Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
1.
Protein Sci ; 33(8): e5094, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38989636

ABSTRACT

Short sequences that mediate interactions with modular binding domains are ubiquitous throughout eukaryotic proteomes. Networks of short linear motifs (SLiMs) and their corresponding binding domains orchestrate many cellular processes, and the low mutational barrier to evolving novel interactions provides a way for biological systems to rapidly sample selectable phenotypes. Mapping SLiM binding specificity and the rules that govern SLiM evolution is fundamental to uncovering the pathways regulated by these networks and developing the tools to manipulate them. We used high-throughput screening of the human proteome to identify sequences that bind to the Enabled/VASP homology 1 (EVH1) domain of the postsynaptic density scaffolding protein Homer1. This expanded our understanding of the determinants of Homer EVH1 binding preferences and defined a new motif that can facilitate the discovery of additional Homer-mediated interactions. Interestingly, the Homer1 EVH1 domain preferentially binds to sequences containing an N-terminally overlapping motif that is bound by the paralogous family of Ena/VASP actin polymerases, and many of these sequences can bind to EVH1 domains from both protein families. We provide evidence from orthologous EVH1 domains in pre-metazoan organisms that the overlap in human Ena/VASP and Homer binding preferences corresponds to an incomplete divergence from a common Ena/VASP ancestor. Given this overlap in binding profiles, promiscuous sequences that can be recognized by both families either achieve specificity through extrinsic regulatory strategies or may provide functional benefits via multi-specificity. This may explain why these paralogs incompletely diverged despite the accessibility of further diverged isoforms.


Subject(s)
Homer Scaffolding Proteins , Homer Scaffolding Proteins/metabolism , Homer Scaffolding Proteins/chemistry , Homer Scaffolding Proteins/genetics , Humans , Protein Domains , Protein Binding , Amino Acid Motifs
2.
Article in English | MEDLINE | ID: mdl-38762163

ABSTRACT

Early life stress may induce synaptic changes within brain regions associated with behavioral disorders. Here, we investigated glutamatergic functional connectivity by a postsynaptic density immediate-early gene-based network analysis. Pregnant female Sprague-Dawley rats were randomly divided into two experimental groups: one exposed to stress sessions and the other serving as a stress-free control group. Homer1 expression was evaluated by in situ hybridization technique in eighty-eight brain regions of interest of male rat offspring. Differences between the perinatal stress exposed group (PRS) (n = 5) and the control group (CTR) (n = 5) were assessed by performing the Student's t-test via SPSS 28.0.1.0 with Bonferroni correction. Additionally, all possible pairwise Spearman's correlations were computed as well as correlation matrices and networks for each experimental group were generated via RStudio and Cytoscape. Perinatal stress exposure was associated with Homer1a reduction in several cortical, thalamic, and striatal regions. Furthermore, it was found to affect functional connectivity between: the lateral septal nucleus, the central medial thalamic nucleus, the anterior part of the paraventricular thalamic nucleus, and both retrosplenial granular b cortex and hippocampal regions; the orbitofrontal cortex, amygdaloid nuclei, and hippocampal regions; and lastly, among regions involved in limbic system. Finally, the PRS networks showed a significant reduction in multiple connections for the ventrolateral part of the anteroventral thalamic nucleus after perinatal stress exposure, as well as a decrease in the centrality of ventral anterior thalamic and amygdaloid nuclei suggestive of putative reduced cortical control over these regions. Within the present preclinical setting, perinatal stress exposure is a modifier of glutamatergic early gene-based functional connectivity in neuronal circuits involved in behaviors relevant to model neurodevelopmental disorders.


Subject(s)
Genes, Immediate-Early , Homer Scaffolding Proteins , Prenatal Exposure Delayed Effects , Rats, Sprague-Dawley , Stress, Psychological , Animals , Female , Pregnancy , Homer Scaffolding Proteins/metabolism , Stress, Psychological/metabolism , Rats , Male , Post-Synaptic Density/metabolism , Glutamic Acid/metabolism , Brain/metabolism , Gene Regulatory Networks/physiology
3.
J Integr Neurosci ; 23(4): 82, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38682225

ABSTRACT

BACKGROUND: Comorbid chronic neuropathic pain (NPP) and anxio-depressive disorders (ADD) have become a serious global public-health problem. The SLIT and NTRK-like 1 (SLITRK1) protein is important for synaptic remodeling and is highly expressed in the amygdala, an important brain region involved in various emotional behaviors. We examined whether SLITRK1 protein in the amygdala participates in NPP and comorbid ADD. METHODS: A chronic NPP mouse model was constructed by L5 spinal nerve ligation; changes in chronic pain and ADD-like behaviors were measured in behavioral tests. Changes in SLITRK1 protein and excitatory synaptic functional proteins in the amygdala were measured by immunofluorescence and Western blot. Adeno-associated virus was transfected into excitatory synaptic neurons in the amygdala to up-regulate the expression of SLITRK1. RESULTS: Chronic NPP-related ADD-like behavior was successfully produced in mice by L5 ligation. We found that chronic NPP and related ADD decreased amygdalar expression of SLITRK1 and proteins important for excitatory synaptic function, including Homer1, postsynaptic density protein 95 (PSD95), and synaptophysin. Virally-mediated SLITRK1 overexpression in the amygdala produced a significant easing of chronic NPP and ADD, and restored the expression levels of Homer1, PSD95, and synaptophysin. CONCLUSION: Our findings indicated that SLITRK1 in the amygdala plays an important role in chronic pain and related ADD, and may prove to be a potential therapeutic target for chronic NPP-ADD comorbidity.


Subject(s)
Amygdala , Behavior, Animal , Chronic Pain , Disks Large Homolog 4 Protein , Nerve Tissue Proteins , Neuralgia , Animals , Male , Mice , Amygdala/metabolism , Anxiety/metabolism , Anxiety/physiopathology , Anxiety Disorders/metabolism , Anxiety Disorders/physiopathology , Behavior, Animal/physiology , Chronic Pain/metabolism , Chronic Pain/physiopathology , Depression/metabolism , Depression/etiology , Depression/physiopathology , Depressive Disorder/metabolism , Depressive Disorder/physiopathology , Disease Models, Animal , Disks Large Homolog 4 Protein/metabolism , Homer Scaffolding Proteins/metabolism , Membrane Proteins/metabolism , Mice, Inbred C57BL , Nerve Tissue Proteins/metabolism , Neuralgia/metabolism , Synaptophysin/metabolism
4.
Biochem Biophys Res Commun ; 696: 149422, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38183795

ABSTRACT

Identification and functional analysis of key genes regulated by the circadian clock system will provide a comprehensive understanding of the underlying mechanisms through which circadian clock disruption impairs the health of living organisms. The initial phase involved bioinformatics analysis, drawing insights from three RNA-seq datasets (GSE184303, GSE114400, and GSE199061) derived from wild-type mouse liver tissues, which encompassed six distinct time points across a day. As expected, 536 overlapping genes exhibiting rhythmic expression patterns were identified. By intersecting these genes with differentially expressed genes (DEGs) originating from liver RNA-seq data at two representative time points (circadian time, CT: CT2 and CT14) in global Bmal1 knockout mice (Bmal1-/-), hepatocyte-specific Bmal1 knockout mice (L-Bmal1-/-), and their corresponding control groups, 80 genes potentially regulated by BMAL1 (referred to as BMAL1-regulated genes, BRGs) were identified. These genes were significantly enriched in glycolipid metabolism, immune response, and tumorigenesis pathways. Eight BRGs (Nr1d1, Cry1, Gys2, Homer2, Serpina6, Slc2a2, Nmrk1, and Upp2) were selected to validate their expression patterns in both control and L-Bmal1-/- mice livers over 24 h. Real-time quantitative polymerase chain reaction results demonstrated a comprehensive loss of rhythmic expression patterns in the eight selected BRGs in L-Bmal1-/- mice, in contrast to the discernible rhythmic patterns observed in the livers of control mice. Additionally, significant reductions in the expression levels of these selected BRGs, excluding Cry1, were also observed in L-Bmal1-/- mice livers. Chromatin immunoprecipitation (ChIP)-seq (GSE13505 and GSE39860) and JASPAR analyses validated the rhythmic binding of BMAL1 to the promoter and intron regions of these genes. Moreover, the progression of conditions, from basic steatosis to non-alcoholic fatty liver disease, and eventual malignancy, demonstrated a continuous gradual decline in Bmal1 transcripts in the human liver. Combining the aforementioned BRGs with DEGs derived from human liver cancer datasets identified Gys2 and Upp2 as potential node genes bridging the circadian clock system and hepatocellular carcinoma (HCC). In addition, CCK8 and wound healing assays demonstrated that the overexpression of human GYS2 and UPP2 proteins inhibited the proliferation and migration of HepG2 cells, accompanied by elevated expression of p53, a tumor suppressor protein. In summary, this study systematically identified rhythmic genes in the mouse liver, and a subset of circadian genes potentially regulated by BMAL1. Two circadian genes, Gys2 and Upp2, have been proposed and validated as potential candidates for advancing the prevention and treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Circadian Clocks , Liver Neoplasms , Animals , Humans , Mice , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Carcinoma, Hepatocellular/pathology , Circadian Clocks/genetics , Circadian Rhythm/genetics , CLOCK Proteins/genetics , Gene Expression Regulation , Homer Scaffolding Proteins/metabolism , Liver/metabolism , Liver Neoplasms/pathology , Mice, Knockout , Uridine Phosphorylase/metabolism , Glycogen Synthase/metabolism
5.
Inflamm Res ; 73(1): 131-144, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38091015

ABSTRACT

OBJECTIVE: Proinflammatory necroptosis is the main pathological mechanism of ischemic stroke. Homer scaffolding protein 1 (Homer1) is a postsynaptic scaffolding protein that exerts anti-inflammatory effects in most central nervous system diseases. However, the relationship between Homer1 and proinflammatory necroptosis in ischemic stroke remains unclear. AIM: This study aimed to investigate the role of Homer1 in ischemia-induced necroptosis. METHODS: C57BL/6 mice were used to establish a model of permanent middle cerebral artery occlusion model (pMCAO). Homer1 knockdown mice were generated using adeno-associated virus (AAV) infection to explore the role of Homer1 and its impact on necroptosis in pMCAO. Finally, Homer1 protein was stereotaxically injected into the ischemic cortex of Homer1flox/flox/Nestin-Cre +/- mice, and the efficacy of Homer1 was investigated using behavioral assays and molecular biological assays to explore potential mechanisms. RESULTS: Homer1 expression peaked at 8 h in the ischemic penumbral cortex after pMCAO and colocalized with neurons. Homer1 knockdown promoted neuronal death by enhancing necroptotic signaling pathways and aggravating ischemic brain damage in mice. Furthermore, the knockdown of Homer1 enhanced the expression of proinflammatory cytokines. Moreover, injection of Homer1 protein reduced necroptosis-induced brain injury inhibited the expression of proinflammatory factors, and ameliorated the outcomes in the Homer1flox/flox/Nestin-Cre+/- mice after pMCAO. CONCLUSIONS: Homer1 ameliorates ischemic stroke by inhibiting necroptosis-induced neuronal damage and neuroinflammation. These data suggested that Homer1 is a novel regulator of neuronal death and neuroinflammation.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Mice , Animals , Ischemic Stroke/complications , Ischemic Stroke/metabolism , Ischemic Stroke/pathology , Nestin/metabolism , Nestin/pharmacology , Neuroinflammatory Diseases , Necroptosis , Mice, Inbred C57BL , Infarction, Middle Cerebral Artery/pathology , Neurons/pathology , Brain Ischemia/metabolism , Stroke/complications , Stroke/metabolism , Stroke/pathology , Homer Scaffolding Proteins/genetics , Homer Scaffolding Proteins/metabolism , Homer Scaffolding Proteins/pharmacology
6.
Cell Death Dis ; 14(12): 814, 2023 12 11.
Article in English | MEDLINE | ID: mdl-38081871

ABSTRACT

Cancer metabolism has emerged as a major target for cancer therapy, while the state of mitochondrial drugs has remained largely unexplored, partly due to an inadequate understanding of various mitochondrial functions in tumor contexts. Here, we report that HOMER3 is highly expressed in non-small cell lung cancer (NSCLC) and is closely correlated with poor prognosis. Lung cancer cells with low levels of HOMER3 are found to show significant mitochondrial dysfunction, thereby suppressing their proliferation and metastasis in vivo and in vitro. At the mechanistic level, we demonstrate that HOMER3 and platelet-activating factor acetylhydrolase 1b catalytic subunit 3 cooperate to upregulate the level of GA-binding protein subunit beta-1 (GABPB1), a key transcription factor involved in mitochondrial biogenesis, to control mitochondrial inner membrane genes and mitochondrial function. Concurrently, low levels of HOMER3 and its downstream target GABPB1 led to mitochondrial dysfunction and decreased proliferation and invasive activity of lung cancer cells, which raises the possibility that targeting mitochondrial synthesis is an important and promising therapeutic approach for NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Mitochondrial Diseases , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Carrier Proteins , Cell Line, Tumor , Homer Scaffolding Proteins/metabolism , Cell Proliferation , Mitochondria/metabolism , GA-Binding Protein Transcription Factor/genetics , GA-Binding Protein Transcription Factor/metabolism
7.
Int J Mol Sci ; 24(23)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38069134

ABSTRACT

Retinal ischemia, after cerebral ischemia, is an easily overlooked pathophysiological problem in which inflammation is considered to play an important role. Pyroptosis is a kind of cell death pattern accompanied by inflammation. Homer scaffold protein 1 (Homer1) has anti-inflammation properties and protects against ischemic injury. However, little is known about pyroptosis following middle cerebral artery occlusion (MCAO)-induced retinal ischemia and the regulatory mechanisms involved by Homer1 for the development of pyroptosis. In the present study, retinal ischemic injury was induced in mice by permanent MCAO in vivo, and retinal ganglion cells (RGCs) were subjected to Oxygen and Glucose Deprivation (OGD) to establish an in vitro model. It was shown that TXNIP/NLRP3-mediated pyroptosis was located predominantly in RGCs, which gradually increased after retinal ischemia and peaked at 24 h after retinal ischemia. Interestingly, the RGCs pyroptosis occurred not only in the cell body but also in the axon. Notably, the occurrence of pyroptosis coincided with the change of Homer1 expression in the retina after retinal ischemia and Homer1 also co-localized with RGCs. It was demonstrated that overexpression of Homer1 not only alleviated RGCs pyroptosis and inhibited the release of pro-inflammatory factors but also led to the increase in phosphorylation of AMPK, inhibition of ER stress, and preservation of visual function after retinal ischemia. In conclusion, it was suggested that Homer1 may protect against MCAO-induced retinal ischemia and RGCs pyroptosis by inhibiting endoplasmic reticulum stress-associated TXNIP/NLRP3 inflammasome activation after MCAO-induced retinal ischemia.


Subject(s)
Brain Ischemia , Reperfusion Injury , Retinal Diseases , Animals , Mice , Brain Ischemia/metabolism , Endoplasmic Reticulum Stress , Homer Scaffolding Proteins/metabolism , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/metabolism , Inflammasomes/metabolism , Inflammation/metabolism , Ischemia/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , Reperfusion Injury/metabolism , Retinal Diseases/etiology , Retinal Diseases/metabolism , Retinal Ganglion Cells/metabolism
8.
Elife ; 122023 06 15.
Article in English | MEDLINE | ID: mdl-37318128

ABSTRACT

The volume and the electric strength of an excitatory synapse is near linearly correlated with the area of its postsynaptic density (PSD). Extensive research in the past has revealed that the PSD assembly directly communicates with actin cytoskeleton in the spine to coordinate activity-induced spine volume enlargement as well as long-term stable spine structure maintenance. However, the molecular mechanism underlying the communication between the PSD assembly and spine actin cytoskeleton is poorly understood. In this study, we discover that in vitro reconstituted PSD condensates can promote actin polymerization and F-actin bundling without help of any actin regulatory proteins. The Homer scaffold protein within the PSD condensates and a positively charged actin-binding surface of the Homer EVH1 domain are essential for the PSD condensate-induced actin bundle formation in vitro and for spine growth in neurons. Homer-induced actin bundling can only occur when Homer forms condensate with other PSD scaffold proteins such as Shank and SAPAP. The PSD-induced actin bundle formation is sensitively regulated by CaMKII or by the product of the immediate early gene Homer1a. Thus, the communication between PSD and spine cytoskeleton may be modulated by targeting the phase separation of the PSD condensates.


Subject(s)
Actins , Nerve Tissue Proteins , Actins/metabolism , Nerve Tissue Proteins/metabolism , Post-Synaptic Density/metabolism , Cells, Cultured , Neurons/physiology , Homer Scaffolding Proteins/metabolism , Synapses/physiology
9.
Ann Clin Lab Sci ; 53(2): 181-191, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37094855

ABSTRACT

OBJECTIVE: Circular RNAs (circRNAs) are rich in miRNA-binding sites, which serve as miRNA sponges or competitive endogenous RNAs (ceRNAs). In the central nervous system, circRNAs are relevant to many neurological disorders including Alzheimer's disease (AD). Dementia associated with AD is correlated with the conversion of the ß-Amyloid (Aß) peptides from soluble monomers to aggregated oligomers and insoluble fibrils. Downregulation of circHOMER1 (circ_0006916) expression level is observed in AD female cases. Thus, this study investigates whether circHOMER1 prevents fibrillar Aß (fAß)-induced cell damage. METHODS: The levels of sAß42 in cerebrospinal fluid (CSF) of amyloid-positive normal cognition (NC) individuals, mild cognitive impairment (MCI) individuals, and AD patients were measured. For in vitro studies, the SH-SY5Y cells were treated with 10 µM of fAß42 or soluble Aß42 (sAß42). RNase R treatment and actinomycin D treatment were used to identify the characteristics of circHOMER1. Gene expression was measured by RT-qPCR. Protein levels were measured using western blotting. Cell viability and apoptosis were estimated by MTT assays and flow cytometry. The binding relationship of miR-217 and circHOMER1 (HOMER1) was verified by luciferase reporter assays. RESULTS: CircHOMER1 was more stable in SH-SY5Y cells than linear HOMER1. CircHOMER1 upregulation ameliorates the fAß42-induced cell apoptosis and circHOMER1 downregulation reversed the anti-apoptotic roles of sAß42. Mechanistically, miR-217 interacted with circHOMER1 (HOMER1). Moreover, miR-217 upregulation or HOMER1 downregulation exacerbates the fAß42-induced cell damage. CONCLUSIONS: CircHOMER1 (hsa_circ_0006916) ameliorates the fAß42-induced cell injury via the miR-217/HOMER1 axis.


Subject(s)
Alzheimer Disease , MicroRNAs , Neuroblastoma , Humans , Female , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/pharmacology , RNA, Circular/metabolism , MicroRNAs/genetics , Alzheimer Disease/genetics , Neurons/metabolism , Apoptosis , Cell Proliferation/genetics , Homer Scaffolding Proteins/metabolism , Homer Scaffolding Proteins/pharmacology
10.
Mol Neurobiol ; 60(6): 2986-3003, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36763283

ABSTRACT

The Dandy-Walker malformation (DWM) is characterized by neuron dysregulation in embryonic development; however, the regulatory mechanisms associated with it are unclear. This study aimed to investigate the role of NADH dehydrogenase 1 alpha subcomplex 4 (NDUFA4) in regulating downstream signaling cascades and neuronal proliferation and apoptosis. Ndufa4 overexpression promoted the proliferation of neurons and inhibited their apoptosis in vitro, which underwent reverse regulation by the Ndufa4 short hairpin RNAs. Ndufa4-knockout (KO) mice showed abnormal histological alterations in the brain tissue, in addition to impaired spatial learning capacity and exploratory activity. Ndufa4 depletion altered the microRNA expressional profiles of the cerebellum: Ndufa4 inhibited miR-145a-5p expression both in the cerebellum and neurons. miR-145a-5p inhibited the proliferation of neurons and promoted their apoptosis. Ndufa4 promoted and miR-145a-5p inhibited the expression of human homer protein homolog 1 and cyclin D2 in neurons. Thus, Ndufa4 promotes the proliferation of neurons and inhibits their apoptosis by inhibiting miR-145a-5p, which directly targets and inhibits the untranslated regions of Homer1 and Ccnd2 expression.


Subject(s)
MicroRNAs , Mice , Animals , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Cyclin D2/metabolism , Apoptosis/genetics , Neurons/metabolism , Cell Proliferation/genetics , Electron Transport Complex IV/metabolism , Homer Scaffolding Proteins/metabolism
11.
Int J Mol Sci ; 23(23)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36499379

ABSTRACT

Accelerated postsynaptic remodelling and disturbance of neuromuscular transmission are common features of autoimmune neurodegenerative diseases. Homer protein isoform expression, crosslinking activity and neuromuscular subcellular localisation are studied in mouse hind limb muscles of an experimentally induced autoimmune model of Myasthenia Gravis (EAMG) and correlated to motor end plate integrity. Soleus (SOL), extensor digitorum longus (EDL) and gastrocnemius (GAS) skeletal muscles are investigated. nAChR membrane clusters were studied to monitor neuromuscular junction (NMJ) integrity. Fibre-type cross-sectional area (CSA) analysis is carried out in order to determine the extent of muscle atrophy. Our findings clearly showed that crosslinking activity of Homer long forms (Homer 1b/c and Homer2a/b) are decreased in slow-twitch and increased in fast-twitch muscle of EAMG whereas the short form of Homer that disrupts Homer crosslinking (Homer1a) is upregulated in slow-twitch muscle only. Densitometry analysis showed a 125% increase in Homer protein expression in EDL, and a 45% decrease in SOL of EAMG mice. In contrast, nAChR fluorescence pixel intensity decreased in endplates of EAMG mice, more distinct in type-I dominant SOL muscle. Morphometric CSA of EAMG vs. control (CTR) revealed a significant reduction in EDL but not in GAS and SOL. Taken together, these results indicate that postsynaptic Homer signalling is impaired in slow-twitch SOL muscle from EAMG mice and provide compelling evidence suggesting a functional coupling between Homer and nAChR, underscoring the key role of Homer in skeletal muscle neurophysiology.


Subject(s)
Myasthenia Gravis , Neuromuscular Junction , Mice , Animals , Neuromuscular Junction/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Motor Endplate , Disease Models, Animal , Homer Scaffolding Proteins/metabolism
12.
Neurosci Biobehav Rev ; 136: 104596, 2022 05.
Article in English | MEDLINE | ID: mdl-35248676

ABSTRACT

Once considered only scaffolding proteins at glutamatergic postsynaptic density (PSD), Homer1 proteins are increasingly emerging as multimodal adaptors that integrate different signal transduction pathways within PSD, involved in motor and cognitive functions, with putative implications in psychiatric disorders. Regulation of type I metabotropic glutamate receptor trafficking, modulation of calcium signaling, tuning of long-term potentiation, organization of dendritic spines' growth, as well as meta- and homeostatic plasticity control are only a few of the multiple endocellular and synaptic functions that have been linked to Homer1. Findings from preclinical studies, as well as genetic studies conducted in humans, suggest that both constitutive (Homer1b/c) and inducible (Homer1a) isoforms of Homer1 play a role in the neurobiology of several psychiatric disorders, including psychosis, mood disorders, neurodevelopmental disorders, and addiction. On this background, Homer1 has been proposed as a putative novel target in psychopharmacological treatments. The aim of this review is to summarize and systematize the growing body of evidence on Homer proteins, highlighting the role of Homer1 in the pathophysiology and therapy of mental diseases.


Subject(s)
Dopamine , Mental Disorders , Carrier Proteins/metabolism , Dopamine/metabolism , Glutamates/therapeutic use , Homer Scaffolding Proteins/metabolism , Humans , Mental Disorders/metabolism , Signal Transduction
13.
J Neuroinflammation ; 19(1): 67, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35287697

ABSTRACT

BACKGROUND: Inflammation induced by intracerebral hemorrhage (ICH) is one of the main causes of the high mortality and poor prognosis of patients with ICH. A1 astrocytes are closely associated with neuroinflammation and neurotoxicity, whereas A2 astrocytes are neuroprotective. Homer scaffolding protein 1 (Homer1) plays a protective role in ischemic encephalopathy and neurodegenerative diseases. However, the role of Homer1 in ICH-induced inflammation and the effect of Homer1 on the phenotypic conversion of astrocytes remain unknown. METHODS: Femoral artery autologous blood from C57BL/6 mice was used to create an ICH model. We use the A1 phenotype marker C3 and A2 phenotype marker S100A10 to detect astrocyte conversion after ICH. Homer1 overexpression/knock-down mice were constructed by adeno-associated virus (AAV) infection to explore the role of Homer1 and its mechanism of action after ICH. Finally, Homer1 protein and selumetinib were injected into in situ hemorrhage sites in the brains of Homer1flox/flox/Nestin-Cre+/- mice to study the efficacy of Homer1 in the treatment of ICH by using a mouse cytokine array to explore the potential mechanism. RESULTS: The expression of Homer1 peaked on the third day after ICH and colocalized with astrocytes. Homer1 promotes A1 phenotypic conversion in astrocytes in vivo and in vitro. Overexpression of Homer1 inhibits the activation of MAPK signaling, whereas Homer1 knock-down increases the expression of pathway-related proteins. The Homer1 protein and selumetinib, a non-ATP competitive MEK1/2 inhibitor, improved the outcome in ICH in Homer1flox/flox/Nestin-Cre+/- mice. The efficacy of Homer1 in the treatment of ICH is associated with reduced expression of the inflammatory factor TNFSF10 and increased expression of the anti-inflammatory factors activin A, persephin, and TWEAK. CONCLUSIONS: Homer1 plays an important role in inhibiting inflammation after ICH by suppressing the A1 phenotype conversion in astrocytes. In situ injection of Homer1 protein may be a novel and effective method for the treatment of inflammation after ICH.


Subject(s)
Astrocytes , Cerebral Hemorrhage , Animals , Astrocytes/metabolism , Cerebral Hemorrhage/metabolism , Homer Scaffolding Proteins/genetics , Homer Scaffolding Proteins/metabolism , Homer Scaffolding Proteins/pharmacology , Humans , Inflammation/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic
14.
Sci Rep ; 12(1): 3207, 2022 02 25.
Article in English | MEDLINE | ID: mdl-35217690

ABSTRACT

Neurons encode information by rapidly modifying synaptic protein complexes, which changes the strength of specific synaptic connections. Homer1 is abundantly expressed at glutamatergic synapses, and is known to alter its binding to metabotropic glutamate receptor 5 (mGlu5) in response to synaptic activity. However, Homer participates in many additional known interactions whose activity-dependence is unclear. Here, we used co-immunoprecipitation and label-free quantitative mass spectrometry to characterize activity-dependent interactions in the cerebral cortex of wildtype and Homer1 knockout mice. We identified a small, high-confidence protein network consisting of mGlu5, Shank2 and 3, and Homer1-3, of which only mGlu5 and Shank3 were significantly reduced following neuronal depolarization. We identified several other proteins that reduced their co-association in an activity-dependent manner, likely mediated by Shank proteins. We conclude that Homer1 dissociates from mGlu5 and Shank3 following depolarization, but our data suggest that direct Homer1 interactions in the cortex may be more limited than expected.


Subject(s)
Neurons , Synapses , Animals , Cerebral Cortex/metabolism , Homer Scaffolding Proteins/genetics , Homer Scaffolding Proteins/metabolism , Mice , Mice, Knockout , Microfilament Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Synapses/metabolism
15.
Cell Rep ; 38(3): 110282, 2022 01 18.
Article in English | MEDLINE | ID: mdl-35045295

ABSTRACT

Although circular RNAs (circRNAs) are enriched in the brain, their relevance for brain function and psychiatric disorders is poorly understood. Here, we show that circHomer1 is inversely associated with relative HOMER1B mRNA isoform levels in both the orbitofrontal cortex (OFC) and stem-cell-derived neuronal cultures of subjects with psychiatric disorders. We further demonstrate that in vivo circHomer1 knockdown (KD) within the OFC can inhibit the synaptic expression of Homer1b mRNA. Furthermore, we show that circHomer1 directly binds to Homer1b mRNA and that Homer1b-specific KD increases synaptic circHomer1 levels and improves OFC-mediated behavioral flexibility. Importantly, double circHomer1 and Homer1b in vivo co-KD results in a complete rescue in circHomer1-associated alterations in both chance reversal learning and synaptic gene expression. Lastly, we uncover an RNA-binding protein that can directly bind to circHomer1 and promote its biogenesis. Taken together, our data provide mechanistic insights into the importance of circRNAs in brain function and disease.


Subject(s)
Gene Expression Regulation/physiology , Homer Scaffolding Proteins/metabolism , Prefrontal Cortex/metabolism , RNA, Circular/metabolism , Reversal Learning/physiology , Animals , Bipolar Disorder/metabolism , Gene Knockdown Techniques , Humans , Male , Mice , Mice, Inbred C57BL
16.
Cell Rep ; 37(7): 110014, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34788607

ABSTRACT

Mutations of SHANK3 cause Phelan-McDermid syndrome (PMS), and these individuals can exhibit sensitivity to stress, resulting in behavioral deterioration. Here, we examine the interaction of stress with genotype using a mouse model with face validity to PMS. In Shank3ΔC/+ mice, swim stress produces an altered transcriptomic response in pyramidal neurons that impacts genes and pathways involved in synaptic function, signaling, and protein turnover. Homer1a, which is part of the Shank3-mGluR-N-methyl-D-aspartate (NMDA) receptor complex, is super-induced and is implicated in the stress response because stress-induced social deficits in Shank3ΔC/+ mice are mitigated in Shank3ΔC/+;Homer1a-/- mice. Several lines of evidence demonstrate that Shank3 expression is regulated by Homer1a in competition with crosslinking forms of Homer, and consistent with this model, Shank3 expression and function that are reduced in Shank3ΔC/+ mice are rescued in Shank3ΔC/+;Homer1a-/- mice. Studies highlight the interaction between stress and genetics and focus attention on activity-dependent changes that may contribute to pathogenesis.


Subject(s)
Homer Scaffolding Proteins/metabolism , Nerve Tissue Proteins/metabolism , Stress, Psychological/metabolism , Animals , Chromosome Deletion , Chromosome Disorders/metabolism , Chromosome Disorders/physiopathology , Chromosomes, Human, Pair 22/metabolism , Disease Models, Animal , Gene Expression/genetics , Gene Expression Regulation/genetics , Homer Scaffolding Proteins/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microfilament Proteins/genetics , Nerve Tissue Proteins/genetics , Phenotype , Pyramidal Cells/metabolism , Stress, Psychological/physiopathology
17.
Biochem Biophys Res Commun ; 582: 144-149, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34715405

ABSTRACT

The chemical synapse is one type of cell-adhesion system that transmits information from a neuron to another neuron in the complex neuronal network in the brain. Synaptic transmission is the rate-limiting step during the information processing in the neuronal network and its plasticity is involved in cognitive functions. Thus, morphological and electrophysiological analyses of synapses are of particular importance in neuroscience research. In the current study, we applied super-resolved three-dimensional stimulated emission depletion (3D-STED) microscopy for the morphological analyses of synapses. This approach allowed us to estimate the precise number of excitatory and inhibitory synapses in the mouse hippocampal tissue. We discovered a region-specific increase in excitatory synapses in a model mouse of autism spectrum disorder, Neuroligin-3 KO, with this method. This type of analysis will open a new field in developmental neuroscience in the future.


Subject(s)
Autism Spectrum Disorder/genetics , CA1 Region, Hippocampal/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Membrane Proteins/genetics , Microscopy/methods , Nerve Tissue Proteins/genetics , Neurons/metabolism , Synapses/genetics , Animals , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/pathology , CA1 Region, Hippocampal/diagnostic imaging , CA1 Region, Hippocampal/pathology , Cell Adhesion Molecules, Neuronal/deficiency , Cognition/physiology , Disease Models, Animal , Gene Knockout Techniques , Homer Scaffolding Proteins/genetics , Homer Scaffolding Proteins/metabolism , Male , Membrane Proteins/deficiency , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy/instrumentation , Nerve Tissue Proteins/deficiency , Neuroimaging/instrumentation , Neuroimaging/methods , Neurons/pathology , Synapses/metabolism , Synapses/ultrastructure , Synaptic Transmission/physiology
18.
Bioengineered ; 12(1): 7156-7164, 2021 12.
Article in English | MEDLINE | ID: mdl-34546852

ABSTRACT

Tinnitus is deemed as the result of abnormal neural activities in the brain, and Homer proteins are expressed in the brain that convey nociception. The expression of Homer in tinnitus has not been studied. We hypothesized that expression of Homer in the auditory cortex was altered after tinnitus treatment. Mice were injected with sodium salicylate to induce tinnitus. Expression of Homer was detected by quantitative real-time polymerase chain reaction, western blotting, and immunohistochemistry assays. We found that Homer1 expression was upregulated in the auditory cortex of mice with tinnitus, while expression of Homer2 or Homer3 exhibited no significant alteration. Effects of two inhibitors of metabolic glutamate receptor 5 (mGluR5), noncompetitive 2-Methyl-6-(phenylethynyl)-pyridine (MPEP) and competitive α-methyl-4-carboxyphenylglycine (MCPG), on the tinnitus scores of the mice and on Homer1 expression were detected. MPEP significantly reduced tinnitus scores and suppressed Homer1 expression in a concentration dependent manner. MCPG had no significant effects on tinnitus scores or Homer1 expression. In conclusion, Homer1 expression was upregulated in the auditory cortex of mice after tinnitus, and was suppressed by noncompetitive mGluR5 inhibitor MPEP, but not competitive mGluR5 inhibitor MCPG.


Subject(s)
Auditory Cortex/metabolism , Homer Scaffolding Proteins/metabolism , Receptor, Metabotropic Glutamate 5/antagonists & inhibitors , Tinnitus/metabolism , Animals , Auditory Cortex/drug effects , Glycine/analogs & derivatives , Glycine/pharmacology , Homer Scaffolding Proteins/genetics , Male , Mice , Pyridines/pharmacology
19.
Biochemistry (Mosc) ; 86(6): 613-626, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34225586

ABSTRACT

Stress negatively affects processes of synaptic plasticity and is a major risk factor of various psychopathologies such as depression and anxiety. HOMER1 is an important component of the postsynaptic density: constitutively expressed long isoforms HOMER1b and HOMER1c bind to group I metabotropic glutamate receptors MGLUR1 (GRM1) and MGLUR5 and to other effector proteins, thereby forming a postsynaptic protein scaffold. Activation of the GLUR1-HOMER1b,c and/or GLUR5-HOMER1b,c complex regulates activity of the NMDA and AMPA receptors and Ca2+ homeostasis, thus modulating various types of synaptic plasticity. Dominant negative transcript Homer1a is formed as a result of activity-induced alternative termination of transcription. Expression of this truncated isoform in response to neuronal activation impairs interactions of HOMER1b,c with adaptor proteins, triggers ligand-independent signal transduction through MGLUR1 and/or MGLUR5, leads to suppression of the AMPA- and NMDA-mediated signal transmission, and thereby launches remodeling of the postsynaptic protein scaffold and inhibits long-term potentiation. The studies on animal models confirm that the HOMER1a-dependent remodeling most likely plays an important part in the stress susceptibility, whereas HOMER1a itself can be regarded as a neuroprotector. In this review article, we consider the effects of different stressors in various animal models on HOMER1 expression as well as impact of different HOMER1 variants on human behavior as well as structural and functional characteristics of the brain.


Subject(s)
Homer Scaffolding Proteins/metabolism , Neuronal Plasticity , Neurons/metabolism , Animals , Homer Scaffolding Proteins/physiology , Humans , Mice , Neurons/physiology , Protein Isoforms , Rats , Receptor, Metabotropic Glutamate 5/metabolism , Receptors, Metabotropic Glutamate/metabolism , Signal Transduction
20.
Int J Mol Sci ; 22(12)2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34204449

ABSTRACT

We recently found that, in human osteoblasts, Homer1 complexes to Calcium-sensing receptor (CaSR) and mediates AKT initiation via mechanistic target of rapamycin complex (mTOR) complex 2 (mTORC2) leading to beneficial effects in osteoblasts including ß-catenin stabilization and mTOR complex 1 (mTORC1) activation. Herein we further investigated the relationship between Homer1 and CaSR and demonstrate a link between the protein levels of CaSR and Homer1 in human osteoblasts in primary culture. Thus, when siRNA was used to suppress the CaSR, we observed upregulated Homer1 levels, and when siRNA was used to suppress Homer1 we observed downregulated CaSR protein levels using immunofluorescence staining of cultured osteoblasts as well as Western blot analyses of cell protein extracts. This finding was confirmed in vivo as the bone cells from osteoblast specific CaSR-/- mice showed increased Homer1 expression compared to wild-type (wt). CaSR and Homer1 protein were both expressed in osteocytes embedded in the long bones of wt mice, and immunofluorescent studies of these cells revealed that Homer1 protein sub-cellular localization was markedly altered in the osteocytes of CaSR-/- mice compared to wt. The study identifies additional roles for Homer1 in the control of the protein level and subcellular localization of CaSR in cells of the osteoblast lineage, in addition to its established role of mTORC2 activation downstream of the receptor.


Subject(s)
Homer Scaffolding Proteins/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Osteoblasts/metabolism , Receptors, Calcium-Sensing/metabolism , Animals , Calcium/metabolism , Cell Lineage , Cell Survival , Cells, Cultured , Female , Gene Expression , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Male , Mice , Mice, Knockout , Phosphorylation , Protein Binding , Protein Transport , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Calcium-Sensing/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...