Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.671
1.
Nat Commun ; 15(1): 3880, 2024 May 08.
Article En | MEDLINE | ID: mdl-38719804

Correlative evidence has suggested that the methyl-CpG-binding protein MeCP2 contributes to the formation of heterochromatin condensates via liquid-liquid phase separation. This interpretation has been reinforced by the observation that heterochromatin, DNA methylation and MeCP2 co-localise within prominent foci in mouse cells. The findings presented here revise this view. MeCP2 localisation is independent of heterochromatin as MeCP2 foci persist even when heterochromatin organisation is disrupted. Additionally, MeCP2 foci fail to show hallmarks of phase separation in live cells. Importantly, we find that mouse cellular models are highly atypical as MeCP2 distribution is diffuse in most mammalian species, including humans. Notably, MeCP2 foci are absent in Mus spretus which is a mouse subspecies lacking methylated satellite DNA repeats. We conclude that MeCP2 has no intrinsic tendency to form condensates and its localisation is independent of heterochromatin. Instead, the distribution of MeCP2 in the nucleus is primarily determined by global DNA methylation patterns.


DNA Methylation , Heterochromatin , Methyl-CpG-Binding Protein 2 , Methyl-CpG-Binding Protein 2/metabolism , Methyl-CpG-Binding Protein 2/genetics , Heterochromatin/metabolism , Animals , Mice , Humans , Cell Nucleus/metabolism , Protein Binding , DNA/metabolism , DNA, Satellite/metabolism , DNA, Satellite/genetics , Phase Separation
2.
J Cell Biol ; 223(8)2024 Aug 05.
Article En | MEDLINE | ID: mdl-38709169

Histone H3 lysine36 dimethylation (H3K36me2) is generally distributed in the gene body and euchromatic intergenic regions. However, we found that H3K36me2 is enriched in pericentromeric heterochromatin in some mouse cell lines. We here revealed the mechanism of heterochromatin targeting of H3K36me2. Among several H3K36 methyltransferases, NSD2 was responsible for inducing heterochromatic H3K36me2. Depletion and overexpression analyses of NSD2-associating proteins revealed that NSD2 recruitment to heterochromatin was mediated through the imitation switch (ISWI) chromatin remodeling complexes, such as BAZ1B-SMARCA5 (WICH), which directly binds to AT-rich DNA via a BAZ1B domain-containing AT-hook-like motifs. The abundance and stoichiometry of NSD2, SMARCA5, and BAZ1B could determine the localization of H3K36me2 in different cell types. In mouse embryos, H3K36me2 heterochromatin localization was observed at the two- to four-cell stages, suggesting its physiological relevance.


Chromatin Assembly and Disassembly , Heterochromatin , Histone-Lysine N-Methyltransferase , Histones , Repressor Proteins , Animals , Humans , Mice , Adenosine Triphosphatases , Bromodomain Containing Proteins/genetics , Bromodomain Containing Proteins/metabolism , Centromere/metabolism , Centromere/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Heterochromatin/metabolism , Heterochromatin/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histones/metabolism , Histones/genetics , Methylation , Repressor Proteins/metabolism , Repressor Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics
3.
Genome Biol ; 25(1): 122, 2024 May 13.
Article En | MEDLINE | ID: mdl-38741214

BACKGROUND: Pluripotent states of embryonic stem cells (ESCs) with distinct transcriptional profiles affect ESC differentiative capacity and therapeutic potential. Although single-cell RNA sequencing has revealed additional subpopulations and specific features of naive and primed human pluripotent stem cells (hPSCs), the underlying mechanisms that regulate their specific transcription and that control their pluripotent states remain elusive. RESULTS: By single-cell analysis of high-resolution, three-dimensional (3D) genomic structure, we herein demonstrate that remodeling of genomic structure is highly associated with the pluripotent states of human ESCs (hESCs). The naive pluripotent state is featured with specialized 3D genomic structures and clear chromatin compartmentalization that is distinct from the primed state. The naive pluripotent state is achieved by remodeling the active euchromatin compartment and reducing chromatin interactions at the nuclear center. This unique genomic organization is linked to enhanced chromatin accessibility on enhancers and elevated expression levels of naive pluripotent genes localized to this region. In contradistinction, the primed state exhibits intermingled genomic organization. Moreover, active euchromatin and primed pluripotent genes are distributed at the nuclear periphery, while repressive heterochromatin is densely concentrated at the nuclear center, reducing chromatin accessibility and the transcription of naive genes. CONCLUSIONS: Our data provide insights into the chromatin structure of ESCs in their naive and primed states, and we identify specific patterns of modifications in transcription and chromatin structure that might explain the genes that are differentially expressed between naive and primed hESCs. Thus, the inversion or relocation of heterochromatin to euchromatin via compartmentalization is related to the regulation of chromatin accessibility, thereby defining pluripotent states and cellular identity.


Pluripotent Stem Cells , Single-Cell Analysis , Humans , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Genome, Human , Euchromatin/genetics , Euchromatin/metabolism , Chromatin/metabolism , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/cytology , Heterochromatin/metabolism , Embryonic Stem Cells/metabolism , Chromatin Assembly and Disassembly
4.
Nat Commun ; 15(1): 4322, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773107

Heterochromatin is generally associated with the nuclear periphery, but how the spatial organization of heterochromatin is regulated to ensure epigenetic silencing remains unclear. Here we found that Sad1, an inner nuclear membrane SUN-family protein in fission yeast, interacts with histone H2A-H2B but not H3-H4. We solved the crystal structure of the histone binding motif (HBM) of Sad1 in complex with H2A-H2B, revealing the intimate contacts between Sad1HBM and H2A-H2B. Structure-based mutagenesis studies revealed that the H2A-H2B-binding activity of Sad1 is required for the dynamic distribution of Sad1 throughout the nuclear envelope (NE). The Sad1-H2A-H2B complex mediates tethering telomeres and the mating-type locus to the NE. This complex is also important for heterochromatin silencing. Mechanistically, H2A-H2B enhances the interaction between Sad1 and HDACs, including Clr3 and Sir2, to maintain epigenetic identity of heterochromatin. Interestingly, our results suggest that Sad1 exhibits the histone-enhanced liquid-liquid phase separation property, which helps recruit heterochromatin factors to the NE. Our results uncover an unexpected role of SUN-family proteins in heterochromatin regulation and suggest a nucleosome-independent role of H2A-H2B in regulating Sad1's functionality.


Heterochromatin , Histones , Protein Binding , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Heterochromatin/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/chemistry , Histones/metabolism , Schizosaccharomyces/metabolism , Schizosaccharomyces/genetics , Telomere/metabolism , Telomere/genetics , Nuclear Envelope/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Crystallography, X-Ray
5.
Nucleus ; 15(1): 2351957, 2024 Dec.
Article En | MEDLINE | ID: mdl-38753956

Abnormal cell nuclear shapes are hallmarks of diseases, including progeria, muscular dystrophy, and many cancers. Experiments have shown that disruption of heterochromatin and increases in euchromatin lead to nuclear deformations, such as blebs and ruptures. However, the physical mechanisms through which chromatin governs nuclear shape are poorly understood. To investigate how heterochromatin and euchromatin might govern nuclear morphology, we studied chromatin microphase separation in a composite coarse-grained polymer and elastic shell simulation model. By varying chromatin density, heterochromatin composition, and heterochromatin-lamina interactions, we show how the chromatin phase organization may perturb nuclear shape. Increasing chromatin density stabilizes the lamina against large fluctuations. However, increasing heterochromatin levels or heterochromatin-lamina interactions enhances nuclear shape fluctuations by a "wetting"-like interaction. In contrast, fluctuations are insensitive to heterochromatin's internal structure. Our simulations suggest that peripheral heterochromatin accumulation could perturb nuclear morphology, while nuclear shape stabilization likely occurs through mechanisms other than chromatin microphase organization.


Cell Nucleus , Chromatin , Heterochromatin , Cell Nucleus/metabolism , Heterochromatin/metabolism , Heterochromatin/chemistry , Chromatin/metabolism , Chromatin/chemistry , Polymers/chemistry , Polymers/metabolism , Euchromatin/metabolism , Euchromatin/chemistry , Humans , Phase Separation
6.
Genes (Basel) ; 15(5)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38790171

Cellular senescence is an irreversible growth arrest that acts as a barrier to cancer initiation and progression. Histone alteration is one of the major events during replicative senescence. However, little is known about the function of H3.3 in cellular senescence. Here we found that the downregulation of H3.3 induced growth suppression with senescence-like phenotypes such as senescence-associated heterochromatin foci (SAHF) and ß-galactosidase (SA-ß-gal) activity. Furthermore, H3.3 depletion induced senescence-like phenotypes with the p53/p21-depedent pathway. In addition, we identified miR-22-3p, tumor suppressive miRNA, as an upstream regulator of the H3F3B (H3 histone, family 3B) gene which is the histone variant H3.3 and replaces conventional H3 in active genes. Therefore, our results reveal for the first time the molecular mechanisms for cellular senescence which are regulated by H3.3 abundance. Taken together, our studies suggest that H3.3 exerts functional roles in regulating cellular senescence and is a promising target for cancer therapy.


Cellular Senescence , Diploidy , Fibroblasts , Histones , MicroRNAs , Tumor Suppressor Protein p53 , Cellular Senescence/genetics , Humans , Histones/metabolism , Histones/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Fibroblasts/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Down-Regulation/genetics , Heterochromatin/genetics , Heterochromatin/metabolism
7.
Elife ; 122024 May 30.
Article En | MEDLINE | ID: mdl-38814684

Silencing pathways prevent transposable element (TE) proliferation and help to maintain genome integrity through cell division. Silenced genomic regions can be classified as either euchromatic or heterochromatic, and are targeted by genetically separable epigenetic pathways. In plants, the RNA-directed DNA methylation (RdDM) pathway targets mostly euchromatic regions, while CMT DNA methyltransferases are mainly associated with heterochromatin. However, many epigenetic features - including DNA methylation patterning - are largely indistinguishable between these regions, so how the functional separation is maintained is unclear. The linker histone H1 is preferentially localized to heterochromatin and has been proposed to restrict RdDM from encroachment. To test this hypothesis, we followed RdDM genomic localization in an h1 mutant by performing ChIP-seq on the largest subunit, NRPE1, of the central RdDM polymerase, Pol V. Loss of H1 resulted in NRPE1 enrichment predominantly in heterochromatic TEs. Increased NRPE1 binding was associated with increased chromatin accessibility in h1, suggesting that H1 restricts NRPE1 occupancy by compacting chromatin. However, RdDM occupancy did not impact H1 localization, demonstrating that H1 hierarchically restricts RdDM positioning. H1 mutants experience major symmetric (CG and CHG) DNA methylation gains, and by generating an h1/nrpe1 double mutant, we demonstrate these gains are largely independent of RdDM. However, loss of NRPE1 occupancy from a subset of euchromatic regions in h1 corresponded to the loss of methylation in all sequence contexts, while at ectopically bound heterochromatic loci, NRPE1 deposition correlated with increased methylation specifically in the CHH context. Additionally, we found that H1 similarly restricts the occupancy of the methylation reader, SUVH1, and polycomb-mediated H3K27me3. Together, the results support a model whereby H1 helps maintain the exclusivity of heterochromatin by preventing encroachment from other competing pathways.


Arabidopsis , DNA Methylation , Euchromatin , Heterochromatin , Histones , Heterochromatin/metabolism , Heterochromatin/genetics , Euchromatin/metabolism , Euchromatin/genetics , Histones/metabolism , Histones/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Epigenesis, Genetic
8.
Genome Res ; 34(4): 556-571, 2024 May 15.
Article En | MEDLINE | ID: mdl-38719473

H3K9me3-dependent heterochromatin is critical for the silencing of repeat-rich pericentromeric regions and also has key roles in repressing lineage-inappropriate protein-coding genes in differentiation and development. Here, we investigate the molecular consequences of heterochromatin loss in cells deficient in both SUV39H1 and SUV39H2 (Suv39DKO), the major mammalian histone methyltransferase enzymes that catalyze heterochromatic H3K9me3 deposition. We reveal a paradoxical repression of protein-coding genes in Suv39DKO cells, with these differentially expressed genes principally in euchromatic (Tn5-accessible, H3K4me3- and H3K27ac-marked) rather than heterochromatic (H3K9me3-marked) or polycomb (H3K27me3-marked) regions. Examination of the three-dimensional (3D) nucleome reveals that transcriptomic dysregulation occurs in euchromatic regions close to the nuclear periphery in 3D space. Moreover, this transcriptomic dysregulation is highly correlated with altered 3D genome organization in Suv39DKO cells. Together, our results suggest that the nuclear lamina-tethering of Suv39-dependent H3K9me3 domains provides an essential scaffold to support euchromatic genome organization and the maintenance of gene transcription for healthy cellular function.


Euchromatin , Heterochromatin , Histone-Lysine N-Methyltransferase , Histones , Methyltransferases , Repressor Proteins , Transcription, Genetic , Euchromatin/metabolism , Euchromatin/genetics , Histones/metabolism , Histones/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Heterochromatin/metabolism , Heterochromatin/genetics , Repressor Proteins/metabolism , Repressor Proteins/genetics , Animals , Mice , Humans , Gene Expression Regulation , Cell Line
9.
Nat Commun ; 15(1): 4338, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773126

In interphase nuclei, chromatin forms dense domains of characteristic sizes, but the influence of transcription and histone modifications on domain size is not understood. We present a theoretical model exploring this relationship, considering chromatin-chromatin interactions, histone modifications, and chromatin extrusion. We predict that the size of heterochromatic domains is governed by a balance among the diffusive flux of methylated histones sustaining them and the acetylation reactions in the domains and the process of loop extrusion via supercoiling by RNAPII at their periphery, which contributes to size reduction. Super-resolution and nano-imaging of five distinct cell lines confirm the predictions indicating that the absence of transcription leads to larger heterochromatin domains. Furthermore, the model accurately reproduces the findings regarding how transcription-mediated supercoiling loss can mitigate the impacts of excessive cohesin loading. Our findings shed light on the role of transcription in genome organization, offering insights into chromatin dynamics and potential therapeutic targets.


Chromatin , Epigenesis, Genetic , Heterochromatin , Histones , Transcription, Genetic , Humans , Histones/metabolism , Heterochromatin/metabolism , Heterochromatin/genetics , Chromatin/metabolism , Chromatin/genetics , RNA Polymerase II/metabolism , Cohesins , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Histone Code , Cell Line , Cell Nucleus/metabolism , Cell Nucleus/genetics , Acetylation , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Interphase
10.
PLoS Comput Biol ; 20(4): e1012027, 2024 Apr.
Article En | MEDLINE | ID: mdl-38598558

Although the length and constituting sequences for pericentromeric repeats are highly variable across eukaryotes, the presence of multiple pericentromeric repeats is one of the conserved features of the eukaryotic chromosomes. Pericentromeric heterochromatin is often misregulated in human diseases, with the expansion of pericentromeric repeats in human solid cancers. In this article, we have developed a mathematical model of the RNAi-dependent methylation of H3K9 in the pericentromeric region of fission yeast. Our model, which takes copy number as an explicit parameter, predicts that the pericentromere is silenced only if there are many copies of repeats. It becomes bistable or desilenced if the copy number of repeats is reduced. This suggests that the copy number of pericentromeric repeats alone can determine the fate of heterochromatin silencing in fission yeast. Through sensitivity analysis, we identified parameters that favor bistability and desilencing. Stochastic simulation shows that faster cell division and noise favor the desilenced state. These results show the unexpected role of pericentromeric repeat copy number in gene silencing and provide a quantitative basis for how the copy number allows or protects repetitive and unique parts of the genome from heterochromatin silencing, respectively.


Centromere , Heterochromatin , Schizosaccharomyces , Heterochromatin/metabolism , Heterochromatin/genetics , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Centromere/metabolism , Centromere/genetics , Models, Genetic , Computational Biology , Gene Silencing , Repetitive Sequences, Nucleic Acid/genetics , Humans , Histones/metabolism , Histones/genetics
11.
Proc Natl Acad Sci U S A ; 121(16): e2403316121, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38593082

Compact chromatin is closely linked with gene silencing in part by sterically masking access to promoters, inhibiting transcription factor binding and preventing polymerase from efficiently transcribing a gene. However, a broader hypothesis suggests that chromatin compaction can be both a cause and a consequence of the locus histone modification state, with a tight bidirectional interaction underpinning bistable transcriptional states. To rigorously test this hypothesis, we developed a mathematical model for the dynamics of the HMR locus in Saccharomyces cerevisiae, that incorporates activating histone modifications, silencing proteins, and a dynamic, acetylation-dependent, three-dimensional locus size. Chromatin compaction enhances silencer protein binding, which in turn feeds back to remove activating histone modifications, leading to further compaction. The bistable output of the model was in good agreement with prior quantitative data, including switching rates from expressed to silent states (and vice versa), and protein binding/histone modification levels within the locus. We then tested the model by predicting changes in switching rates as the genetic length of the locus was increased, which were then experimentally verified. Such bidirectional feedback between chromatin compaction and the histone modification state may be a widespread and important regulatory mechanism given the hallmarks of many heterochromatic regions: physical chromatin compaction and dimerizing (or multivalent) silencing proteins.


Chromatin , Saccharomyces cerevisiae Proteins , Chromatin/genetics , Chromatin/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Heterochromatin/genetics , Heterochromatin/metabolism , Histones/genetics , Histones/metabolism , Histone Code , Feedback , Silent Information Regulator Proteins, Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
12.
Mol Biol Rep ; 51(1): 556, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38642177

BACKGROUND: The Keap1-Nrf2 pathway serves as a central regulator that mediates transcriptional responses to xenobiotic and oxidative stimuli. Recent studies have shown that Keap1 and Nrf2 can regulate transcripts beyond antioxidant and detoxifying genes, yet the underlying mechanisms remain unclear. Our research has uncovered that Drosophila Keap1 (dKeap1) and Nrf2 (CncC) proteins can control high-order chromatin structure, including heterochromatin. METHODS AND RESULTS: In this study, we identified the molecular interaction between dKeap1 and lamin Dm0, the Drosophila B-type lamin responsible for the architecture of nuclear lamina and chromatin. Ectopic expression of dKeap1 led to an ectopic localization of lamin to the intra-nuclear area, corelated with the spreading of the heterochromatin marker H3K9me2 into euchromatin regions. Additionally, mis-regulated dKeap1 disrupted the morphology of the nuclear lamina. Knocking down of dKeap1 partially rescued the lethality induced by lamin overexpression, suggesting their genetic interaction during development. CONCLUSIONS: The discovered dKeap1-lamin interaction suggests a novel role for the Keap1 oxidative/xenobiotic response factor in regulating chromatin architecture.


Kelch-Like ECH-Associated Protein 1 , Lamins , Nuclear Lamina , Xenobiotics , Animals , Chromatin/metabolism , Drosophila , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Heterochromatin/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Lamins/genetics , Lamins/chemistry , Lamins/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Xenobiotics/metabolism , Cell Nucleus/metabolism , Nuclear Lamina/metabolism
13.
EMBO J ; 43(10): 1947-1964, 2024 May.
Article En | MEDLINE | ID: mdl-38605225

Transcription factors BACH2 and IRF4 are both essential for antibody class-switch recombination (CSR) in activated B lymphocytes, while they oppositely regulate the differentiation of plasma cells (PCs). Here, we investigated how BACH2 and IRF4 interact during CSR and plasma-cell differentiation. We found that BACH2 organizes heterochromatin formation of target gene loci in mouse splenic B cells, including targets of IRF4 activation such as Aicda, an inducer of CSR, and Prdm1, a master plasma-cell regulator. Release of these gene loci from heterochromatin in response to B-cell receptor stimulation was coupled to AKT-mTOR pathway activation. In Bach2-deficient B cells, PC genes' activation depended on IRF4 protein accumulation, without an increase in Irf4 mRNA. Mechanistically, a PU.1-IRF4 heterodimer in activated B cells promoted BACH2 function by inducing gene expression of Bach2 and Pten, a negative regulator of AKT signaling. Elevated AKT activity in Bach2-deficient B cells resulted in IRF4 protein accumulation. Thus, BACH2 and IRF4 mutually modulate the activity of each other, and BACH2 inhibits PC differentiation by both the repression of PC genes and the restriction of IRF4 protein accumulation.


Basic-Leucine Zipper Transcription Factors , Cell Differentiation , Interferon Regulatory Factors , Plasma Cells , Animals , Interferon Regulatory Factors/metabolism , Interferon Regulatory Factors/genetics , Mice , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Plasma Cells/metabolism , Plasma Cells/immunology , Plasma Cells/cytology , Immunoglobulin Class Switching/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , B-Lymphocytes/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/cytology , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Mice, Knockout , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Mice, Inbred C57BL , Trans-Activators/metabolism , Trans-Activators/genetics , Heterochromatin/metabolism , Heterochromatin/genetics , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics
14.
Cell Rep ; 43(5): 114137, 2024 May 28.
Article En | MEDLINE | ID: mdl-38662543

Chromatin-associated RNAs (cRNAs) are a poorly characterized fraction of cellular RNAs that co-purify with chromatin. Their full complexity and the mechanisms regulating their packaging and chromatin association remain poorly understood. Here, we address these questions in Drosophila. We find that cRNAs constitute a heterogeneous group of RNA species that is abundant in heterochromatic transcripts. We show that heterochromatic cRNAs interact with the heterogeneous nuclear ribonucleoproteins (hnRNP) hrp36/hrp48 and that depletion of linker histone dH1 impairs this interaction. dH1 depletion induces the accumulation of RNA::DNA hybrids (R-loops) in heterochromatin and, as a consequence, increases retention of heterochromatic cRNAs. These effects correlate with increased RNA polymerase II (RNAPII) occupancy at heterochromatin. Notably, impairing cRNA assembly by depletion of hrp36/hrp48 mimics heterochromatic R-loop accumulation induced by dH1 depletion. We also show that dH1 depletion alters nucleosome organization, increasing accessibility of heterochromatin. Altogether, these perturbations facilitate annealing of cRNAs to the DNA template, enhancing R-loop formation and cRNA retention at heterochromatin.


Drosophila Proteins , Heterochromatin , Histones , Heterochromatin/metabolism , Animals , Histones/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Homeostasis , RNA/metabolism , RNA/genetics , RNA Polymerase II/metabolism , Nucleosomes/metabolism , Drosophila/metabolism , R-Loop Structures
15.
Gene ; 918: 148473, 2024 Aug 05.
Article En | MEDLINE | ID: mdl-38615982

How gene activation works in heterochromatin, and how the mechanism might differ from the one used in euchromatin, has been largely unexplored. Previous work has shown that in SIR-regulated heterochromatin of Saccharomyces cerevisiae, gene activation occurs in the absence of covalent histone modifications and other alterations of chromatin commonly associated with transcription.Here we demonstrate that such activation occurs in a substantial fraction of cells, consistent with frequent transcriptional bursting, and this raises the possibility that an alternative activation pathway might be used. We address one such possibility, Pol II CTD phosphorylation, and explore this idea using a natural telomere-linked gene, YFR057w, as a model. Unlike covalent histone modifications, we find that Ser2, Ser5 and Ser7 CTD phosphorylated Pol II is prevalent at the drug-induced heterochromatic gene. Particularly enriched relative to the euchromatic state is Ser2 phosphorylation. Consistent with a functional role for Ser2P, YFR057w is negligibly activated in cells deficient in the Ser2 CTD kinases Ctk1 and Bur1 even though the gene is strongly stimulated when it is placed in a euchromatic context. Collectively, our results are consistent with a critical role for Ser2 CTD phosphorylation in driving Pol II recruitment and transcription of a natural heterochromatic gene - an activity that may supplant the need for histone epigenetic modifications.


Heterochromatin , RNA Polymerase II , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Phosphorylation , Heterochromatin/metabolism , Heterochromatin/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Transcriptional Activation , Gene Expression Regulation, Fungal , Histones/metabolism , Serine/metabolism
16.
PLoS One ; 19(4): e0300732, 2024.
Article En | MEDLINE | ID: mdl-38662722

KAT5 (S. pombe Mst1, human TIP60) is a MYST family histone acetyltransferase conserved from yeast to humans that is involved in multiple cellular activities. This family is characterized in part by containing a chromodomain, a motif associated with binding methylated histones. We show that a chromodomain mutation in the S. pombe Kat5, mst1-W66R, has defects in pericentromere silencing. mst1-W66R is sensitive to camptothecin (CPT) but only at an increased temperature of 36°C, although it is proficient for growth at this temperature. We also describe a de-silencing effect at the pericentromere by CPT that is independent of RNAi and methylation machinery. We also show that mst1-W66R disrupts recruitment of proteins to repair foci in response to camptothecin-induced DNA damage. Our data suggest a function of Mst1 chromodomain in centromere heterochromatin formation and a separate role in genome-wide damage repair in CPT.


Centromere , DNA Repair , Mutation , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Schizosaccharomyces/genetics , Schizosaccharomyces/drug effects , Schizosaccharomyces/metabolism , Centromere/metabolism , Centromere/genetics , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/genetics , Camptothecin/pharmacology , Lysine Acetyltransferase 5/metabolism , Lysine Acetyltransferase 5/genetics , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/genetics , DNA Damage , Heterochromatin/metabolism , Heterochromatin/genetics , Humans
17.
PLoS Biol ; 22(4): e3002574, 2024 Apr.
Article En | MEDLINE | ID: mdl-38630655

The densely packed centromeric heterochromatin at minor and major satellites is comprised of H3K9me2/3 histones, the heterochromatin protein HP1α, and histone variants. In the present study, we sought to determine the mechanisms by which condensed heterochromatin at major and minor satellites stabilized by the chromatin factor CFDP1 affects the activity of the small GTPase Ran as a requirement for spindle formation. CFDP1 colocalized with heterochromatin at major and minor satellites and was essential for the structural stability of centromeric heterochromatin. Loss of CENPA, HP1α, and H2A.Z heterochromatin components resulted in decreased binding of the spindle nucleation facilitator RCC1 to minor and major satellite repeats. Decreased RanGTP levels as a result of diminished RCC1 binding interfered with chromatin-mediated microtubule nucleation at the onset of mitotic spindle formation. Rescuing chromatin H2A.Z levels in cells and mice lacking CFDP1 through knock-down of the histone chaperone ANP32E not only partially restored RCC1-dependent RanGTP levels but also alleviated CFDP1-knockout-related craniofacial defects and increased microtubule nucleation in CFDP1/ANP32E co-silenced cells. Together, these studies provide evidence for a direct link between condensed heterochromatin at major and minor satellites and microtubule nucleation through the chromatin protein CFDP1.


Chromatin , Heterochromatin , Nuclear Proteins , Animals , Mice , Chromatin/metabolism , Heterochromatin/metabolism , Histones/metabolism , ran GTP-Binding Protein/metabolism , Spindle Apparatus/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism
18.
Nature ; 627(8004): 671-679, 2024 Mar.
Article En | MEDLINE | ID: mdl-38448585

DNA and histone modifications combine into characteristic patterns that demarcate functional regions of the genome1,2. While many 'readers' of individual modifications have been described3-5, how chromatin states comprising composite modification signatures, histone variants and internucleosomal linker DNA are interpreted is a major open question. Here we use a multidimensional proteomics strategy to systematically examine the interaction of around 2,000 nuclear proteins with over 80 modified dinucleosomes representing promoter, enhancer and heterochromatin states. By deconvoluting complex nucleosome-binding profiles into networks of co-regulated proteins and distinct nucleosomal features driving protein recruitment or exclusion, we show comprehensively how chromatin states are decoded by chromatin readers. We find highly distinctive binding responses to different features, many factors that recognize multiple features, and that nucleosomal modifications and linker DNA operate largely independently in regulating protein binding to chromatin. Our online resource, the Modification Atlas of Regulation by Chromatin States (MARCS), provides in-depth analysis tools to engage with our results and advance the discovery of fundamental principles of genome regulation by chromatin states.


Chromatin Assembly and Disassembly , Chromatin , Nuclear Proteins , Nucleosomes , Proteomics , Humans , Binding Sites , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , DNA/genetics , DNA/metabolism , Enhancer Elements, Genetic , Heterochromatin/genetics , Heterochromatin/metabolism , Histones/metabolism , Nuclear Proteins/analysis , Nuclear Proteins/metabolism , Nucleosomes/chemistry , Nucleosomes/genetics , Nucleosomes/metabolism , Promoter Regions, Genetic , Protein Binding , Proteomics/methods
19.
J Clin Invest ; 134(9)2024 Mar 26.
Article En | MEDLINE | ID: mdl-38530366

Aberrant expression of the E26 transformation-specific (ETS) transcription factors characterizes numerous human malignancies. Many of these proteins, including EWS:FLI1 and EWS:ERG fusions in Ewing sarcoma (EwS) and TMPRSS2:ERG in prostate cancer (PCa), drive oncogenic programs via binding to GGAA repeats. We report here that both EWS:FLI1 and ERG bind and transcriptionally activate GGAA-rich pericentromeric heterochromatin. The respective pathogen-like HSAT2 and HSAT3 RNAs, together with LINE, SINE, ERV, and other repeat transcripts, are expressed in EwS and PCa tumors, secreted in extracellular vesicles (EVs), and are highly elevated in plasma of patients with EwS with metastatic disease. High human satellite 2 and 3 (HSAT2,3) levels in EWS:FLI1- or ERG-expressing cells and tumors were associated with induction of G2/M checkpoint, mitotic spindle, and DNA damage programs. These programs were also activated in EwS EV-treated fibroblasts, coincident with accumulation of HSAT2,3 RNAs, proinflammatory responses, mitotic defects, and senescence. Mechanistically, HSAT2,3-enriched cancer EVs induced cGAS-TBK1 innate immune signaling and formation of cytosolic granules positive for double-strand RNAs, RNA-DNA, and cGAS. Hence, aberrantly expressed ETS proteins derepress pericentromeric heterochromatin, yielding pathogenic RNAs that transmit genotoxic stress and inflammation to local and distant sites. Monitoring HSAT2,3 plasma levels and preventing their dissemination may thus improve therapeutic strategies and blood-based diagnostics.


DNA Damage , Extracellular Vesicles , Oncogene Proteins, Fusion , Proto-Oncogene Protein c-fli-1 , RNA-Binding Protein EWS , Transcriptional Regulator ERG , Humans , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Transcriptional Regulator ERG/genetics , Transcriptional Regulator ERG/metabolism , Male , RNA-Binding Protein EWS/genetics , RNA-Binding Protein EWS/metabolism , Proto-Oncogene Protein c-fli-1/genetics , Proto-Oncogene Protein c-fli-1/metabolism , Sarcoma, Ewing/genetics , Sarcoma, Ewing/pathology , Sarcoma, Ewing/metabolism , Sarcoma, Ewing/immunology , Cell Line, Tumor , RNA, Neoplasm/genetics , RNA, Neoplasm/metabolism , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Mice , Animals , Heterochromatin/metabolism , Heterochromatin/genetics
...