Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.159
1.
Theor Appl Genet ; 137(5): 115, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38691245

KEY MESSAGE: This study found that the genes, PPD-H1 and ELF3, control the acceleration of plant development under speed breeding, with important implications for optimizing the delivery of climate-resilient crops. Speed breeding is a tool to accelerate breeding and research programmes. Despite its success and growing popularity with breeders, the genetic basis of plant development under speed breeding remains unknown. This study explored the developmental advancements of barley genotypes under different photoperiod regimes. A subset of the HEB-25 Nested Association Mapping population was evaluated for days to heading and maturity under two contrasting photoperiod conditions: (1) Speed breeding (SB) consisting of 22 h of light and 2 h of darkness, and (2) normal breeding (NB) consisting of 16 h of light and 8 h of darkness. GWAS revealed that developmental responses under both conditions were largely controlled by two loci: PPDH-1 and ELF3. Allelic variants at these genes determine whether plants display early flowering and maturity under both conditions. At key QTL regions, domesticated alleles were associated with late flowering and maturity in NB and early flowering and maturity in SB, whereas wild alleles were associated with early flowering under both conditions. We hypothesize that this is related to the dark-dependent repression of PPD-H1 by ELF3 which might be more prominent in NB conditions. Furthermore, by comparing development under two photoperiod regimes, we derived an estimate of plasticity for the two traits. Interestingly, plasticity in development was largely attributed to allelic variation at ELF3. Our results have important implications for our understanding and optimization of speed breeding protocols particularly for introgression breeding and the design of breeding programmes to support the delivery of climate-resilient crops.


Genotype , Hordeum , Phenotype , Photoperiod , Plant Breeding , Quantitative Trait Loci , Hordeum/genetics , Hordeum/growth & development , Alleles , Flowers/growth & development , Flowers/genetics , Chromosome Mapping , Genes, Plant , Polymorphism, Single Nucleotide , Plant Proteins/genetics , Plant Proteins/metabolism
2.
Theor Appl Genet ; 137(6): 120, 2024 May 06.
Article En | MEDLINE | ID: mdl-38709310

KEY MESSAGE: There is variation in stay-green within barley breeding germplasm, influenced by multiple haplotypes and environmental conditions. The positive genetic correlation between stay-green and yield across multiple environments highlights the potential as a future breeding target. Barley is considered one of the most naturally resilient crops making it an excellent candidate to dissect the genetics of drought adaptive component traits. Stay-green, is thought to contribute to drought adaptation, in which the photosynthetic machinery is maintained for a longer period post-anthesis increasing the photosynthetic duration of the plant. In other cereal crops, including wheat, stay-green has been linked to increased yield under water-limited conditions. Utilizing a panel of diverse barley breeding lines from a commercial breeding program we aimed to characterize stay-green in four environments across two years. Spatiotemporal modeling was used to accurately model senescence patterns from flowering to maturity characterizing the variation for stay-green in barley for the first time. Environmental effects were identified, and multi-environment trait analysis was performed for stay-green characteristics during grain filling. A consistently positive genetic correlation was found between yield and stay-green. Twenty-two chromosomal regions with large effect haplotypes were identified across and within environment types, with ten being identified in multiple environments. In silico stacking of multiple desirable haplotypes showed an opportunity to improve the stay-green phenotype through targeted breeding. This study is the first of its kind to model barley stay-green in a large breeding panel and has detected novel, stable and environment specific haplotypes. This provides a platform for breeders to develop Australian barley with custom senescence profiles for improved drought adaptation.


Droughts , Haplotypes , Hordeum , Phenotype , Plant Breeding , Hordeum/genetics , Hordeum/growth & development , Environment , Photosynthesis/genetics , Quantitative Trait Loci , Chromosome Mapping
3.
BMC Plant Biol ; 24(1): 438, 2024 May 22.
Article En | MEDLINE | ID: mdl-38778283

BACKGROUND: Roots play an important role during plant growth and development, ensuring water and nutrient uptake. Understanding the mechanisms regulating their initiation and development opens doors towards root system architecture engineering. RESULTS: Here, we investigated by RNA-seq analysis the changes in gene expression in the barley stem base of 1 day-after-germination (DAG) and 10DAG seedlings when crown roots are formed. We identified 2,333 genes whose expression was lower in the stem base of 10DAG seedlings compared to 1DAG seedlings. Those genes were mostly related to basal cellular activity such as cell cycle organization, protein biosynthesis, chromatin organization, cytoskeleton organization or nucleotide metabolism. In opposite, 2,932 genes showed up-regulation in the stem base of 10DAG seedlings compared to 1DAG seedlings, and their function was related to phytohormone action, solute transport, redox homeostasis, protein modification, secondary metabolism. Our results highlighted genes that are likely involved in the different steps of crown root formation from initiation to primordia differentiation and emergence, and revealed the activation of different hormonal pathways during this process. CONCLUSIONS: This whole transcriptomic study is the first study aiming at understanding the molecular mechanisms controlling crown root development in barley. The results shed light on crown root emergence that is likely associated with a strong cell wall modification, death of the cells covering the crown root primordium, and the production of defense molecules that might prevent pathogen infection at the site of root emergence.


Gene Expression Regulation, Plant , Hordeum , Plant Roots , Hordeum/genetics , Hordeum/growth & development , Hordeum/metabolism , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/metabolism , Seedlings/growth & development , Seedlings/genetics , Transcriptome , Gene Expression Profiling , Genes, Plant
4.
Funct Plant Biol ; 512024 05.
Article En | MEDLINE | ID: mdl-38753957

Detrimental effects of salinity could be mitigated by exogenous zinc (Zn) application; however, the mechanisms underlying this amelioration are poorly understood. This study demonstrated the interaction between Zn and salinity by measuring plant biomass, photosynthetic performance, ion concentrations, ROS accumulation, antioxidant activity and electrophysiological parameters in barley (Hordeum vulgare L.). Salinity stress (200mM NaCl for 3weeks) resulted in a massive reduction in plant biomass; however, both fresh and dry weight of shoots were increased by ~30% with adequate Zn supply. Zinc supplementation also maintained K+ and Na+ homeostasis and prevented H2 O2 toxicity under salinity stress. Furthermore, exposure to 10mM H2 O2 resulted in massive K+ efflux from root epidermal cells in both the elongation and mature root zones, and pre-treating roots with Zn reduced ROS-induced K+ efflux from the roots by 3-4-fold. Similar results were observed for Ca2+ . The observed effects may be causally related to more efficient regulation of cation-permeable non-selective channels involved in the transport and sequestration of Na+ , K+ and Ca2+ in various cellular compartments and tissues. This study provides valuable insights into Zn protective functions in plants and encourages the use of Zn fertilisers in barley crops grown on salt-affected soils.


Homeostasis , Hordeum , Plant Roots , Potassium , Salinity , Zinc , Hordeum/drug effects , Hordeum/growth & development , Hordeum/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Zinc/pharmacology , Zinc/metabolism , Homeostasis/drug effects , Potassium/metabolism , Reactive Oxygen Species/metabolism , Sodium/metabolism , Salt Stress/drug effects , Photosynthesis/drug effects , Hydrogen Peroxide/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism
5.
Planta ; 259(6): 145, 2024 May 06.
Article En | MEDLINE | ID: mdl-38709313

MAIN CONCLUSION: Soil acidity in Ethiopian highlands impacts barley production, affecting root system architecture. Study on 300 accessions showed significant trait variability, with potential for breeding enhancement. Soil acidity poses a significant challenge to crop production in the highland regions of Ethiopia, particularly impacting barley, a crucial staple crop. This acidity serves as a key stressor affecting the root system architecture (RSA) of this crop. Hence, the objective of this study was to assess the RSA traits variability under acidic soil conditions using 300 barley accessions in a greenhouse experiment. The analysis of variance indicated substantial variations among the accessions across all traits studied. The phenotypic coefficient of variation ranged from 24.4% for shoot dry weight to 11.1% for root length, while the genotypic coefficient variation varied between 18.83 and 9.2% for shoot dry weight and root length, respectively. The broad-sense heritability ranged from 36.7% for leaf area to 69.9% for root length, highlighting considerable heritability among multiple traits. The genetic advances as a percent of the mean ranged from 13.63 to 29.9%, suggesting potential for enhancement of these traits through breeding efforts. Principal component analysis and cluster analysis grouped the genotypes into two major clusters, each containing varying numbers of genotypes with contrasting traits. This diverse group presents an opportunity to access a wide range of potential parent candidates to enhance genetic variablity in breeding programs. The Pearson correlation analysis revealed significant negative associations between root angle (RA) and other RSA traits. This helps indirect selection of accessions for further improvement in soil acidity. In conclusion, this study offers valuable insights into the RSA characteristics of barley in acidic soil conditions, aiding in the development of breeding strategies to enhance crop productivity in acidic soil environments.


Genotype , Hordeum , Plant Roots , Seedlings , Soil , Hordeum/genetics , Hordeum/physiology , Hordeum/growth & development , Hordeum/anatomy & histology , Soil/chemistry , Plant Roots/anatomy & histology , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/physiology , Seedlings/genetics , Seedlings/growth & development , Seedlings/physiology , Seedlings/anatomy & histology , Phenotype , Hydrogen-Ion Concentration , Plant Breeding , Ethiopia , Genetic Variation , Principal Component Analysis , Acids/metabolism
6.
Planta ; 259(6): 144, 2024 May 06.
Article En | MEDLINE | ID: mdl-38709333

MAIN CONCLUSION: Silicon application mitigates phosphate deficiency in barley through an interplay with auxin and nitric oxide, enhancing growth, photosynthesis, and redox balance, highlighting the potential of silicon as a fertilizer for overcoming nutritional stresses. Silicon (Si) is reported to attenuate nutritional stresses in plants, but studies on the effect of Si application to plants grown under phosphate (Pi) deficiency are still very scarce, especially in barley. Therefore, the present work was undertaken to investigate the potential role of Si in mitigating the adverse impacts of Pi deficiency in barley Hordeum vulgare L. (var. BH902). Further, the involvement of two key regulatory signaling molecules--auxin and nitric oxide (NO)--in Si-induced tolerance against Pi deficiency in barley was tested. Morphological attributes, photosynthetic parameters, oxidative stress markers (O2·-, H2O2, and MDA), antioxidant system (enzymatic--APX, CAT, SOD, GR, DHAR, MDHAR as well as non-enzymatic--AsA and GSH), NO content, and proline metabolism were the key traits that were assessed under different treatments. The P deficiency distinctly declined growth of barley seedlings, which was due to enhancement in oxidative stress leading to inhibition of photosynthesis. These results were also in parallel with an enhancement in antioxidant activity, particularly SOD and CAT, and endogenous proline level and its biosynthetic enzyme (P5CS). The addition of Si exhibited beneficial effects on barley plants grown in Pi-deficient medium as reflected in increased growth, photosynthetic activity, and redox balance through the regulation of antioxidant machinery particularly ascorbate-glutathione cycle. We noticed that auxin and NO were also found to be independently participating in Si-mediated improvement of growth and other parameters in barley roots under Pi deficiency. Data of gene expression analysis for PHOSPHATE TRANSPORTER1 (HvPHT1) indicate that Si helps in increasing Pi uptake as per the need of Pi-deficient barley seedlings, and also auxin and NO both appear to help Si in accomplishing this task probably by inducing lateral root formation. These results are suggestive of possible application of Si as a fertilizer to correct the negative effects of nutritional stresses in plants. Further research at genetic level to understand Si-induced mechanisms for mitigating Pi deficiency can be helpful in the development of new varieties with improved tolerance against Pi deficiency, especially for cultivation in areas with Pi-deficient soils.


Hordeum , Indoleacetic Acids , Nitric Oxide , Oxidative Stress , Phosphates , Photosynthesis , Plant Roots , Silicon , Hordeum/metabolism , Hordeum/genetics , Hordeum/drug effects , Hordeum/growth & development , Hordeum/physiology , Silicon/pharmacology , Silicon/metabolism , Indoleacetic Acids/metabolism , Phosphates/deficiency , Phosphates/metabolism , Nitric Oxide/metabolism , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/drug effects , Plant Roots/genetics , Photosynthesis/drug effects , Antioxidants/metabolism , Seedlings/growth & development , Seedlings/metabolism , Seedlings/genetics , Seedlings/drug effects , Seedlings/physiology
7.
PLoS One ; 19(5): e0303751, 2024.
Article En | MEDLINE | ID: mdl-38768114

Increasing yield is an important goal of barley breeding. In this study, 54 papers published from 2001-2022 on QTL mapping for yield and yield-related traits in barley were collected, which contained 1080 QTLs mapped to the barley high-density consensus map for QTL meta-analysis. These initial QTLs were integrated into 85 meta-QTLs (MQTL) with a mean confidence interval (CI) of 2.76 cM, which was 7.86-fold narrower than the CI of the initial QTL. Among these 85 MQTLs, 68 MQTLs were validated in GWAS studies, and 25 breeder's MQTLs were screened from them. Seventeen barley orthologs of yield-related genes in rice and maize were identified within the hcMQTL region based on comparative genomics strategy and were presumed to be reliable candidates for controlling yield-related traits. The results of this study provide useful information for molecular marker-assisted breeding and candidate gene mining of yield-related traits in barley.


Genome-Wide Association Study , Hordeum , Quantitative Trait Loci , Hordeum/genetics , Hordeum/growth & development , Chromosome Mapping , Plant Breeding , Phenotype , Genome, Plant , Genes, Plant
8.
Molecules ; 29(10)2024 May 17.
Article En | MEDLINE | ID: mdl-38792226

The study investigated compounds present in the invasive grass Hordeum murinum L. subsp. murinum and tested the allelopathic potential of this plant against common meadow species Festuca rubra L. and Trifolium repens L. Gas chromatography-mass spectrometry (GC-MS) performed separately on the ears and stalks with leaves of wall barley revealed 32 compounds, including secondary metabolites, that may play an important role in allelopathy. Two compounds, N-butylbenzenesulfonamide (NBBS) and diphenylsulfone (DDS), were described for the first time for wall barley and the Poaceae family. The presence of 6,10,14-trimethylpentadecan-2-one (TMP) has also been documented. Aqueous extracts of H. murinum organs (ears and stalks with leaves) at concentrations of 2.5%, 5%, and 7.5% were used to evaluate its allelopathic potential. Compared to the control, all extracts inhibited germination and early growth stages of meadow species. The inhibitory effect was strongest at the highest concentration for both the underground and aboveground parts of the seedlings of the meadow species tested. Comparing the allelopathic effect, Trifolium repens proved to be more sensitive. In light of the results of the study, the removal of wall barley biomass appears to be important for the restoration of habitats where this species occurs due to its allelopathic potential.


Allelopathy , Hordeum , Plant Extracts , Hordeum/chemistry , Hordeum/growth & development , Hordeum/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Introduced Species , Trifolium/chemistry , Trifolium/growth & development , Trifolium/drug effects , Plant Leaves/chemistry , Gas Chromatography-Mass Spectrometry , Germination/drug effects , Seedlings/drug effects , Seedlings/growth & development , Festuca/drug effects , Festuca/growth & development , Festuca/chemistry
9.
J Agric Food Chem ; 72(17): 10149-10161, 2024 May 01.
Article En | MEDLINE | ID: mdl-38635353

The conversion of raw barley (Hordeum vulgare L.) to malt requires a process of controlled germination, where the grain is submerged in water to raise the moisture content to >40%. The transmembrane proteins, aquaporins, influence water uptake during the initial stage of controlled germination, yet little is known of their involvement in malting. With the current focus on sustainability, understanding the mechanisms of water uptake and usage during the initial stages of malting has become vital in improving efficient malting practices. In this study, we used quantitative proteomics analysis of two malting barley genotypes demonstrating differing water-uptake phenotypes in the initial stages of malting. Our study quantified 19 transmembrane proteins from nine families, including seven distinct aquaporin isoforms, including the plasma intrinsic proteins (PIPs) PIP1;1, PIP2;1, and PIP2;4 and the tonoplast intrinsic proteins (TIPs) TIP1;1, TIP2;3, TIP3;1, and TIP3;2. Our findings suggest that the presence of TIP1;1, TIP3;1, and TIP3;2 in the mature barley grain proteome is essential for facilitating water uptake, influencing cell turgor and the formation of large central lytic vacuoles aiding storage reserve hydrolysis and endosperm modification efficiency. This study proposes that TIP3s mediate water uptake in malting barley grain, offering potential breeding targets for improving sustainable malting practices.


Aquaporins , Germination , Hordeum , Plant Proteins , Seeds , Water , Hordeum/metabolism , Hordeum/genetics , Hordeum/chemistry , Hordeum/growth & development , Aquaporins/metabolism , Aquaporins/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Water/metabolism , Seeds/metabolism , Seeds/chemistry , Seeds/growth & development , Seeds/genetics , Plant Breeding , Edible Grain/metabolism , Edible Grain/chemistry , Edible Grain/growth & development , Edible Grain/genetics , Proteomics
10.
Ann Bot ; 133(7): 931-940, 2024 May 13.
Article En | MEDLINE | ID: mdl-38448365

BACKGROUND AND AIMS: Internal root aeration is essential for root growth in waterlogged conditions. Aerenchyma provides a path for oxygen to diffuse to the roots. In most wetland species, including rice, a barrier to radial oxygen loss (ROL) allows more of the oxygen to diffuse to the root tip, enabling root growth into anoxic soil. Most dryland crops, including barley, do not form a root ROL barrier. We previously found that abscisic acid (ABA) signalling is involved in the induction of ROL barrier formation in rice during waterlogging. Although rice typically does not form a tight ROL barrier in roots in aerated conditions, an ROL barrier with suberized exodermis was induced by application of exogenous ABA. Therefore, we hypothesized that ABA application could also trigger root ROL barrier formation with hypodermal suberization in barley. METHODS: Formation of an ROL barrier was examined in roots in different exogenous ABA concentrations and at different time points using cylindrical electrodes and Methylene Blue staining. Additionally, we evaluated root porosity and observed suberin and lignin modification. Suberin, lignin and Casparian strips in the cell walls were observed by histochemical staining. We also evaluated the permeability of the apoplast to a tracer. KEY RESULTS: Application of ABA induced suberization and ROL barrier formation in the adventitious roots of barley. The hypodermis also formed lignin-containing Casparian strips and a barrier to the infiltration of an apoplastic tracer (periodic acid). However, ABA application did not affect root porosity. CONCLUSIONS: Our results show that in artificial conditions, barley can induce the formation of ROL and apoplastic barriers in the outer part of roots if ABA is applied exogenously. The difference in ROL barrier inducibility between barley (an upland species) and rice (a wetland species) might be attributable to differences in ABA signalling in roots in response to waterlogging conditions.


Abscisic Acid , Hordeum , Lignin , Oxygen , Plant Roots , Hordeum/drug effects , Hordeum/metabolism , Hordeum/growth & development , Abscisic Acid/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/drug effects , Oxygen/metabolism , Lignin/metabolism , Cell Wall/metabolism , Cell Wall/drug effects , Plant Growth Regulators/metabolism , Lipids
12.
J Exp Bot ; 75(10): 2900-2916, 2024 May 20.
Article En | MEDLINE | ID: mdl-38366171

The HD-ZIP class I transcription factor Homeobox 1 (HvHOX1), also known as Vulgare Row-type Spike 1 (VRS1) or Six-rowed Spike 1, regulates lateral spikelet fertility in barley (Hordeum vulgare L.). It was shown that HvHOX1 has a high expression only in lateral spikelets, while its paralog HvHOX2 was found to be expressed in different plant organs. Yet, the mechanistic functions of HvHOX1 and HvHOX2 during spikelet development are still fragmentary. Here, we show that compared with HvHOX1, HvHOX2 is more highly conserved across different barley genotypes and Hordeum species, hinting at a possibly vital but still unclarified biological role. Using bimolecular fluorescence complementation, DNA-binding, and transactivation assays, we validate that HvHOX1 and HvHOX2 are bona fide transcriptional activators that may potentially heterodimerize. Accordingly, both genes exhibit similar spatiotemporal expression patterns during spike development and growth, albeit their mRNA levels differ quantitatively. We show that HvHOX1 delays the lateral spikelet meristem differentiation and affects fertility by aborting the reproductive organs. Interestingly, the ancestral relationship of the two genes inferred from their co-expressed gene networks suggested that HvHOX1 and HvHOX2 might play a similar role during barley spikelet development. However, CRISPR-derived mutants of HvHOX1 and HvHOX2 demonstrated the suppressive role of HvHOX1 on lateral spikelets, while the loss of HvHOX2 does not influence spikelet development. Collectively, our study shows that through the suppression of reproductive organs, lateral spikelet fertility is regulated by HvHOX1, whereas HvHOX2 is dispensable for spikelet development in barley.


Hordeum , Plant Proteins , Hordeum/genetics , Hordeum/growth & development , Hordeum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Gene Expression Regulation, Plant , Transcription Factors/metabolism , Transcription Factors/genetics
13.
Ann Bot ; 133(7): 983-996, 2024 May 13.
Article En | MEDLINE | ID: mdl-38407464

BACKGROUND AND AIMS: Vascular patterning is intimately related to plant form and function. Here, using barley (Hordeum vulgare) as a model, we studied the vascular anatomy of the spike-type inflorescence. The main aim of the present work was to clarify the relationship between rachis (spike axis) vasculature and spike size, to define vascular dynamics and to discuss the implications for transport capacity and its interaction with the spikelets. METHODS: We used serial transverse internode sections to determine the internode area, vascular area and number of veins along the rachis of several barley lines. KEY RESULTS: Internode area and total vascular area show a clear positive correlation with spike size, whereas the number of veins is only weakly correlated. The lateral periphery of the rachis contains large mature veins of constant size, whereas the central part is occupied by small immature veins. Spikelet-derived veins entering the rachis often merge with the immature rachis veins but never merge with the mature veins. An increase in floret fertility through the conversion of a two-rowed barley into an isogenic six-rowed line, in addition to a decrease in floret fertility owing to enhanced pre-anthesis tip degeneration caused by the mutation tip sterile 2.b (tst2.b), significantly affected vein size but had limited to no effects on the number of veins or internode area. CONCLUSIONS: The rachis vasculature is the result of a two-step process involving an initial layout followed by size adjustment according to floret fertility/spike size. The restriction of large mature vessels to the periphery and that of small immature vessels to the centre of the rachis suggests that long-distance transport and local supply to spikelets are spatially separated processes. The identification of spikelet-derived veins entering the rachis without fusing with its vasculature indicates that a vascular continuity between rachis and spikelets might be non-essential.


Hordeum , Plant Vascular Bundle , Hordeum/anatomy & histology , Hordeum/growth & development , Hordeum/physiology , Plant Vascular Bundle/anatomy & histology , Plant Vascular Bundle/physiology , Plant Vascular Bundle/growth & development , Biological Transport , Inflorescence/anatomy & histology , Inflorescence/growth & development , Inflorescence/physiology
14.
Mol Biol Evol ; 41(2)2024 Feb 01.
Article En | MEDLINE | ID: mdl-38243866

Vascular plants have segmented body axes with iterative nodes and internodes. Appropriate node initiation and internode elongation are fundamental to plant fitness and crop yield; however, how these events are spatiotemporally coordinated remains elusive. We show that in barley (Hordeum vulgare L.), selections during domestication have extended the apical meristematic phase to promote node initiation, but constrained subsequent internode elongation. In both vegetative and reproductive phases, internode elongation displays a dynamic proximal-distal gradient, and among subpopulations of domesticated barleys worldwide, node initiation and proximal internode elongation are associated with latitudinal and longitudinal gradients, respectively. Genetic and functional analyses suggest that, in addition to their converging roles in node initiation, flowering-time genes have been repurposed to specify the timing and duration of internode elongation. Our study provides an integrated view of barley node initiation and internode elongation and suggests that plant architecture should be recognized as a collection of dynamic phytomeric units in the context of crop adaptive evolution.


Adaptation, Biological , Hordeum , Hordeum/genetics , Hordeum/growth & development , Domestication
16.
Cells ; 12(10)2023 05 16.
Article En | MEDLINE | ID: mdl-37408231

Melatonin (N-acetyl-5-methoxytryptamine) plays an important role in plant growth and development, and in the response to various abiotic stresses. However, its role in the responses of barley to low phosphorus (LP) stress remains largely unknown. In the present study, we investigated the root phenotypes and metabolic patterns of LP-tolerant (GN121) and LP-sensitive (GN42) barley genotypes under normal P, LP, and LP with exogenous melatonin (30 µM) conditions. We found that melatonin improved barley tolerance to LP mainly by increasing root length. Untargeted metabolomic analysis showed that metabolites such as carboxylic acids and derivatives, fatty acyls, organooxygen compounds, benzene and substituted derivatives were involved in the LP stress response of barley roots, while melatonin mainly regulated indoles and derivatives, organooxygen compounds, and glycerophospholipids to alleviate LP stress. Interestingly, exogenous melatonin showed different metabolic patterns in different genotypes of barley in response to LP stress. In GN42, exogenous melatonin mainly promotes hormone-mediated root growth and increases antioxidant capacity to cope with LP damage, while in GN121, it mainly promotes the P remobilization to supplement phosphate in roots. Our study revealed the protective mechanisms of exogenous MT in alleviating LP stress of different genotypes of barley, which can be used in the production of phosphorus-deficient crops.


Hordeum , Melatonin , Phosphorus , Plant Roots , Stress, Physiological , Melatonin/pharmacology , Melatonin/physiology , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Phosphorus/deficiency , Hordeum/drug effects , Hordeum/genetics , Hordeum/growth & development , Hordeum/metabolism , Genotype , Stress, Physiological/drug effects , Stress, Physiological/genetics , Stress, Physiological/physiology
17.
J Adv Res ; 49: 31-45, 2023 Jul.
Article En | MEDLINE | ID: mdl-36170948

INTRODUCTION: Frequent climate change-induced drought events are detrimental environmental stresses affecting global crop production and ecosystem health. Several efforts have facilitated crop breeding for resilient varieties to counteract stress. However, progress is hampered due to the complexity of drought tolerance; a greater variety of novel genes are required across varying environments. Tibetan annual wild barley is a unique and precious germplasm that is well adapted to abiotic stress and can provide elite genes for crop improvement in drought tolerance. OBJECTIVES: To identify the genetic basis and unique mechanisms for drought tolerance in Tibetan wild barley. METHODS: Whole genome resequencing and comparative RNA-seq approaches were performed to identify candidate genes associated with drought tolerance via investigating the genetic diversity and transcriptional variation between cultivated and Tibetan wild barley. Bioinformatics, population genetics, and gene silencing were conducted to obtain insights into ecological adaptation in barley and functions of key genes. RESULTS: Over 20 million genetic variants and a total of 15,361 significantly affected genes were identified in our dataset. Combined genomic, transcriptomic, evolutionary, and experimental analyses revealed 26 water deficit resilience-associated genes in the drought-tolerant wild barley XZ5 with unique genetic variants and expression patterns. Functional prediction revealed Tibetan wild barley employs effective regulators to activate various responsive pathways with novel genes, such as Zinc-Induced Facilitator-Like 2 (HvZIFL2) and Peroxidase 11 (HvPOD11), to adapt to water deficit conditions. Gene silencing and drought tolerance evaluation in a natural barley population demonstrated that HvZIFL2 and HvPOD11 positively regulate drought tolerance in barley. CONCLUSION: Our findings reveal functional genes that have been selected across barley's complex history of domestication to thrive in water deficit environments. This will be useful for molecular breeding and provide new insights into drought-tolerance mechanisms in wild relatives of major cereal crops.


Genome, Plant , Hordeum , Gene Expression Profiling , Water , Hordeum/genetics , Hordeum/growth & development , Genotype , Genetic Variation , Evolution, Molecular , Droughts , Plant Proteins/genetics
18.
Environ Sci Pollut Res Int ; 29(56): 84844-84860, 2022 Dec.
Article En | MEDLINE | ID: mdl-35788488

The influence of growing season rainfall on agricultural production is indisputable. In Morocco, the production of crops such as barley, maize, and wheat is impacted by growing season rainfall. Due to persistent gaps in growing season rainfall and other drivers of crop yield, crops have experienced observed yields that are often below projected or potential yields. However, there are currently no studies that have quantified these gaps in yield and growing season rainfall in Morocco. To achieve this objective, time-series crop yield for all three crops and growing season rainfall data for the period 1991-2020 were collected from FAOSTAT and the World Bank climate portal, respectively. Growing season rainfall and crop yield data for the spatial variations were culled from System National de Suivi Agrometeorologique (GCMS) and the yield gaps atlas, respectively, for the same historical period. The data were subjected to bias correction to handle uncertainty. The projected/simulated crop yields and growing season rainfall were computed by regression analysis. Crop yield and growing season rainfall gaps were determined by establishing the difference between the projected and observed crop yields and rainfall data. The results show that observed and simulated wheat have a stronger relationship when compared to the other crops. Also, most years with crop yield gaps are associated with growing season rainfall gaps. Wheat records the lowest number of years with yield gaps and the highest number of years with growing season rainfall gaps during the entire data series. Therefore, even though yield gaps are strongly tied to growing season rainfall gaps, it is not the case for wheat, and therefore other drivers might be important because wheat has the lowest number of years with crop yield gaps and the highest number of years with growing season rainfall gaps. Spatially, yield and growing season rainfall gaps decline with increased latitude. The broader perspective and policy implication here is that a better understanding of yield and growing season rainfall gaps mandates an understanding of growing season rainfall and other drivers of yield. As a way forward, potential research should focus on identifying the drivers of yield gaps, sub-national experimentation at the plot level as well as on closing yield gaps through water and nutrient management.


Agriculture , Crops, Agricultural , Climate , Climate Change , Crops, Agricultural/growth & development , Morocco , Seasons , Triticum/growth & development , Zea mays/growth & development , Hordeum/growth & development
19.
Proc Natl Acad Sci U S A ; 119(31): e2201350119, 2022 08 02.
Article En | MEDLINE | ID: mdl-35881796

Root angle in crops represents a key trait for efficient capture of soil resources. Root angle is determined by competing gravitropic versus antigravitropic offset (AGO) mechanisms. Here we report a root angle regulatory gene termed ENHANCED GRAVITROPISM1 (EGT1) that encodes a putative AGO component, whose loss-of-function enhances root gravitropism. Mutations in barley and wheat EGT1 genes confer a striking root phenotype, where every root class adopts a steeper growth angle. EGT1 encodes an F-box and Tubby domain-containing protein that is highly conserved across plant species. Haplotype analysis found that natural allelic variation at the barley EGT1 locus impacts root angle. Gravitropic assays indicated that Hvegt1 roots bend more rapidly than wild-type. Transcript profiling revealed Hvegt1 roots deregulate reactive oxygen species (ROS) homeostasis and cell wall-loosening enzymes and cofactors. ROS imaging shows that Hvegt1 root basal meristem and elongation zone tissues have reduced levels. Atomic force microscopy measurements detected elongating Hvegt1 root cortical cell walls are significantly less stiff than wild-type. In situ analysis identified HvEGT1 is expressed in elongating cortical and stele tissues, which are distinct from known root gravitropic perception and response tissues in the columella and epidermis, respectively. We propose that EGT1 controls root angle by regulating cell wall stiffness in elongating root cortical tissue, counteracting the gravitropic machinery's known ability to bend the root via its outermost tissues. We conclude that root angle is controlled by EGT1 in cereal crops employing an antigravitropic mechanism.


Crops, Agricultural , Gravitropism , Hordeum , Plant Proteins , Plant Roots , Cell Wall/chemistry , Crops, Agricultural/chemistry , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Gravitropism/genetics , Hordeum/chemistry , Hordeum/genetics , Hordeum/growth & development , Microscopy, Atomic Force , Plant Proteins/genetics , Plant Proteins/physiology , Plant Roots/chemistry , Plant Roots/genetics , Plant Roots/growth & development , Reactive Oxygen Species/metabolism , Transcription, Genetic
20.
Toxins (Basel) ; 14(2)2022 02 08.
Article En | MEDLINE | ID: mdl-35202152

Epidemiology of Fusarium Head Blight (FHB) of spring barley is relatively little understood. In a five-year study, we assessed quantitative resistance to FHB in an assortment of 17 spring barley genotypes in the field in southern Germany. To this end, we used soil and spray inoculation of plants with F. culmorum and F. avenaceum. This increased disease pressure and provoked genotypic differentiation. To normalize effects of variable weather conditions across consecutive seasons, we used a disease ranking of the genotypes based on quantification of fungal DNA contents and multiple Fusarium toxins in harvested grain. Together, this allowed for assessment of stable quantitative FHB resistance of barley in several genotypes. Fungal DNA contents were positively associated with species-specific Fusarium toxins in single years and over several years in plots with soil inoculation. In those plots, plant height limited FHB; however, this was not observed after spray inoculation. A multiple linear regression model of recorded weather parameter and fungal DNA contents over five years identified time periods during the reproductive phase of barley, in which weather strongly influenced fungal colonization measured in mature barley grain. Environmental conditions before heading and late after anthesis showed strongest associations with F. culmorum DNA in all genotypes, whereas for F. avenaceum, this was less consistent where we observed weather-dependent associations, depending on the genotype. Based on this study, we discuss aspects of practical resistance breeding in barley relevant to improve quantitative resistance to FHB and associated mycotoxin contaminations.


Disease Resistance , Fusarium , Hordeum , Mycotoxins/analysis , DNA, Fungal/analysis , Edible Grain/microbiology , Fusarium/genetics , Genotype , Hordeum/chemistry , Hordeum/genetics , Hordeum/growth & development , Hordeum/microbiology , Mycotoxins/genetics , Plant Breeding , Weather
...