Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Epilepsy Behav ; 155: 109777, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38640726

ABSTRACT

OBJECTIVE: In this study, the diffusion tensor imaging along perivascular space analysis (DTI-ALPS) technique was utilized to evaluate the functional changes in the glymphatic system of the bilateral hemispheres in patients with unilateral temporal lobe epilepsy (TLE) accompanied by hippocampal sclerosis (HS). The aim was to gain insights into the alterations in the glymphatic system function in TLE patients. METHODS: A total of 61 unilateral TLE patients with HS and 53 healthy controls (HCs) from the Department of Neurosurgery at Xiangya Hospital were included in the study. All subjects underwent DTI using the same 3 T MR Scanner, and the DTI-ALPS index was calculated. Differences in the DTI-ALPS index between TLE patients and HCs were evaluated, along with the correlation between the DTI-ALPS index of TLE and clinical features of epilepsy. These features included age, age of onset, seizure duration, and neuropsychological scores. RESULTS: Compared to the bilateral means of the HCs, both the ipsilateral and contralateral DTI-ALPS index of the TLE patients were significantly decreased (TLE ipsilateral 1.41 ± 0.172 vs. HC bilateral mean: 1.49 ± 0.116, p = 0.006; TLE contralateral: 1.42 ± 0.158 vs. HC bilateral mean: 1.49 ± 0.116, p = 0.015). The ipsilateral DTI-ALPS index in TLE patients showed a significant negative correlation with disease duration (r = -0.352, p = 0.005). CONCLUSIONS: The present study suggests the presence of bilateral dysfunctions in the glymphatic system and also highlight a laterality feature in these dysfunctions. Additionally, the study found a significant negative correlation between the ipsilateral DTI-ALPS index and disease duration, underscoring the significance of early effective interventions and indicating potential for the development of innovative treatments targeting the glymphatic system.


Subject(s)
Diffusion Tensor Imaging , Epilepsy, Temporal Lobe , Functional Laterality , Glymphatic System , Hippocampal Sclerosis , Adolescent , Adult , Female , Humans , Male , Middle Aged , Young Adult , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/complications , Epilepsy, Temporal Lobe/physiopathology , Functional Laterality/physiology , Glymphatic System/diagnostic imaging , Glymphatic System/pathology , Glymphatic System/physiopathology , Hippocampal Sclerosis/diagnostic imaging , Hippocampal Sclerosis/pathology , Neuropsychological Tests
2.
Seizure ; 117: 271-274, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38554644

ABSTRACT

PURPOSE: In a homogeneous cohort of mesial temporal lobe epilepsy (mTLE) patients with hippocampal sclerosis (HS), this study utilizes the PETSurfer method to quantify and localize areas of cerebral hypometabolism. METHODS: We selected patients from the University Clinical Center of Serbia who all underwent anterior temporal lobectomy with amygdalohippocampectomy and achieved seizure freedom (Engel class I). Our analysis involved integrating FDG-PET and MRI imaging to compare glucose metabolism between the hemispheres ipsilateral and contralateral to HS. RESULTS: The quantitative PETSurfer approach identified significant hypometabolism restricted to the ipsilateral temporal lobe structures-the amygdala, hippocampus, temporal pole, superior and middle temporal gyrus-and the ipsilateral thalamus. The lack of significant hypometabolism in extratemporal regions indicates that these 'pure' mTLE cases may not involve the broader network disruptions typically associated with more extensive epileptic pathologies. The effect sizes ranged from small to medium, indicating variable degrees of metabolic reduction across different structures. CONCLUSION: These findings highlight the localized nature of the epileptogenic focus in HS-related mTLE with good surgical outcome. However, the small sample size and potential cohort bias, necessitate caution in generalizing these results. Future research would benefit from a comparative approach incorporating a control group, providing a broader context for interpreting these hypometabolic patterns.


Subject(s)
Epilepsy, Temporal Lobe , Hippocampal Sclerosis , Magnetic Resonance Imaging , Positron-Emission Tomography , Adult , Female , Humans , Male , Middle Aged , Young Adult , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/pathology , Fluorodeoxyglucose F18 , Hippocampal Sclerosis/diagnostic imaging , Hippocampal Sclerosis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL