Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.084
Filter
1.
Sci Rep ; 14(1): 15729, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977715

ABSTRACT

Huntington's disease (HD) is a hereditary neurodegenerative disorder caused by the extension of the CAG repeats in exon 1 of the HTT gene and is transmitted in a dominant manner. The present study aimed to assess whether patients' sex, in the context of mutated and normal allele length, contributes to age on onset (AO) of HD. The study population comprised a large cohort of 3723 HD patients from the European Huntington's Disease Network's REGISTRY database collected at 160 sites across 17 European countries and in one location outside Europe. The data were analyzed using regression models and factorial analysis of variance (ANOVA) considering both mutated allele length and sex as predictors of patients' AO. AO, as described by the rater's estimate, was found to be later in affected women than in men across the whole population. This difference was most pronounced in a subgroup of 1273 patients with relatively short variants of the mutated allele (40-45 CAG repeats) and normal alleles in a higher half of length distribution-namely, more than 17 CAG repeats; however, it was also observed in each group. Our results presented in this observational study point to sex-related differences in AO, most pronounced in the presence of the short mutated and long normal allele, which may add to understanding the dynamics of AO in Huntington's Disease.Trial registration: ClinicalTrials.gov identifier NCT01590589.


Subject(s)
Age of Onset , Huntingtin Protein , Huntington Disease , Humans , Huntington Disease/genetics , Male , Female , Middle Aged , Adult , Huntingtin Protein/genetics , Alleles , Trinucleotide Repeats/genetics , Trinucleotide Repeat Expansion/genetics , Sex Factors , Aged , Mutation , Europe/epidemiology
2.
Genes (Basel) ; 15(6)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38927742

ABSTRACT

Huntington disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG expansion on the huntingtin (HTT) gene and is characterized by progressive motor, cognitive, and neuropsychiatric decline. Recently, new genetic factors besides CAG repeats have been implicated in the disease pathogenesis. Most genetic modifiers are involved in DNA repair pathways and, as the cause of the loss of CAA interruption in the HTT gene, they exert their main influence through somatic expansion. However, this mechanism might not be the only driver of HD pathogenesis, and future studies are warranted in this field. The aim of the present review is to dissect the many faces of genetics in HD pathogenesis, from cis- and trans-acting genetic modifiers to RNA toxicity, mitochondrial DNA mutations, and epigenetics factors. Exploring genetic modifiers of HD onset and progression appears crucial to elucidate not only disease pathogenesis, but also to improve disease prediction and prevention, develop biomarkers of disease progression and response to therapies, and recognize new therapeutic opportunities. Since the same genetic mechanisms are also described in other repeat expansion diseases, their implications might encompass the whole spectrum of these disorders.


Subject(s)
Huntingtin Protein , Huntington Disease , Trinucleotide Repeat Expansion , Huntington Disease/genetics , Humans , Huntingtin Protein/genetics , Trinucleotide Repeat Expansion/genetics , Animals , Epigenesis, Genetic , DNA, Mitochondrial/genetics
3.
Cells ; 13(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38920658

ABSTRACT

The development of cell-type-specific dendritic arbors is integral to the proper functioning of neurons within their circuit networks. In this study, we examine the regulatory relationship between the cytosolic chaperonin CCT, key insulin pathway genes, and an E3 ubiquitin ligase (Cullin1) in dendritic development. CCT loss of function (LOF) results in dendritic hypotrophy in Drosophila Class IV (CIV) multi-dendritic larval sensory neurons, and CCT has recently been shown to fold components of the TOR (Target of Rapamycin) complex 1 (TORC1) in vitro. Through targeted genetic manipulations, we confirm that an LOF of CCT and the TORC1 pathway reduces dendritic complexity, while overexpression of key TORC1 pathway genes increases the dendritic complexity in CIV neurons. Furthermore, both CCT and TORC1 LOF significantly reduce microtubule (MT) stability. CCT has been previously implicated in regulating proteinopathic aggregation, thus, we examine CIV dendritic development in disease conditions as well. The expression of mutant Huntingtin leads to dendritic hypotrophy in a repeat-length-dependent manner, which can be rescued by Cullin1 LOF. Together, our data suggest that Cullin1 and CCT influence dendritic arborization through the regulation of TORC1 in both health and disease.


Subject(s)
Cullin Proteins , Dendrites , Drosophila Proteins , Drosophila melanogaster , Animals , Cullin Proteins/metabolism , Cullin Proteins/genetics , Dendrites/metabolism , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Huntingtin Protein/metabolism , Huntingtin Protein/genetics , Larva/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Microtubules/metabolism , Sensory Receptor Cells/metabolism , Signal Transduction , Transcription Factors , Chaperonin Containing TCP-1
4.
Elife ; 122024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869243

ABSTRACT

An expanded CAG repeat in the huntingtin gene (HTT) causes Huntington's disease (HD). Since the length of uninterrupted CAG repeat, not polyglutamine, determines the age-at-onset in HD, base editing strategies to convert CAG to CAA are anticipated to delay onset by shortening the uninterrupted CAG repeat. Here, we developed base editing strategies to convert CAG in the repeat to CAA and determined their molecular outcomes and effects on relevant disease phenotypes. Base editing strategies employing combinations of cytosine base editors and guide RNAs (gRNAs) efficiently converted CAG to CAA at various sites in the CAG repeat without generating significant indels, off-target edits, or transcriptome alterations, demonstrating their feasibility and specificity. Candidate BE strategies converted CAG to CAA on both expanded and non-expanded CAG repeats without altering HTT mRNA and protein levels. In addition, somatic CAG repeat expansion, which is the major disease driver in HD, was significantly decreased in the liver by a candidate BE strategy treatment in HD knock-in mice carrying canonical CAG repeats. Notably, CAG repeat expansion was abolished entirely in HD knock-in mice carrying CAA-interrupted repeats, supporting the therapeutic potential of CAG-to-CAA conversion strategies in HD and potentially other repeat expansion disorders.


Subject(s)
Gene Editing , Huntingtin Protein , Huntington Disease , Trinucleotide Repeat Expansion , Huntington Disease/genetics , Huntington Disease/therapy , Animals , Gene Editing/methods , Mice , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Trinucleotide Repeat Expansion/genetics , Disease Models, Animal , Humans , Mutation , Gene Knock-In Techniques
5.
J Phys Chem Lett ; 15(24): 6375-6382, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38857530

ABSTRACT

The effects of two macromolecular cosolutes, specifically the polysaccharide dextran-20 and the protein lysozyme, on the aggregation kinetics of a pathogenic huntingtin exon-1 protein (hhtex1) with a 35 polyglutamine repeat, httex1Q35, are described. A unified kinetic model that establishes a direct connection between reversible tetramerization occurring on the microsecond time scale and irreversible fibril formation on a time scale of hours/days forms the basis for quantitative analysis of httex1Q35 aggregation, monitored by measuring cross-peak intensities in a series of 2D 1H-15N NMR correlation spectra acquired during the course of aggregation. The primary effects of the two cosolutes are associated with shifts in the prenucleation tetramerization equilibrium resulting in substantial changes in concentration of "preformed" httex1Q35 tetramers. Similar effects of the two cosolutes on the tetramerization equilibrium observed for a shorter, nonaggregating huntingtin variant with a 7-glutamine repeat, httex1Q7, lend confidence to the conclusions drawn from the fits to the httex1Q35 aggregation kinetics.


Subject(s)
Huntingtin Protein , Muramidase , Huntingtin Protein/chemistry , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Kinetics , Muramidase/chemistry , Muramidase/metabolism , Humans , Dextrans/chemistry , Peptides/chemistry , Nuclear Magnetic Resonance, Biomolecular , Protein Aggregates/drug effects , Macromolecular Substances/chemistry , Protein Multimerization/drug effects , Magnetic Resonance Spectroscopy
6.
Mol Cell ; 84(10): 1980-1994.e8, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38759629

ABSTRACT

Aggregation of proteins containing expanded polyglutamine (polyQ) repeats is the cytopathologic hallmark of a group of dominantly inherited neurodegenerative diseases, including Huntington's disease (HD). Huntingtin (Htt), the disease protein of HD, forms amyloid-like fibrils by liquid-to-solid phase transition. Macroautophagy has been proposed to clear polyQ aggregates, but the efficiency of aggrephagy is limited. Here, we used cryo-electron tomography to visualize the interactions of autophagosomes with polyQ aggregates in cultured cells in situ. We found that an amorphous aggregate phase exists next to the radially organized polyQ fibrils. Autophagosomes preferentially engulfed this amorphous material, mediated by interactions between the autophagy receptor p62/SQSTM1 and the non-fibrillar aggregate surface. In contrast, amyloid fibrils excluded p62 and evaded clearance, resulting in trapping of autophagic structures. These results suggest that the limited efficiency of autophagy in clearing polyQ aggregates is due to the inability of autophagosomes to interact productively with the non-deformable, fibrillar disease aggregates.


Subject(s)
Amyloid , Autophagosomes , Autophagy , Huntingtin Protein , Huntington Disease , Peptides , Protein Aggregates , Sequestosome-1 Protein , Peptides/metabolism , Peptides/chemistry , Peptides/genetics , Humans , Huntingtin Protein/metabolism , Huntingtin Protein/genetics , Huntingtin Protein/chemistry , Autophagosomes/metabolism , Autophagosomes/ultrastructure , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Amyloid/metabolism , Amyloid/chemistry , Amyloid/genetics , Huntington Disease/metabolism , Huntington Disease/genetics , Huntington Disease/pathology , Cryoelectron Microscopy , Animals , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/genetics
7.
EBioMedicine ; 103: 105124, 2024 May.
Article in English | MEDLINE | ID: mdl-38701619

ABSTRACT

BACKGROUND: PolyQ diseases are autosomal dominant neurodegenerative disorders caused by the expansion of CAG repeats. While of slow progression, these diseases are ultimately fatal and lack effective therapies. METHODS: A high-throughput chemical screen was conducted to identify drugs that lower the toxicity of a protein containing the first exon of Huntington's disease (HD) protein huntingtin (HTT) harbouring 94 glutamines (Htt-Q94). Candidate drugs were tested in a wide range of in vitro and in vivo models of polyQ toxicity. FINDINGS: The chemical screen identified the anti-leprosy drug clofazimine as a hit, which was subsequently validated in several in vitro models. Computational analyses of transcriptional signatures revealed that the effect of clofazimine was due to the stimulation of mitochondrial biogenesis by peroxisome proliferator-activated receptor gamma (PPARγ). In agreement with this, clofazimine rescued mitochondrial dysfunction triggered by Htt-Q94 expression. Importantly, clofazimine also limited polyQ toxicity in developing zebrafish and neuron-specific worm models of polyQ disease. INTERPRETATION: Our results support the potential of repurposing the antimicrobial drug clofazimine for the treatment of polyQ diseases. FUNDING: A full list of funding sources can be found in the acknowledgments section.


Subject(s)
Clofazimine , Disease Models, Animal , Huntingtin Protein , Leprostatic Agents , PPAR gamma , Peptides , Zebrafish , Clofazimine/pharmacology , PPAR gamma/metabolism , PPAR gamma/genetics , Animals , Humans , Peptides/pharmacology , Leprostatic Agents/pharmacology , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Huntington Disease/drug therapy , Huntington Disease/metabolism , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism
8.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731912

ABSTRACT

Prominent pathological features of Huntington's disease (HD) are aggregations of mutated Huntingtin protein (mHtt) in the brain and neurodegeneration, which causes characteristic motor (such as chorea and dystonia) and non-motor symptoms. However, the numerous systemic and peripheral deficits in HD have gained increasing attention recently, since those factors likely modulate disease progression, including brain pathology. While whole-body metabolic abnormalities and organ-specific pathologies in HD have been relatively well described, the potential mediators of compromised inter-organ communication in HD have been insufficiently characterized. Therefore, we applied an exploratory literature search to identify such mediators. Unsurprisingly, dysregulation of inflammatory factors, circulating mHtt, and many other messenger molecules (hormones, lipids, RNAs) were found that suggest impaired inter-organ communication, including of the gut-brain and muscle-brain axis. Based on these findings, we aimed to assess the risks and potentials of lifestyle interventions that are thought to improve communication across these axes: dietary strategies and exercise. We conclude that appropriate lifestyle interventions have great potential to reduce symptoms and potentially modify disease progression (possibly via improving inter-organ signaling) in HD. However, impaired systemic metabolism and peripheral symptoms warrant particular care in the design of dietary and exercise programs for people with HD.


Subject(s)
Brain , Huntington Disease , Life Style , Huntington Disease/metabolism , Huntington Disease/pathology , Humans , Brain/metabolism , Brain/pathology , Exercise , Animals , Huntingtin Protein/metabolism , Huntingtin Protein/genetics
9.
Cells ; 13(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38786052

ABSTRACT

Huntington's disease (HD) arises from expanded CAG repeats in exon 1 of the Huntingtin (HTT) gene. The resultant misfolded HTT protein accumulates within neuronal cells, negatively impacting their function and survival. Ultimately, HTT accumulation results in cell death, causing the development of HD. A nonhuman primate (NHP) HD model would provide important insight into disease development and the generation of novel therapies due to their genetic and physiological similarity to humans. For this purpose, we tested CRISPR/Cas9 and a single-stranded DNA (ssDNA) containing expanded CAG repeats in introducing an expanded CAG repeat into the HTT gene in rhesus macaque embryos. Analyses were conducted on arrested embryos and trophectoderm (TE) cells biopsied from blastocysts to assess the insertion of the ssDNA into the HTT gene. Genotyping results demonstrated that 15% of the embryos carried an expanded CAG repeat. The integration of an expanded CAG repeat region was successfully identified in five blastocysts, which were cryopreserved for NHP HD animal production. Some off-target events were observed in biopsies from the cryopreserved blastocysts. NHP embryos were successfully produced, which will help to establish an NHP HD model and, ultimately, may serve as a vital tool for better understanding HD's pathology and developing novel treatments.


Subject(s)
Huntingtin Protein , Macaca mulatta , Animals , Macaca mulatta/genetics , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/genetics , Blastocyst/metabolism , Trinucleotide Repeat Expansion/genetics , Embryo, Mammalian/metabolism , CRISPR-Cas Systems/genetics , Female , Disease Models, Animal
10.
Chembiochem ; 25(11): e202400152, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38695673

ABSTRACT

Positron emission tomography imaging of misfolded proteins with high-affinity and selective radioligands has played a vital role in expanding our knowledge of neurodegenerative diseases such as Parkinson's and Alzheimer's disease. The pathogenesis of Huntington's disease, a CAG trinucleotide repeat disorder, is similarly linked to the presence of protein fibrils formed from mutant huntingtin (mHTT) protein. Development of mHTT fibril-specific radioligands has been limited by the lack of structural knowledge around mHTT and a dearth of available hit compounds for medicinal chemistry refinement. Over the past decade, the CHDI Foundation, a non-for-profit scientific management organisation has orchestrated a large-scale screen of small molecules to identify high affinity ligands of mHTT, with lead compounds now reaching clinical maturity. Here we describe the mHTT radioligands developed to date and opportunities for further improvement of this radiotracer class.


Subject(s)
Huntingtin Protein , Positron-Emission Tomography , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntingtin Protein/chemistry , Ligands , Humans , Protein Aggregates/drug effects , Mutation , Huntington Disease/diagnostic imaging , Huntington Disease/metabolism , Huntington Disease/genetics , Radiopharmaceuticals/chemistry
11.
Nat Cell Biol ; 26(6): 892-902, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38741019

ABSTRACT

Huntington's disease (HD) is a neurodegenerative disorder caused by expansion of a CAG trinucleotide repeat in the Huntingtin (HTT) gene, encoding a homopolymeric polyglutamine (polyQ) tract. Although mutant HTT (mHTT) protein is known to aggregate, the links between aggregation and neurotoxicity remain unclear. Here we show that both translation and aggregation of wild-type HTT and mHTT are regulated by a stress-responsive upstream open reading frame and that polyQ expansions cause abortive translation termination and release of truncated, aggregation-prone mHTT fragments. Notably, we find that mHTT depletes translation elongation factor eIF5A in brains of symptomatic HD mice and cultured HD cells, leading to pervasive ribosome pausing and collisions. Loss of eIF5A disrupts homeostatic controls and impairs recovery from acute stress. Importantly, drugs that inhibit translation initiation reduce premature termination and mitigate this escalating cascade of ribotoxic stress and dysfunction in HD.


Subject(s)
Eukaryotic Translation Initiation Factor 5A , Huntingtin Protein , Huntington Disease , Peptide Initiation Factors , Peptides , Proteostasis , RNA-Binding Proteins , Ribosomes , Huntington Disease/metabolism , Huntington Disease/genetics , Huntington Disease/pathology , Animals , Peptides/metabolism , Peptides/genetics , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Humans , Ribosomes/metabolism , Ribosomes/genetics , Peptide Initiation Factors/metabolism , Peptide Initiation Factors/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Mice , Mice, Transgenic , Disease Models, Animal , Stress, Physiological , Brain/metabolism , Brain/pathology , Trinucleotide Repeat Expansion/genetics
12.
Biochim Biophys Acta Biomembr ; 1866(6): 184339, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38763270

ABSTRACT

Huntington's Disease (HD) is caused by an abnormal expansion of the polyglutamine (polyQ) domain within the first exon of the huntingtin protein (htt). This expansion promotes disease-related htt aggregation into amyloid fibrils and the formation of proteinaceous inclusion bodies within neurons. Fibril formation is a complex heterogenous process involving an array of aggregate species such as oligomers, protofibrils, and fibrils. In HD, structural abnormalities of membranes of several organelles develop. In particular, the accumulation of htt fibrils near the endoplasmic reticulum (ER) impinges upon the membrane, resulting in ER damage, altered dynamics, and leakage of Ca2+. Here, the aggregation of htt at a bilayer interface assembled from ER-derived liposomes was investigated, and fibril formation directly on these membranes was enhanced. Based on these observations, simplified model systems were used to investigate mechanisms associated with htt aggregation on ER membranes. As the ER-derived liposome fractions contained residual Ca2+, the role of divalent cations was also investigated. In the absence of lipids, divalent cations had minimal impact on htt structure and aggregation. However, the presence of Ca2+ or Mg2+ played a key role in promoting fibril formation on lipid membranes despite reduced htt insertion into and association with lipid interfaces, suggesting that the ability of divalent cations to promote fibril formation on membranes is mediated by induced changes to the lipid membrane physicochemical properties. With enhanced concentrations of intracellular calcium being a hallmark of HD, the ability of divalent cations to influence htt aggregation at lipid membranes may play a role in aggregation events that lead to organelle abnormalities associated with disease.


Subject(s)
Amyloid , Calcium , Cations, Divalent , Endoplasmic Reticulum , Huntingtin Protein , Huntington Disease , Liposomes , Endoplasmic Reticulum/metabolism , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntingtin Protein/chemistry , Humans , Cations, Divalent/metabolism , Calcium/metabolism , Amyloid/metabolism , Amyloid/chemistry , Huntington Disease/metabolism , Huntington Disease/pathology , Huntington Disease/genetics , Liposomes/chemistry , Liposomes/metabolism , Magnesium/metabolism , Magnesium/chemistry , Peptides
13.
J Mol Biol ; 436(12): 168607, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38734203

ABSTRACT

Polyglutamine (polyQ) sequences undergo repeat-length dependent formation of disease-associated, amyloid-like cross-ß core structures with kinetics and aggregate morphologies often influenced by the flanking sequences. In Huntington's disease (HD), the httNT segment on the polyQ's N-terminal flank enhances aggregation rates by changing amyloid nucleation from a classical homogeneous mechanism to a two-step process requiring an ɑ-helix-rich oligomeric intermediate. A folded, helix-rich httNT tetrameric structure suggested to be this critical intermediate was recently reported. Here we employ single alanine replacements along the httNT sequence to assess this proposed structure and refine the mechanistic model. We find that Ala replacement of hydrophobic residues within simple httNT peptides greatly suppresses helicity, supporting the tetramer model. These same helix-disruptive replacements in the httNT segment of an exon-1 analog greatly reduce aggregation kinetics, suggesting that an ɑ-helix rich multimer - either the tetramer or a larger multimer - plays an on-pathway role in nucleation. Surprisingly, several other Ala replacements actually enhance helicity and/or amyloid aggregation. The spatial localization of these residues on the tetramer surface suggests a self-association interface responsible for formation of the octomers and higher-order multimers most likely required for polyQ amyloid nucleation. Multimer docking of the tetramer, using the protein-protein docking algorithm ClusPro, predicts this symmetric surface to be a viable tetramer dimerization interface. Intriguingly, octomer formation brings the emerging polyQ chains into closer proximity at this tetramer-tetramer interface. Further supporting the potential importance of tetramer super-assembly, computational docking with a known exon-1 aggregation inhibitor predicts ligand contacts with residues at this interface.


Subject(s)
Amyloid , Exons , Huntingtin Protein , Protein Multimerization , Humans , Amyloid/chemistry , Amyloid/metabolism , Huntingtin Protein/chemistry , Huntingtin Protein/metabolism , Huntingtin Protein/genetics , Huntington Disease/metabolism , Huntington Disease/genetics , Hydrophobic and Hydrophilic Interactions , Kinetics , Models, Molecular , Peptides/chemistry , Peptides/metabolism , Protein Aggregates
14.
Am J Hum Genet ; 111(6): 1165-1183, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38749429

ABSTRACT

The pathological huntingtin (HTT) trinucleotide repeat underlying Huntington disease (HD) continues to expand throughout life. Repeat length correlates both with earlier age at onset (AaO) and faster progression, making slowing its expansion an attractive therapeutic approach. Genome-wide association studies have identified candidate variants associated with altered AaO and progression, with many found in DNA mismatch repair (MMR)-associated genes. We examine whether lowering expression of these genes affects the rate of repeat expansion in human ex vivo models using HD iPSCs and HD iPSC-derived striatal medium spiny neuron-enriched cultures. We have generated a stable CRISPR interference HD iPSC line in which we can specifically and efficiently lower gene expression from a donor carrying over 125 CAG repeats. Lowering expression of each member of the MMR complexes MutS (MSH2, MSH3, and MSH6), MutL (MLH1, PMS1, PMS2, and MLH3), and LIG1 resulted in characteristic MMR deficiencies. Reduced MSH2, MSH3, and MLH1 slowed repeat expansion to the largest degree, while lowering either PMS1, PMS2, or MLH3 slowed it to a lesser degree. These effects were recapitulated in iPSC-derived striatal cultures where MutL factor expression was lowered. CRISPRi-mediated lowering of key MMR factor expression to levels feasibly achievable by current therapeutic approaches was able to effectively slow the expansion of the HTT CAG tract. We highlight members of the MutL family as potential targets to slow pathogenic repeat expansion with the aim to delay onset and progression of HD and potentially other repeat expansion disorders exhibiting somatic instability.


Subject(s)
DNA Mismatch Repair , Huntingtin Protein , Huntington Disease , Induced Pluripotent Stem Cells , Trinucleotide Repeat Expansion , Humans , Huntington Disease/genetics , Huntington Disease/metabolism , DNA Mismatch Repair/genetics , Induced Pluripotent Stem Cells/metabolism , Trinucleotide Repeat Expansion/genetics , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , MutL Protein Homolog 1/genetics , MutL Protein Homolog 1/metabolism , MutS Homolog 2 Protein/genetics , MutS Homolog 2 Protein/metabolism , Genes, Modifier , MutS Homolog 3 Protein/genetics , MutS Homolog 3 Protein/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , MutL Proteins/genetics , MutL Proteins/metabolism , CRISPR-Cas Systems , Genome-Wide Association Study
15.
Sci Adv ; 10(20): eadl2036, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758800

ABSTRACT

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease characterized by preferential neuronal loss in the striatum. The mechanism underlying striatal selective neurodegeneration remains unclear, making it difficult to develop effective treatments for HD. In the brains of nonhuman primates, we examined the expression of Huntingtin (HTT), the gene responsible for HD. We found that HTT protein is highly expressed in striatal neurons due to its slow degradation in the striatum. We also identified tripartite motif-containing 37 (TRIM37) as a primate-specific protein that interacts with HTT and is selectively reduced in the primate striatum. TRIM37 promotes the ubiquitination and degradation of mutant HTT (mHTT) in vitro and modulates mHTT aggregation in mouse and monkey brains. Our findings suggest that nonhuman primates are crucial for understanding the mechanisms of human diseases such as HD and support TRIM37 as a potential therapeutic target for treating HD.


Subject(s)
Corpus Striatum , Huntingtin Protein , Huntington Disease , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Ubiquitination , Animals , Humans , Mice , Corpus Striatum/metabolism , Corpus Striatum/pathology , Disease Models, Animal , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/metabolism , Huntington Disease/pathology , Huntington Disease/genetics , Neurons/metabolism , Neurons/pathology , Primates , Proteolysis , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Macaca fascicularis
16.
Biochem Soc Trans ; 52(3): 1385-1392, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38695682

ABSTRACT

Protein mislocalization is a key initial step in neurodegeneration, regardless of etiology, and has been linked to changes in the dynamic addition of saturated fatty acids to proteins, a process known as S-acylation. With the advent of new techniques to study S-acylation and the recent discovery of new enzymes that facilitate protein deacylation, novel small molecules are emerging as potential new therapeutic treatments. Huntington disease (HD) is a devastating, fatal neurodegenerative disease characterized by motor, cognitive, and psychiatric deficits caused by a CAG repeat expansion in the HTT gene. The protein that is mutated in HD, huntingtin, is less S-acylated which is associated with mutant HTT aggregation and cytotoxicity. Recent exciting findings indicate that restoring S-acylation in HD models using small molecule inhibitors of the deacylation enzymes is protective. Herein, we set out to describe the known roles of S-acylation in HD and how it can be targeted for therapeutic design.


Subject(s)
Huntingtin Protein , Huntington Disease , Huntington Disease/metabolism , Huntington Disease/drug therapy , Humans , Acylation , Huntingtin Protein/metabolism , Huntingtin Protein/genetics , Animals , Fatty Acids/metabolism
17.
Nucleic Acids Res ; 52(11): 6099-6113, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38726879

ABSTRACT

Divalent short-interfering RNA (siRNA) holds promise as a therapeutic approach allowing for the sequence-specific modulation of a target gene within the central nervous system (CNS). However, an siRNA modality capable of simultaneously modulating gene pairs would be invaluable for treating complex neurodegenerative disorders, where more than one pathway contributes to pathogenesis. Currently, the parameters and scaffold considerations for multi-targeting nucleic acid modalities in the CNS are undefined. Here, we propose a framework for designing unimolecular 'dual-targeting' divalent siRNAs capable of co-silencing two genes in the CNS. We systematically adjusted the original CNS-active divalent siRNA and identified that connecting two sense strands 3' and 5' through an intra-strand linker enabled a functional dual-targeting scaffold, greatly simplifying the synthetic process. Our findings demonstrate that the dual-targeting siRNA supports at least two months of maximal distribution and target silencing in the mouse CNS. The dual-targeting divalent siRNA is highly programmable, enabling simultaneous modulation of two different disease-relevant gene pairs (e.g. Huntington's disease: MSH3 and HTT; Alzheimer's disease: APOE and JAK1) with similar potency to a mixture of single-targeting divalent siRNAs against each gene. This work enhances the potential for CNS modulation of disease-related gene pairs using a unimolecular siRNA.


Subject(s)
Central Nervous System , RNA, Small Interfering , Animals , Humans , Mice , Alzheimer Disease/genetics , Alzheimer Disease/therapy , Apolipoproteins E/genetics , Central Nervous System/metabolism , Gene Silencing , Huntingtin Protein/genetics , Huntington Disease/genetics , Huntington Disease/therapy , Mice, Inbred C57BL , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/chemistry
18.
ACS Chem Neurosci ; 15(12): 2408-2419, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38752226

ABSTRACT

Huntington's disease is a neurodegenerative disorder caused by an expanded polyglutamine stretch near the N-terminus of the huntingtin (HTT) protein, rendering the protein more prone to aggregate. The first 17 residues in HTT (Nt17) interact with lipid membranes and harbor multiple post-translational modifications (PTMs) that can modulate HTT conformation and aggregation. In this study, we used a combination of biophysical studies and molecular simulations to investigate the effect of PTMs on the helicity of Nt17 in the presence of various lipid membranes. We demonstrate that anionic lipids such as PI4P, PI(4,5)P2, and GM1 significantly enhance the helical structure of unmodified Nt17. This effect is attenuated by single acetylation events at K6, K9, or K15, whereas tri-acetylation at these sites abolishes Nt17-membrane interaction. Similarly, single phosphorylation at S13 and S16 decreased but did not abolish the POPG and PIP2-induced helicity, while dual phosphorylation at these sites markedly diminished Nt17 helicity, regardless of lipid composition. The helicity of Nt17 with phosphorylation at T3 is insensitive to the membrane environment. Oxidation at M8 variably affects membrane-induced helicity, highlighting a lipid-dependent modulation of the Nt17 structure. Altogether, our findings reveal differential effects of PTMs and crosstalks between PTMs on membrane interaction and conformation of HTT. Intriguingly, the effects of phosphorylation at T3 or single acetylation at K6, K9, and K15 on Nt17 conformation in the presence of certain membranes do not mirror that observed in the absence of membranes. Our studies provide novel insights into the complex relationship between Nt17 structure, PTMs, and membrane binding.


Subject(s)
Huntingtin Protein , Protein Processing, Post-Translational , Protein Processing, Post-Translational/physiology , Huntingtin Protein/metabolism , Huntingtin Protein/genetics , Humans , Phosphorylation/physiology , Acetylation , Cell Membrane/metabolism , Molecular Dynamics Simulation , Membrane Lipids/metabolism , Huntington Disease/metabolism
19.
Arch Pharm Res ; 47(6): 571-595, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38764004

ABSTRACT

Huntington's disease (HD) is a paradigm of a genetic neurodegenerative disorder characterized by the expansion of CAG repeats in the HTT gene. This extensive review investigates the molecular complexities of HD by highlighting the pathogenic mechanisms initiated by the mutant huntingtin protein. Adverse outcomes of HD include mitochondrial dysfunction, compromised protein clearance, and disruption of intracellular signaling, consequently contributing to the gradual deterioration of neurons. Numerous therapeutic strategies, particularly precision medicine, are currently used for HD management. Antisense oligonucleotides, such as Tominersen, play a leading role in targeting and modulating the expression of mutant huntingtin. Despite the promise of these therapies, challenges persist, particularly in improving delivery systems and the necessity for long-term safety assessments. Considering the future landscape, the review delineates promising directions for HD research and treatment. Innovations such as Clustered regularly interspaced short palindromic repeats associated system therapies (CRISPR)-based genome editing and emerging neuroprotective approaches present unprecedented opportunities for intervention. Collaborative interdisciplinary endeavors and a more insightful understanding of HD pathogenesis are on the verge of reshaping the therapeutic landscape. As we navigate the intricate landscape of HD, this review serves as a guide for unraveling the intricacies of this disease and progressing toward transformative treatments.


Subject(s)
Huntingtin Protein , Huntington Disease , Huntington Disease/therapy , Huntington Disease/genetics , Humans , Animals , Huntingtin Protein/genetics , Huntingtin Protein/antagonists & inhibitors , Huntingtin Protein/metabolism , Oligonucleotides, Antisense/therapeutic use , Genetic Therapy/methods , Gene Editing/methods , Neuroprotective Agents/therapeutic use
20.
Cell Death Dis ; 15(5): 337, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744826

ABSTRACT

Huntington's disease (HD) is a monogenic neurodegenerative disease, caused by the CAG trinucleotide repeat expansion in exon 1 of the Huntingtin (HTT) gene. The HTT gene encodes a large protein known to interact with many proteins. Huntingtin-associated protein 40 (HAP40) is one that shows high binding affinity with HTT and functions to maintain HTT conformation in vitro. However, the potential role of HAP40 in HD pathogenesis remains unknown. In this study, we found that the expression level of HAP40 is in parallel with HTT but inversely correlates with mutant HTT aggregates in mouse brains. Depletion of endogenous HAP40 in the striatum of HD140Q knock-in (KI) mice leads to enhanced mutant HTT aggregation and neuronal loss. Consistently, overexpression of HAP40 in the striatum of HD140Q KI mice reduced mutant HTT aggregation and ameliorated the behavioral deficits. Mechanistically, HAP40 preferentially binds to mutant HTT and promotes Lysine 48-linked ubiquitination of mutant HTT. Our results revealed that HAP40 is an important regulator of HTT protein homeostasis in vivo and hinted at HAP40 as a therapeutic target in HD treatment.


Subject(s)
Huntingtin Protein , Huntington Disease , Animals , Humans , Mice , Corpus Striatum/metabolism , Corpus Striatum/pathology , Disease Models, Animal , Huntingtin Protein/metabolism , Huntingtin Protein/genetics , Huntington Disease/metabolism , Huntington Disease/genetics , Huntington Disease/pathology , Mice, Transgenic , Mutation , Neurons/metabolism , Neurons/pathology , Protein Aggregates , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/metabolism , Ubiquitination , Intracellular Signaling Peptides and Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...