drugs, Chinese Herbal , Quality Control , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Citrus/classification , Citrus/chemistry , Chromatography, High Pressure Liquid , Hesperidin/analysis , Hesperidin/chemistry , Hesperidin/analogs & derivatives , China , Synephrine/analysis
2.
Carbohydr Polym ; 344: 122539, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39218557

ABSTRACT

In this work we developed an eco-friendly valorisation of Citrus wastes (CWs), through a solvent-assisted ultrasonication extraction technique, thus having access to a wide range of bio-active compounds and polysaccharides, extremely useful in different industrial sectors (food, cosmetics, nutraceutical). Water-based low-amplitude ultrasonication was examined as a potential method for pectin extraction as well as polar and non-polar citrus extractives (CEs), among which hesperidin and triglycerides of 18 carbon fatty acids were found to be the most representative ones. In addition, citric acid:glycerol (1:4)-based deep eutectic solvent (DES) in combination with ultrasonic extraction was utilized to extract microcellulose (CMC), from which stable cellulose nanocrystals (CNCs) with glycerol-assisted high amplitude ultrasonication were obtained. The physical and chemical properties of the extracted polysaccharides (pectin, micro and nanocellulose) were analysed through DLS, ζ-potential, XRD, HP-SEC, SEM, AFM, TGA-DSC, FTIR, NMR, and PMP-HPLC analyses. The putative structure of the extracted citrus pectin (CP) was analysed and elucidated through enzyme-assisted hydrolysis in correlation with ESI-MS and monosaccharide composition. The developed extraction methods are expected to influence the industrial process for the valorisation of CWs and implement the circular bio-economy.


Subject(s)
Cellulose , Citrus , Industrial Waste , Nanoparticles , Pectins , Pectins/chemistry , Pectins/isolation & purification , Citrus/chemistry , Cellulose/chemistry , Nanoparticles/chemistry , Industrial Waste/analysis , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Sonication/methods , Hesperidin/chemistry , Hesperidin/isolation & purification
3.
Cell Physiol Biochem ; 58(4): 445-457, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39230349

ABSTRACT

BACKGROUND/AIMS: Lemons (Citrus limon ) contain various nutrients and are among the most popular citrus fruit. Besides their antioxidant, anticancer, antibacterial, and anti-inflammatory properties, clinical studies have indicated their anti-allergic properties. METHODS: Using the differential-interference contrast (DIC) microscopy, we examined the effects of lemon juice and peel constituents, such as citric acid, ascorbic acid, hesperetin and eriodictyol, on the degranulation from rat peritoneal mast cells. Using fluorescence imaging with a water-soluble dye, Lucifer Yellow, we also examined their effects on the deformation of the plasma membrane. RESULTS: Lemon juice dose-dependently decreased the number of degranulated mast cells. At concentrations equal to or higher than 0.25 mM, citric acid, hesperetin, and eriodictyol significantly reduced the number of degranulating mast cells in a dose-dependent manner, while ascorbic acid required much higher doses to exert significant effects. At 1 mM, citric acid, hesperetin, and eriodictyol almost completely inhibited exocytosis and washed out the Lucifer Yellow trapped on the mast cell surface, while ascorbic acid did not. CONCLUSION: This study provides in vitro evidence for the first time that lemon constituents, such as citric acid, hesperetin, and eriodictyol, potently exert mast cell-stabilizing properties. These properties are attributable to their inhibitory effects on plasma membrane deformation in degranulating mast cells.


Subject(s)
Ascorbic Acid , Citrus , Flavanones , Hesperidin , Mast Cells , Animals , Mast Cells/drug effects , Mast Cells/metabolism , Citrus/chemistry , Rats , Ascorbic Acid/pharmacology , Male , Hesperidin/pharmacology , Hesperidin/chemistry , Flavanones/pharmacology , Flavanones/chemistry , Citric Acid/pharmacology , Citric Acid/chemistry , Cell Degranulation/drug effects , Fruit and Vegetable Juices/analysis , Peritoneum/cytology , Rats, Sprague-Dawley , Exocytosis/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Fruit/chemistry , Isoquinolines
4.
Int J Mol Sci ; 25(17)2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39273257

ABSTRACT

Chemotherapy-induced diarrhea (CID) is a potentially serious side effect that often occurs during anticancer therapy and is caused by the toxic effects of chemotherapeutic drugs on the gastrointestinal tract, resulting in increased frequency of bowel movements and fluid contents. Among these agents, irinotecan (CPT-11) is most commonly associated with CID. Hesperidin (HPD), a flavonoid glycoside found predominantly in citrus fruits, has anti-oxidation properties and anti-inflammation properties that may benefit CID management. Nevertheless, its potential mechanism is still uncertain. In this study, we firstly evaluated the pharmacodynamics of HPD for the treatment of CID in a mouse model, then used network pharmacology and molecular docking methods to excavate the mechanism of HPD in relieving CID, and finally further proved the predicted mechanism through molecular biology experiments. The results demonstrate that HPD significantly alleviated diarrhea, weight loss, colonic pathological damage, oxidative stress, and inflammation in CID mice. In addition, 74 potential targets for HPD intervention in CID were verified by network pharmacology, with the top 10 key targets being AKT1, CASP3, ALB, EGFR, HSP90AA1, MMP9, ESR1, ANXA5, PPARG, and IGF1. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the PI3K-Akt pathway, FoxO pathway, MAPK pathway, TNF pathway, and Ras pathway were most relevant to the HPD potential treatment of CID genes. The molecular docking results showed that HPD had good binding to seven apoptosis-related targets, including AKT1, ANXA5, CASP3, HSP90AA1, IGF1, MMP9, and PPARG. Moreover, we verified apoptosis by TdT-mediated dUTP nick-end labeling (TUNEL) staining and immunohistochemistry, and the hypothesis about the proteins above was further verified by Western blotting in vivo experiments. Overall, this study elucidates the potential and underlying mechanisms of HPD in alleviating CID.


Subject(s)
Diarrhea , Hesperidin , Irinotecan , Molecular Docking Simulation , Network Pharmacology , Hesperidin/pharmacology , Hesperidin/chemistry , Hesperidin/therapeutic use , Animals , Diarrhea/drug therapy , Diarrhea/chemically induced , Mice , Irinotecan/adverse effects , Irinotecan/pharmacology , Disease Models, Animal , Male , Oxidative Stress/drug effects
5.
BMC Biotechnol ; 24(1): 52, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095760

ABSTRACT

BACKGROUND: Colorectal cancer is a common disease worldwide with non-specific symptoms such as blood in the stool, bowel movements, weight loss and fatigue. Chemotherapy drugs can cause side effects such as nausea, vomiting and a weakened immune system. The use of antioxidants such as hesperidin could reduce the side effects, but its low bioavailability is a major problem. In this research, we aimed to explore the drug delivery and efficiency of this antioxidant on the HCT116 colorectal cancer cell line by loading hesperidin into PLGA nanoparticles. MATERIALS AND METHODS: Hesperidin loaded PLGA nanoparticles were produced by single emulsion evaporation method. The physicochemical properties of the synthesized hesperidin-loaded nanoparticles were determined using SEM, AFM, FT-IR, DLS and UV-Vis. Subsequently, the effect of the PLGA loaded hesperidin nanoparticles on the HCT116 cell line after 48 h was investigated by MTT assay at three different concentrations of the nanoparticles. RESULT: The study showed that 90% of hesperidin were loaded in PLGA nanoparticles by UV-Vis spectrophotometry and FT-IR spectrum. The nanoparticles were found to be spherical and uniform with a hydrodynamic diameter of 76.2 nm in water. The release rate of the drug was about 93% after 144 h. The lowest percentage of cell viability of cancer cells was observed at a concentration of 10 µg/ml of PLGA nanoparticles loaded with hesperidin. CONCLUSION: The results indicate that PLGA nanoparticles loaded with hesperidin effectively reduce the survival rate of HCT116 colorectal cancer cells. However, further studies are needed to determine the appropriate therapeutic dosage and to conduct animal and clinical studies.


Subject(s)
Colorectal Neoplasms , Hesperidin , Nanoparticles , Polylactic Acid-Polyglycolic Acid Copolymer , Humans , Hesperidin/chemistry , Hesperidin/pharmacology , Hesperidin/administration & dosage , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Colorectal Neoplasms/drug therapy , HCT116 Cells , Nanoparticles/chemistry , Cell Survival/drug effects , Lactic Acid/chemistry , Polyglycolic Acid/chemistry , Drug Delivery Systems , Particle Size , Drug Carriers/chemistry , Spectroscopy, Fourier Transform Infrared , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Nanoparticle Drug Delivery System/chemistry
6.
Pharm Dev Technol ; 29(7): 762-775, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39143894

ABSTRACT

Thermoresponsive nanoparticles are exploited as drug-delivery vehicles that release their payload upon increment in temperature. We prepared and characterized thermoresponsive lipid-anchored folic acid engineered magnetic nanoparticles (LP-HP-FANPs) that combine receptor-based targeting and thermoresponsive sustained release of hesperidin (HP) in response to endogenous inflammation site temperature. The progressive surface engineering of NPs was validated by FTIR analysis. Our LP-HP-FANPs had a particle size of 100.5 ± 1.76 nm and a zeta potential of 14.6 ± 2.65 mV. The HP encapsulation effectiveness of LP-HP-FANPs is around 91 ± 0.78%. AFM scans indicated that our modified nanoparticles were spherical. LP-HP-FANPs exhibit increased drug release (85.8% at pH 4.0, 50.9% at pH 7.0) at 40 °C. Animal studies showed no toxicity from nanoparticles. Compared to conventional drugs and HP, LP-HP-FANPs effectively decreased paw edema, cytokine levels, and total cell recruitment in thioglycollate-induced peritonitis (p < 0.05). LP-HP-FANPs substantially decreased cytokines compared to HP, HP-FA-NPs, and the standard medication (p < 0.05, p < 0.01, and p < 0.001). These findings imply that the synthesized HP-loaded formulation (LP-HP-FANPs) may be a potential anti-inflammatory formulation for clinical development.


Subject(s)
Drug Liberation , Hesperidin , Inflammation , Magnetite Nanoparticles , Hesperidin/administration & dosage , Hesperidin/chemistry , Animals , Inflammation/drug therapy , Magnetite Nanoparticles/chemistry , Lipids/chemistry , Male , Temperature , Drug Delivery Systems/methods , Disease Models, Animal , Mice , Folic Acid/chemistry , Particle Size , Delayed-Action Preparations , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacology , Drug Carriers/chemistry , Rats
7.
Int J Biol Macromol ; 276(Pt 2): 133902, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39029835

ABSTRACT

Chrysophanol and hesperidin are natural nutraceuticals that exhibit synergistic bioactivities, but their hydrophobicity limits their applications, and it is unclear whether coencapsulation can improve their solubility and release behaviors. The objective of this work was to coencapsulate chrysophanol and hesperidin by octenylsuccinated ß-glucan aggregates (OSßG-Agg) and to reveal how coencapsulation improves their release and bioaccessibility. Mechanisms underlying the hypothesis of beneficial effects in coloading, corelease and bioaccessibility were revealed. The solubilization of OSßG-Agg was due to hydrogen-bonding among ß-glucan moieties of OSßG and hydroxyl groups of chrysophanol and hesperidin and hydrophobic interactions among octenyl chains of OSßG and hydrophobic moieties of chrysophanol and hesperidin. Structural analyses confirmed the hypothesis that chrysophanol molecules were nearly embedded deeper into the interior of hydrophobic domains, and most of hesperidin molecules were incorporated into the exterior of the hydrophobic domains of OSßG-Agg due to the strength of these interactions, but they interacted in OSßG-Agg with a dense and compact structure rather than existing in isolation. The combined effects delayed their release and enhanced their bioaccessibility because of dynamic equilibrium between the favorable interactions and unfavorable structural erosion and relaxation of OSßG-Agg. Overall, OSßG-Agg is effective at codelivering hydrophobic phenolics for functional foods and pharmaceuticals.


Subject(s)
Anthraquinones , Hesperidin , beta-Glucans , Hesperidin/chemistry , beta-Glucans/chemistry , Anthraquinones/chemistry , Solubility , Hydrophobic and Hydrophilic Interactions , Biological Availability , Hydrogen Bonding
8.
Mikrochim Acta ; 191(8): 443, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38955844

ABSTRACT

CoFe@C was first prepared by calcining the precursor of CoFe-metal-organic framework-74 (CoFe-MOF-74), then an electrochemical sensor for the determination of neohesperidin dihydrochalcone (NHDC) was constructed, which was stemmed from the novel CoFe@C/Nafion composite film modified glassy carbon electrode (GCE). The CoFe@C/Nafion composite was verified by field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). Electrochemical impedance spectroscopy (EIS) was used to evaluate its electrical properties as a modified material for an electrochemical sensor. Compared with CoFe-MOF-74 precursor modified electrode, CoFe@C/Nafion electrode exhibited a great synergic catalytic effect and extremely increased the oxidation peak signal of NHDC. The effects of various experimental conditions on the oxidation of NHDC were investigated and the calibration plot was tested. The results bespoken that CoFe@C/Nafion GCE has good reproducibility and anti-interference under the optimal experimental conditions. In addition, the differential pulse current response of NHDC was linear with its concentration within the range 0.08 ~ 20 µmol/L, and the linear regression coefficient was 0.9957. The detection limit was as low as 14.2 nmol/L (S/N = 3). In order to further verify the feasibility of the method, it was successfully used to determine the content of NHDC in Chinese medicine, with a satisfactory result, good in accordance with that of high performance liquid chromatography (HPLC).


Subject(s)
Chalcones , Cobalt , Electrochemical Techniques , Electrodes , Limit of Detection , Metal-Organic Frameworks , Cobalt/chemistry , Metal-Organic Frameworks/chemistry , Chalcones/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Hesperidin/analogs & derivatives , Hesperidin/analysis , Hesperidin/chemistry , Fluorocarbon Polymers/chemistry , Oxidation-Reduction , Carbon/chemistry , Reproducibility of Results , Iron/chemistry
9.
Int J Biol Macromol ; 275(Pt 2): 133757, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38986997

ABSTRACT

Polyphenol has the considerable effects for inhibition of digestive enzymes, however, inhibition mechanism of molecular size-dependent polyphenols on enzyme activity is still lacking. Herein, inhibition effect and binding interactions of three different structural polyphenols (catechol, quercetin and hesperidin) on α-amylase were studied. Inhibition assays proved that polyphenols significantly inhibited α-amylase and their effects were increased with their molecular sizes. Hesperidin showed the highest inhibition ability of α-amylase, which was determined as IC50 = 0.43 mg/mL. Fluorescence and FT-IR spectroscopy proved that inter-molecular interactions between polyphenols and α-amylase occurred through non-covalent bonds. Besides, the secondary structure of α-amylase was obviously changed after binding with polyphenols. Inter-molecular interactions were investigated using solid-state NMR and molecular docking. Findings proved that hydrogen bonds and π-π stacking interactions were the mainly inter-molecular interactions. We hope this contribution could provide a theoretical basis for developing some digestive enzyme inhibitors from natural polyphenols.


Subject(s)
Enzyme Inhibitors , Molecular Docking Simulation , Polyphenols , alpha-Amylases , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/chemistry , alpha-Amylases/metabolism , Polyphenols/chemistry , Polyphenols/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Magnetic Resonance Spectroscopy/methods , Hydrogen Bonding , Quercetin/chemistry , Quercetin/pharmacology , Catechols/chemistry , Catechols/pharmacology , Hesperidin/chemistry , Hesperidin/pharmacology
10.
Pharm Dev Technol ; 29(7): 691-702, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39045751

ABSTRACT

Hesperidin (HSP) is a natural flavonoid glycoside with very low aqueous solubility and a slow dissolution rate, limiting its effectiveness. This study aims to address these issues by creating co-crystals of hesperidin with water-soluble small molecules (co-formers) such as L-arginine, glutathione, glycine, and nicotinamide. Using the solvent drop grinding method, we prepared three different molar ratios of hesperidin to co-formers (1:1, 1:3, and 1:5) and conducted in-vitro solubility and dissolution studies. The results demonstrated that the prepared co-crystals exhibited significantly enhanced solubility and dissolution rates compared to untreated hesperidin. Of particular note, the HSP co-crystals formula (HSP: L-arg 1:5) displayed approximately 4.5 times higher dissolution than pure hesperidin. Further analysis using FTIR, powder x-ray diffraction patterns, and DSC thermograms validated the formation of co-crystals between HSP and L-arginine. Additionally, co-crystallization with L-arginine improved the in vitro anti-inflammatory and antioxidant activities of hesperidin compared to the untreated drug. This study highlights the potential of using water-soluble small molecules (co-formers) through co-crystallization to enhance the solubility, dissolution, and biological activities of poorly water-soluble drugs. Furthermore, in vivo studies are crucial to validate these promising results.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Arginine , Crystallization , Hesperidin , Solubility , Hesperidin/chemistry , Hesperidin/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Arginine/chemistry , Glutathione/chemistry , Niacinamide/chemistry , Niacinamide/pharmacology , Glycine/chemistry , Animals , Water/chemistry , X-Ray Diffraction/methods , Mice
11.
J Asian Nat Prod Res ; 26(10): 1207-1218, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38945159

ABSTRACT

The therapeutic potential of two important flavonoids, i.e. hesperidin and naringenin, remains unutilized due to pharmacokinetics issues, especially poor aqueous solubility. Hydrotropic solid dispersions with different agents like sodium salicylate, niacinamide, benzoic acid, and urea etc. can change the solubility profile of poorly soluble drugs. The current study investigated the potential of different hydrotropic agents in improving the solubility of both natural bioactives. The hydrotropic solid dispersion in 1:3 w/w drug: sodium salicylate ratio showed maximum solubility and dissolution amongst all the tested hydrotropes. This novel and economical approach could be explored for other poorly soluble pharmaceuticals.


Subject(s)
Flavanones , Hesperidin , Solubility , Hesperidin/chemistry , Flavanones/chemistry , Molecular Structure , Water/chemistry
12.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732039

ABSTRACT

Hesperidin is a highly bioactive natural flavonoid whose role in ecological interactions is poorly known. In particular, the effects of hesperidin on herbivores are rarely reported. Flavonoids have been considered as prospective biopesticides; therefore, the aim of the present study was to examine the influence of hesperidin on the host plant selection behavior of three aphid (Hemiptera: Aphididae) species: Acyrthosiphon pisum Harrris, Rhopalosiphum padi (L.), and Myzus persicae (Sulz.). The aphid host plants were treated with 0.1% and 0.5% ethanolic solutions of hesperidin. Aphid probing behavior in the no-choice experiment was monitored using electropenetrography and aphid settling on plants in the choice experiment was recorded. The results demonstrated that hesperidin can be applied as a pre-ingestive, ingestive, and post-ingestive deterrent against A. pisum, as an ingestive deterrent against R. padi, and as a post-ingestive deterrent against M. persicae using the relatively low 0.1% concentration. While in A. pisum the deterrent effects of hesperidin were manifested as early as during aphid probing in peripheral plant tissues, in M. persicae, the avoidance of plants was probably the consequence of consuming the hesperidin-containing phloem sap.


Subject(s)
Aphids , Hesperidin , Aphids/drug effects , Aphids/physiology , Animals , Hesperidin/pharmacology , Hesperidin/chemistry , Species Specificity , Feeding Behavior/drug effects , Herbivory/drug effects , Behavior, Animal/drug effects
13.
Sci Rep ; 14(1): 11535, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773159

ABSTRACT

In this study, a novel method for the fabrication of hesperidin/reduced graphene oxide nanocomposite (RGOH) with the assistance of gamma rays is reported. The different RGOHs were obtained by varying hesperidin concentrations (25, 50, 100, and 200 wt.%) in graphene oxide (GO) solution. Hesperidin concentrations (25, 50, 100, and 200 wt.%) in graphene oxide (GO) were varied to produce the various RGOHs. Upon irradiation with 80 kGy from γ-Ray, the successful reduction of GO occurred in the presence of hesperidin. The reduction process was confirmed by different characterization techniques such as FTIR, XRD, HRTEM, and Raman Spectroscopy. A cytotoxicity study using the MTT method was performed to evaluate the cytotoxic-anticancer effects of arbitrary RGOH on Wi38, CaCo2, and HepG2 cell lines. The assessment of RGOH's anti-inflammatory activity, including the monitoring of IL-1B and IL-6 activities as well as NF-kB gene expression was done. In addition, the anti-invasive and antimetastatic properties of RGOH, ICAM, and VCAM were assessed. Additionally, the expression of the MMP2-9 gene was quantified. The assessment of apoptotic activity was conducted by the detection of gene expressions related to BCl2 and P53. The documentation of the JNK/SMAD4/MMP2 signaling pathway was ultimately accomplished. The findings of our study indicate that RGOH therapy has significant inhibitory effects on the JNK/SMAD4/MMP2 pathway. This suggests that it could be a potential therapeutic option for cancer.


Subject(s)
Gamma Rays , Graphite , Hesperidin , Matrix Metalloproteinase 2 , Nanocomposites , Smad4 Protein , Humans , Graphite/chemistry , Graphite/pharmacology , Nanocomposites/chemistry , Hesperidin/pharmacology , Hesperidin/chemistry , Smad4 Protein/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Green Chemistry Technology/methods , Signal Transduction/drug effects , Caco-2 Cells , Hep G2 Cells , Cell Line, Tumor , MAP Kinase Kinase 4/metabolism
14.
Int J Mol Sci ; 25(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38791321

ABSTRACT

The interactions with calf thymus DNA (CT-DNA) of three Schiff bases formed by the condensation of hesperetin with benzohydrazide (HHSB or L1H3), isoniazid (HIN or L2H3), or thiosemicarbazide (HTSC or L3H3) and their CuII complexes (CuHHSB, CuHIN, and CuHTSC with the general formula [CuLnH2(AcO)]) were evaluated in aqueous solution both experimentally and theoretically. UV-Vis studies indicate that the ligands and complexes exhibit hypochromism, which suggests helical ordering in the DNA helix. The intrinsic binding constants (Kb) of the Cu compounds with CT-DNA, in the range (2.3-9.2) × 106, from CuHTSC to CuHHSB, were higher than other copper-based potential drugs, suggesting that π-π stacking interaction due to the presence of the aromatic rings favors the binding. Thiazole orange (TO) assays confirmed that ligands and Cu complexes displace TO from the DNA binding site, quenching the fluorescence emission. DFT calculations allow for an assessment of the equilibrium between [Cu(LnH2)(AcO)] and [Cu(LnH2)(H2O)]+, the tautomer that binds CuII, amido (am) and not imido (im), and the coordination mode of HTSC (O-, N, S), instead of (O-, N, NH2). The docking studies indicate that the intercalative is preferred over the minor groove binding to CT-DNA with the order [Cu(L1H2am)(AcO)] > [Cu(L2H2am)(AcO)] ≈ TO ≈ L1H3 > [Cu(L3H2am)(AcO)], in line with the experimental Kb constants, obtained from the UV-Vis spectroscopy. Moreover, dockings predict that the binding strength of [Cu(L1H2am)(AcO)] is larger than [Cu(L1H2am)(H2O)]+. Overall, the results suggest that when different enantiomers, tautomers, and donor sets are possible for a metal complex, a computational approach should be recommended to predict the type and strength of binding to DNA and, in general, to macromolecules.


Subject(s)
Coordination Complexes , Copper , DNA , Hesperidin , Schiff Bases , DNA/chemistry , DNA/metabolism , Schiff Bases/chemistry , Hesperidin/chemistry , Copper/chemistry , Coordination Complexes/chemistry , Animals , Cattle , Ligands , Molecular Docking Simulation , Isoniazid/chemistry , Semicarbazides/chemistry
15.
Food Chem ; 451: 139505, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38703732

ABSTRACT

Constructing carrier materials with polysaccharides to enhance the solubility of insoluble active ingredients is a crucial strategy for improving bioavailability. This research constructed pectin-based hesperidin microcapsules (PHM) through self-assembly processes in the deep eutectic solvent, improving the solubility, storage stability, and bioavailability of hesperidin (HES). PHM exhibited high encapsulation efficiency (91.7%) and loading capacity (11.5%), with a small particle size (1.73 µm). The interaction mechanism was clarified through physical characterization and density functional theory (DFT) calculations. The vitro release demonstrated that the release ratio of PHM was only 6.4% in simulated gastric fluid (SGF), but reached 80.9% in simulated intestinal fluid (SIF). The release mechanism of PHM in SGF followed Fickian diffusion, while in SIF followed skeleton dissolution diffusion with a stable rate. Furthermore, the cell cytotoxicity experiments confirmed the remarkable biocompatibility of PHM toward human colon cells, which suggested its potential application in food and pharmaceutical fields.


Subject(s)
Capsules , Hesperidin , Pectins , Solubility , Pectins/chemistry , Hesperidin/chemistry , Humans , Capsules/chemistry , Drug Carriers/chemistry , Particle Size , Drug Compounding , Biological Availability , Drug Liberation , Drug Stability , Cell Survival/drug effects , Caco-2 Cells
16.
Mol Pharm ; 21(6): 3061-3076, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38757678

ABSTRACT

Melanoma, characterized as the most aggressive and metastatic form of skin cancer, currently has limited treatment options, predominantly chemotherapy and radiation therapy. However, the drawbacks associated with parenterally administered chemotherapy underscore the urgent need for alternative compounds to combat melanoma effectively. Hesperidin (HES), a flavonoid present in various citrus fruits, exhibits promising anticancer activity. Nevertheless, the clinical utility of HES is hindered by challenges such as poor water solubility, a short half-life, and low oral bioavailability. In response to these limitations, we introduced a novel approach by formulating HES-loaded exosomes (Exo-HES). Isolation of exosomes was achieved through the ultracentrifugation method, and HES was efficiently loaded using the sonication method. The resulting formulations displayed a desirable particle size (∼106 nm) and exhibited a spherical morphology, as confirmed by scanning electron and atomic force microscopy. In vitro studies conducted on B16F10 cell lines demonstrated higher cytotoxicity of Exo-HES compared to free HES, supported by enhanced cellular uptake validated through coumarin-6-loaded exosomes. This superior cytotoxicity was further evidenced by DNA fragmentation, increased generation of free radicals (ROS), loss of mitochondrial membrane potential, and effective inhibition of colony formation. The antimetastatic properties of Exo-HES were confirmed through wound healing and transwell migration assays. Oral pharmacokinetics studies revealed a remarkable increase of approximately 2.5 times in oral bioavailability and half-life of HES when loaded into exosomes. Subsequent in vivo experiments utilizing a B16F10-induced melanoma model in Swiss mice established that Exo-HES exhibited superior anticancer activity compared to HES after oral administration. Importantly, no biochemical, hematological, or histological toxicities were observed in tumor-bearing mice treated with Exo-HES. These findings suggest that exosomes loaded with HES represent a promising nanocarrier strategy to enhance the therapeutic effectiveness of hesperidin in melanoma treatment.


Subject(s)
Exosomes , Hesperidin , Hesperidin/chemistry , Hesperidin/pharmacology , Hesperidin/administration & dosage , Hesperidin/pharmacokinetics , Animals , Mice , Cell Line, Tumor , Melanoma, Experimental/drug therapy , Melanoma, Experimental/pathology , Melanoma/drug therapy , Melanoma/pathology , Humans , Membrane Potential, Mitochondrial/drug effects , Male , Mice, Inbred C57BL , Drug Delivery Systems/methods
17.
Biomed Mater ; 19(3)2024 May 03.
Article in English | MEDLINE | ID: mdl-38653315

ABSTRACT

Hesperidin, a phytochemical renowned for its therapeutic effects including anticancer, antioxidant, and anti-inflammatory properties, encounters a significant limitation in its application due to its low bioavailability and restricted solubility in water. To surmount these challenges, we employed a spontaneous emulsification method to produce hesperidin nanoparticles. These nanoparticles, averaging 197.2 ± 2.8 nm, exhibited uniform dispersion (polydispersity index: 0.13), a zeta potential (ZP) of -28 mV, encapsulation efficiency of 84.04 ± 1.3%, and demonstrated stable and controlled release across various environments. Assessment of the nanoemulsions stability revealed remarkably high stability levels. Cytotoxicity evaluations (3-(4,5-dimethylthiazol-2-yl)-2,5diphenyl-2-H-tetrazolium bromide, neutral red, trypan blue, and lactate dehydrogenase) indicated that cancer cell viability following treatment with hesperidin nanoemulsion was concentration and time-dependent, significantly lower compared to cells treated with free hesperidin. The colony formation assay and cell morphology evaluation further corroborated the heightened efficacy of hesperidin in its nano form compared to the free form. In summary, hesperidin nanoparticles not only exhibited more potent anticancer activity than free hesperidin but also demonstrated high biocompatibility with minimal cytotoxic effects on healthy cells. These findings underscore the potential for further exploration of hesperidin nanoparticles as an adjunctive therapy in prostate cancer therapy.


Subject(s)
Cell Survival , Hesperidin , Nanoparticles , Prostatic Neoplasms , Hesperidin/chemistry , Hesperidin/pharmacology , Male , Humans , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Nanoparticles/chemistry , Cell Survival/drug effects , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Particle Size , Emulsions
18.
J Agric Food Chem ; 72(19): 11174-11184, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38687489

ABSTRACT

Polyphenols with a typical meta-phenol structure have been intensively investigated for scavenging of methylglyoxal (MGO) to reduce harmful substances in food. However, less attention has been paid to the formation level of polyphenol-MGO adducts in foods and in vivo and their absorption, metabolism, and health impacts. In this study, hesperitin (HPT) was found to scavenge MGO by forming two adducts, namely, 8-(1-hydroxyacetone)-hesperetin (HPT-mono-MGO) and 6-(1-hydroxyacetone)-8-(1-hydroxyacetone)-hesperetin (HPT-di-MGO). These two adducts were detected (1.6-15.9 mg/kg in total) in cookies incorporated with 0.01%-0.5% HPT. HPT-di-MGO was the main adduct detected in rat plasma after HPT consumption. The adducts were absorbed 8-30 times faster than HPT, and they underwent glucuronidation and sulfation in vivo. HPT-mono-MGO would continue to react with endogenous MGO in vivo to produce HPT-di-MGO, which effectively reduced the cytotoxicity of HPT and HPT-mono-MGO. This study provided data on the safety of employing HPT as a dietary supplement to scavenge MGO in foods.


Subject(s)
Hesperidin , Pyruvaldehyde , Animals , Pyruvaldehyde/metabolism , Pyruvaldehyde/chemistry , Hesperidin/metabolism , Hesperidin/chemistry , Hesperidin/analogs & derivatives , Rats , Male , Rats, Sprague-Dawley , Humans
19.
Chem Biodivers ; 21(6): e202400251, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38606482

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial pneumonia that leads to acute lung damage, deterioration of lung function, and increased mortality risk. In this study, we investigated the effects of the orange coproduct extract (OCE) and the combination of pure hesperidin and oleuropein (HO) on an experimental model of pulmonary fibrosis induced by bleomycin (BLM) in Wistar rats. Rats were divided into six groups: the control group (G1), the BLM group (G2), three groups (G3, G4, G5) receiving a single dose of BLM combined with OCE extract at 100, 200, and 300 mg/kg, and group 6 (G6) receiving a single dose of BLM combined with HO: both pure major phenolic compounds of OCE (hesperidin at 50 mg/kg) and olive leaves (oleuropein at 2.5 mg/kg). Oxidative stress in lung tissues was investigated using catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPX) assays and the measurement of malondialdehyde (MDA) and lactate dehydrogenase (LDH) levels. Treatment with OCE and HO normalized the disturbance in oxidative markers' levels and showed a significant reduction in fibrosis score with no renal or hepatic toxic effects. In conclusion, OCE and HO exhibit antifibrotic effects on a rat model of pulmonary fibrosis.


Subject(s)
Bleomycin , Hesperidin , Iridoid Glucosides , Plant Extracts , Pulmonary Fibrosis , Rats, Wistar , Animals , Iridoid Glucosides/pharmacology , Iridoid Glucosides/chemistry , Rats , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Hesperidin/pharmacology , Hesperidin/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Male , Citrus sinensis/chemistry , Oxidative Stress/drug effects , Lung/drug effects , Lung/pathology , Lung/metabolism , Protective Agents/pharmacology , Protective Agents/chemistry , Protective Agents/isolation & purification , Antioxidants/pharmacology , Antioxidants/chemistry
20.
Front Immunol ; 15: 1347420, 2024.
Article in English | MEDLINE | ID: mdl-38686374

ABSTRACT

Introduction: Skin injuries represent a prevalent form of physical trauma, necessitating effective therapeutic strategies to expedite the wound healing process. Hesperidin, a bioflavonoid naturally occurring in citrus fruits, exhibits a range of pharmacological attributes, including antimicrobial, antioxidant, anti-inflammatory, anticoagulant, and analgesic properties. The main objective of the study was to formulate a hydrogel with the intention of addressing skin conditions, particularly wound healing. Methods: This research introduces a methodology for the fabrication of a membrane composed of a Polyvinyl alcohol - Sodium Alginate (PVA/A) blend, along with the inclusion of an anti-inflammatory agent, Hesperidin (H), which exhibits promising wound healing capabilities. A uniform layer of a homogeneous solution comprising PVA/A was cast. The process of crosslinking and the enhancement of hydrogel characteristics were achieved through the application of gamma irradiation at a dosage of 30 kGy. The membrane was immersed in a Hesperidin (H) solution, facilitating the permeation and absorption of the drug. The resultant system is designed to deliver H in a controlled and sustained manner, which is crucial for promoting efficient wound healing. The obtained PVA/AH hydrogel was evaluated for cytotoxicity, antioxidant and free radical scavenging activities, anti-inflammatory and membrane stability effect. In addition, its action on oxidative stress, and inflammatory markers was evaluated on BJ-1 human normal skin cell line. Results and Discussion: We determined the effect of radical scavenging activity PVA/A (49 %) and PVA/AH (87%), the inhibition of Human red blood cell membrane hemolysis by PVA/AH (81.97 and 84.34 %), hypotonicity (83.68 and 76.48 %) and protein denaturation (83.17 and 85.8 %) as compared to 250 µg/ml diclofenac (Dic.) and aspirin (Asp.), respectively. Furthermore, gene expression analysis revealed an increased expression of genes associated with anti-oxidant and anti-inflammatory properties and downregulated TNFα, NFκB, iNOS, and COX2 by 67, 52, 58 and 60%, respectively, by PVA/AH hydrogel compared to LPS-stimulated BJ-1 cells. The advantages associated with Hesperidin can be ascribed to its antioxidant and anti-inflammatory attributes. The incorporation of Hesperidin into hydrogels offers promise for the development of a novel, secure, and efficient strategy for wound healing. This innovative approach holds potential as a solution for wound healing, capitalizing on the collaborative qualities of PVA/AH and gamma irradiation, which can be combined to establish a drug delivery platform for Hesperidin.


Subject(s)
Alginates , Hesperidin , Hydrogels , NF-kappa B , Polyvinyl Alcohol , Tumor Necrosis Factor-alpha , Hesperidin/pharmacology , Hesperidin/chemistry , Polyvinyl Alcohol/chemistry , Humans , Alginates/chemistry , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , Hydrogels/chemistry , Signal Transduction/drug effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Wound Healing/drug effects , Cyclooxygenase 2/metabolism , Nitric Oxide Synthase Type II/metabolism , Antioxidants/pharmacology , Antioxidants/chemistry , Inflammation/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL