Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.898
1.
Sci Rep ; 14(1): 10626, 2024 05 09.
Article En | MEDLINE | ID: mdl-38724670

Hyaluronan (HA) accumulation in clear cell renal cell carcinoma (ccRCC) is associated with poor prognosis; however, its biology and role in tumorigenesis are unknown. RNA sequencing of 48 HA-positive and 48 HA-negative formalin-fixed paraffin-embedded (FFPE) samples was performed to identify differentially expressed genes (DEG). The DEGs were subjected to pathway and gene enrichment analyses. The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) data and DEGs were used for the cluster analysis. In total, 129 DEGs were identified. HA-positive tumors exhibited enhanced expression of genes related to extracellular matrix (ECM) organization and ECM receptor interaction pathways. Gene set enrichment analysis showed that epithelial-mesenchymal transition-associated genes were highly enriched in the HA-positive phenotype. A protein-protein interaction network was constructed, and 17 hub genes were discovered. Heatmap analysis of TCGA-KIRC data identified two prognostic clusters corresponding to HA-positive and HA-negative phenotypes. These clusters were used to verify the expression levels and conduct survival analysis of the hub genes, 11 of which were linked to poor prognosis. These findings enhance our understanding of hyaluronan in ccRCC.


Carcinoma, Renal Cell , Extracellular Matrix , Gene Expression Regulation, Neoplastic , Hyaluronic Acid , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/mortality , Hyaluronic Acid/metabolism , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Kidney Neoplasms/mortality , Prognosis , Extracellular Matrix/metabolism , Extracellular Matrix/genetics , Gene Expression Profiling , Protein Interaction Maps/genetics , Transcriptome , Male , Female , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Epithelial-Mesenchymal Transition/genetics , Gene Regulatory Networks
2.
Stem Cell Res Ther ; 15(1): 130, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702837

BACKGROUND: Hyaluronan (HA) is an extracellular glycosaminoglycan polysaccharide with widespread roles throughout development and in healthy and neoplastic tissues. In pluripotent stem cell culture it can support both stem cell renewal and differentiation. However, responses to HA in culture are influenced by interaction with a range of cognate factors and receptors including components of blood serum supplements, which alter results. These may contribute to variation in cell batch production yield and phenotype as well as heighten the risks of adventitious pathogen transmission in the course of cell processing for therapeutic applications. MAIN: Here we characterise differentiation of a human embryo/pluripotent stem cell derived Mesenchymal Stromal Cell (hESC/PSC-MSC)-like cell population by culture on a planar surface coated with HA in serum-free media qualified for cell production for therapy. Resulting cells met minimum criteria of the International Society for Cellular Therapy for identification as MSC by expression of. CD90, CD73, CD105, and lack of expression for CD34, CD45, CD14 and HLA-II. They were positive for other MSC associated markers (i.e.CD166, CD56, CD44, HLA 1-A) whilst negative for others (e.g. CD271, CD71, CD146). In vitro co-culture assessment of MSC associated functionality confirmed support of growth of hematopoietic progenitors and inhibition of mitogen activated proliferation of lymphocytes from umbilical cord and adult peripheral blood mononuclear cells, respectively. Co-culture with immortalized THP-1 monocyte derived macrophages (Mɸ) concurrently stimulated with lipopolysaccharide as a pro-inflammatory stimulus, resulted in a dose dependent increase in pro-inflammatory IL6 but negligible effect on TNFα. To further investigate these functionalities, a bulk cell RNA sequence comparison with adult human bone marrow derived MSC and hESC substantiated a distinctive genetic signature more proximate to the former. CONCLUSION: Cultivation of human pluripotent stem cells on a planar substrate of HA in serum-free culture media systems is sufficient to yield a distinctive developmental mesenchymal stromal cell lineage with potential to modify the function of haematopoietic lineages in therapeutic applications.


Cell Differentiation , Hyaluronic Acid , Mesenchymal Stem Cells , Pluripotent Stem Cells , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Hyaluronic Acid/pharmacology , Hyaluronic Acid/metabolism , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Culture Media, Serum-Free/pharmacology , Cell Lineage , Cells, Cultured , Cell Culture Techniques/methods , Coculture Techniques
3.
Bull Exp Biol Med ; 176(5): 636-639, 2024 Mar.
Article En | MEDLINE | ID: mdl-38727953

Immunohistochemical detection of the LYVE-1 marker in healthy human full-thickness skin (the epidermis and the dermis) was carried out. LYVE-1 expression was found in the endothelium of lymphatic capillaries located in the papillary dermis, in the endothelium of larger lymphatic vessels of the reticular dermis, and in fibroblasts, which indicates their joint participation in hyaluronan metabolism. LYVE-1+ staining detected for the first time in cells of the stratum basale, the stratum spinosum, and the stratum granulosum of healthy human epidermis indicates their participation in hyaluronan metabolism and allows us to consider the spaces between epidermis cells as prelimphatics.


Epidermis , Hyaluronic Acid , Lymphatic Vessels , Skin , Vesicular Transport Proteins , Humans , Hyaluronic Acid/metabolism , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics , Skin/metabolism , Lymphatic Vessels/metabolism , Epidermis/metabolism , Ligands , Fibroblasts/metabolism , Dermis/metabolism , Lymphatic System/metabolism , Adult , Female , Male , Immunohistochemistry
4.
Cell Death Dis ; 15(5): 362, 2024 May 25.
Article En | MEDLINE | ID: mdl-38796478

Advanced epithelial ovarian cancer (EOC) survival rates are dishearteningly low, with ~25% surviving beyond 5 years. Evidence suggests that cancer stem cells contribute to acquired chemoresistance and tumor recurrence. Here, we show that IRAK1 is upregulated in EOC tissues, and enhanced expression correlates with poorer overall survival. Moreover, low molecular weight hyaluronic acid, which is abundant in malignant ascites from patients with advanced EOC, induced IRAK1 phosphorylation leading to STAT3 activation and enhanced spheroid formation. Knockdown of IRAK1 impaired tumor growth in peritoneal disease models, and impaired HA-induced spheroid growth and STAT3 phosphorylation. Finally, we determined that TCS2210, a known inducer of neuronal differentiation in mesenchymal stem cells, is a selective inhibitor of IRAK1. TCS2210 significantly inhibited EOC growth in vitro and in vivo both as monotherapy, and in combination with cisplatin. Collectively, these data demonstrate IRAK1 as a druggable target for EOC.


Carcinoma, Ovarian Epithelial , Hyaluronic Acid , Interleukin-1 Receptor-Associated Kinases , Neoplastic Stem Cells , Ovarian Neoplasms , STAT3 Transcription Factor , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Humans , STAT3 Transcription Factor/metabolism , Female , Carcinoma, Ovarian Epithelial/metabolism , Carcinoma, Ovarian Epithelial/pathology , Carcinoma, Ovarian Epithelial/drug therapy , Carcinoma, Ovarian Epithelial/genetics , Hyaluronic Acid/metabolism , Hyaluronic Acid/pharmacology , Animals , Ovarian Neoplasms/pathology , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Cell Line, Tumor , Mice , Cisplatin/pharmacology , Mice, Nude , Phosphorylation/drug effects , Cell Proliferation/drug effects , Molecular Weight , Xenograft Model Antitumor Assays
5.
Cancer Res Commun ; 4(5): 1380-1397, 2024 May 31.
Article En | MEDLINE | ID: mdl-38717149

Macrophages represent a heterogeneous myeloid population with diverse functions in normal tissues and tumors. While macrophages expressing the cell surface marker lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) have been identified in stromal regions of the normal mammary gland and in the peritumoral stroma, their functions within these regions are not well understood. Using a genetic mouse model of LYVE-1+ macrophage depletion, we demonstrate that loss of LYVE-1+ macrophages is associated with altered extracellular matrix remodeling in the normal mammary gland and reduced mammary tumor growth in vivo. In further studies focused on investigating the functions of LYVE-1+ macrophages in the tumor microenvironment, we demonstrate that LYVE-1 expression correlates with an increased ability of macrophages to bind, internalize, and degrade hyaluronan. Consistent with this, we show that depletion of LYVE-1+ macrophages correlates with increased hyaluronan accumulation in both the normal mammary gland and in mammary tumors. Analysis of single-cell RNA sequencing of macrophages isolated from these tumors reveals that depletion of LYVE-1+ macrophages in tumors drives a shift in the majority of the remaining macrophages toward a proinflammatory phenotype, as well as an increase in CD8+ T-cell infiltration. Together, these findings indicate that LYVE-1+ macrophages represent a tumor-promoting anti-inflammatory subset of macrophages that contributes to hyaluronan remodeling in the tumor microenvironment. SIGNIFICANCE: We have identified a macrophage subset in mouse mammary tumors associated with tumor structural components. When this macrophage subset is absent in tumors, we report a delay in tumor growth and an increase in antitumor immune cells. Understanding the functions of distinct macrophage subsets may allow for improved therapeutic strategies for patients with breast cancer.


Extracellular Matrix , Hyaluronic Acid , Macrophages , Tumor Microenvironment , Animals , Hyaluronic Acid/metabolism , Female , Mice , Macrophages/metabolism , Macrophages/immunology , Macrophages/pathology , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/pathology , Mammary Neoplasms, Experimental/immunology , Mammary Neoplasms, Experimental/genetics , Stromal Cells/metabolism , Stromal Cells/pathology , Humans , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/pathology , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/immunology
6.
Nat Commun ; 15(1): 3009, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38589392

The composition of the microbial community in the intestine may influence the functions of distant organs such as the brain, lung, and skin. These microbes can promote disease or have beneficial functions, leading to the hypothesis that microbes in the gut explain the co-occurrence of intestinal and skin diseases. Here, we show that the reverse can occur, and that skin directly alters the gut microbiome. Disruption of the dermis by skin wounding or the digestion of dermal hyaluronan results in increased expression in the colon of the host defense genes Reg3 and Muc2, and skin wounding changes the composition and behavior of intestinal bacteria. Enhanced expression Reg3 and Muc2 is induced in vitro by exposure to hyaluronan released by these skin interventions. The change in the colon microbiome after skin wounding is functionally important as these bacteria penetrate the intestinal epithelium and enhance colitis from dextran sodium sulfate (DSS) as seen by the ability to rescue skin associated DSS colitis with oral antibiotics, in germ-free mice, and fecal microbiome transplantation to unwounded mice from mice with skin wounds. These observations provide direct evidence of a skin-gut axis by demonstrating that damage to the skin disrupts homeostasis in intestinal host defense and alters the gut microbiome.


Colitis , Gastrointestinal Microbiome , Mice , Animals , Hyaluronic Acid/metabolism , Intestinal Mucosa/metabolism , Fecal Microbiota Transplantation , Dextran Sulfate/toxicity , Mice, Inbred C57BL , Disease Models, Animal , Colon/metabolism
7.
ACS Biomater Sci Eng ; 10(5): 3355-3377, 2024 May 13.
Article En | MEDLINE | ID: mdl-38563817

An imbalance between M1 and M2 macrophage polarization is critical in osteoarthritis (OA) development. We investigated the effect of M2 macrophage-derived extracellular vesicles (M2-EVs) to reprogramme macrophages from the M1 to M2 phenotype for OA treatment. M1 macrophages and mouse OA models were treated with M2-EVs. Proteomic analysis was performed to evaluate macrophage polarization in vitro. The OA models were as follows: destabilization of the medial meniscus (DMM) surgery-induced OA and collagenase-induced OA (CIOA). Hyaluronic acid (HA) was used to deliver M2-EVs. M2-EVs decreased macrophage accumulation, repolarized macrophages from the M1 to M2 phenotype, mitigated synovitis, reduced cartilage degradation, alleviated subchondral bone damage, and improved gait abnormalities in the CIOA and DMM models. Moreover, HA increased the retention time of M2-EVs and enhanced the efficiency of M2-EVs in OA treatment. Furthermore, proteomic analysis demonstrated that M2-EVs exhibited a macrophage reprogramming ability similar to IL-4, and the pathways might be the NOD-like receptor (NLR), TNF, NF-κB, and Toll-like receptor (TLR) signaling pathways. M2-EVs reprogrammed macrophages from the M1 to M2 phenotype, which resulted in beneficial effects on cartilage and attenuation of OA severity. In summary, our study indicated that M2-EV-guided reprogramming of macrophages is a promising treatment strategy for OA.


Extracellular Vesicles , Hyaluronic Acid , Macrophages , Osteoarthritis , Hyaluronic Acid/pharmacology , Hyaluronic Acid/metabolism , Hyaluronic Acid/chemistry , Animals , Macrophages/drug effects , Macrophages/metabolism , Extracellular Vesicles/metabolism , Extracellular Vesicles/drug effects , Extracellular Vesicles/transplantation , Osteoarthritis/drug therapy , Osteoarthritis/pathology , Osteoarthritis/metabolism , Mice , Mice, Inbred C57BL , Male , Disease Models, Animal , RAW 264.7 Cells , Proteomics , Macrophage Activation/drug effects
8.
Int J Biol Macromol ; 267(Pt 1): 131542, 2024 May.
Article En | MEDLINE | ID: mdl-38608973

Hyaluronic acid (HA), as a multifunctional hydrophilic polysaccharide, is potentially beneficial in improving the thermal stability of fermented modified starches, but relevant insights at the molecular level are lacking. The aim of this study was to investigate the effect of different levels (0 %, 3 %, 6 %, 9 %, 12 % and 15 %) of HA on the structural, thermal and pasting properties of wheat starch co-fermented with Saccharomyces cerevisiae and Lactobacillus plantarum. We found that the addition of HA increased the median particle size of fermented starch granules from 16.387 to 17.070 µm. Meanwhile, the crystallinity of fermented starch was negatively correlated with the HA content, decreasing from 14.70 % to 12.80 % (p < 0.05). Fourier transform infrared spectroscopy results confirmed that HA interacted with starch granules and water molecules mainly through hydrogen bonding. Thermal analyses showed that the thermal peak of the composite correlated with the HA concentration, reaching a maximum of 73.17 °C at 12 % HA. In addition, HA increases the pasting temperature, reduces the peak, breakdown and setback viscosities of starch. This study demonstrates the role of HA in improving the thermal stability of fermented starch, providing new insights for traditional fermented food research and the application of HA in food processing.


Fermentation , Hyaluronic Acid , Lactobacillus plantarum , Saccharomyces cerevisiae , Starch , Triticum , Lactobacillus plantarum/metabolism , Saccharomyces cerevisiae/metabolism , Starch/chemistry , Starch/metabolism , Hyaluronic Acid/chemistry , Hyaluronic Acid/metabolism , Triticum/chemistry , Temperature , Spectroscopy, Fourier Transform Infrared , Viscosity
9.
J Neurosci ; 44(21)2024 May 22.
Article En | MEDLINE | ID: mdl-38569926

Proteoglycans containing link domains modify the extracellular matrix (ECM) to regulate cellular homeostasis and can also sensitize tissues/organs to injury and stress. Hypoxic-ischemic (H-I) injury disrupts cellular homeostasis by activating inflammation and attenuating regeneration and repair pathways. In the brain, the main component of the ECM is the glycosaminoglycan hyaluronic acid (HA), but whether HA modifications of the ECM regulate cellular homeostasis and response to H-I injury is not known. In this report, employing both male and female mice, we demonstrate that link-domain-containing proteoglycan, TNFα-stimulated gene-6 (TSG-6), is active in the brain from birth onward and differentially modifies ECM HA during discrete neurodevelopmental windows. ECM HA modification by TSG-6 enables it to serve as a developmental switch to regulate the activity of the Hippo pathway effector protein, yes-associated protein 1 (YAP1), in the maturing brain and in response to H-I injury. Mice that lack TSG-6 expression display dysregulated expression of YAP1 targets, excitatory amino acid transporter 1 (EAAT1; glutamate-aspartate transporter) and 2 (EAAT2; glutamate transporter-1). Dysregulation of YAP1 activation in TSG-6-/- mice coincides with age- and sex-dependent sensitization of the brain to H-I injury such that 1-week-old neonates display an anti-inflammatory response in contrast to an enhanced proinflammatory injury reaction in 3-month-old adult males but not females. Our findings thus support that a key regulator of age- and sex-dependent H-I injury response in the mouse brain is modulation of the Hippo-YAP1 pathway by TSG-6-dependent ECM modifications.


Cell Adhesion Molecules , Extracellular Matrix , Hypoxia-Ischemia, Brain , YAP-Signaling Proteins , Animals , Female , Male , Cell Adhesion Molecules/metabolism , Mice , Extracellular Matrix/metabolism , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/pathology , YAP-Signaling Proteins/metabolism , Mice, Inbred C57BL , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Hyaluronic Acid/metabolism , Mice, Knockout , Phosphoproteins/metabolism , Phosphoproteins/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics
10.
Sci Rep ; 14(1): 7412, 2024 03 28.
Article En | MEDLINE | ID: mdl-38548914

Peritoneal membrane dysfunction in peritoneal dialysis (PD) is primarily attributed to angiogenesis; however, the integrity of vascular endothelial cells can affect peritoneal permeability. Hyaluronan, a component of the endothelial glycocalyx, is reportedly involved in preventing proteinuria in the normal glomerulus. One hypothesis suggests that development of encapsulating peritoneal sclerosis (EPS) is triggered by protein leakage due to vascular endothelial injury. We therefore investigated the effect of hyaluronan in the glycocalyx on peritoneal permeability and disease conditions. After hyaluronidase-mediated degradation of hyaluronan on the endothelial cells of mice, macromolecules, including albumin and ß2 microglobulin, leaked into the dialysate. However, peritoneal transport of small solute molecules was not affected. Pathologically, hyaluronan expression was diminished; however, expression of vascular endothelial cadherin and heparan sulfate, a core protein of the glycocalyx, was preserved. Hyaluronan expression on endothelial cells was studied using 254 human peritoneal membrane samples. Hyaluronan expression decreased in patients undergoing long-term PD treatment and EPS patients treated with conventional solutions. Furthermore, the extent of hyaluronan loss correlated with the severity of vasculopathy. Hyaluronan on endothelial cells is involved in the peritoneal transport of macromolecules. Treatment strategies that preserve hyaluronan in the glycocalyx could prevent the leakage of macromolecules and subsequent related complications.


Peritoneal Dialysis , Peritoneal Fibrosis , Humans , Animals , Mice , Hyaluronic Acid/metabolism , Endothelial Cells , Peritoneal Dialysis/adverse effects , Peritoneum/metabolism , Biological Transport , Dialysis Solutions/metabolism , Peritoneal Fibrosis/etiology , Peritoneal Fibrosis/metabolism
11.
Toxicol In Vitro ; 97: 105806, 2024 May.
Article En | MEDLINE | ID: mdl-38432573

INTRODUCTION: Statins have demonstrated chondroprotective effects by reducing inflammation and mitigating extracellular matrix degradation. However, statins are also reported to be cytotoxic to several types of cells. Early-onset osteoarthritis (OA) is characterized by synovial inflammation, which adversely affects hyaluronan (HA) production in fibroblast-like synoviocytes (FLSs). Nevertheless, the precise effects of statins on the synovium remain unclear. METHODS: This study investigated the impact of lovastatin on human FLSs, and HA secretion-related genes, signaling pathways, and production were evaluated. RESULTS: The findings revealed that high doses of lovastatin (20 or 40 µM) decreased FLS viability and increased cell death. FLS proliferation ceased when cultured in a medium containing 5 or 10 µM lovastatin. mRNA expression analysis demonstrated that lovastatin (5 and 10 µM) upregulated the gene level of hyaluronan synthase 1 (HAS1), HAS2, and proteoglycan 4 (PRG4), but not HAS3. While the expression of multidrug resistance-associated protein 5 transporter gene remained unaffected, both inward-rectifying potassium channel and acid-sensing ion channel 3 were upregulated. Western blot further confirmed that lovastatin increased the production of HAS1 and PRG4, and activated the PKC-α, ERK1/2, and p38-MAPK signaling pathways. Additionally, lovastatin elevated intracellular cAMP levels and HA production in FLSs. CONCLUSION: Lovastatin impairs cellular proliferation but enhances HA production in human FLSs.


Hydroxymethylglutaryl-CoA Reductase Inhibitors , Synoviocytes , Humans , Synoviocytes/metabolism , Hyaluronic Acid/metabolism , Lovastatin/pharmacology , Lovastatin/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Fibroblasts/metabolism , Cell Proliferation , Inflammation/metabolism , Cells, Cultured
12.
Int J Biol Macromol ; 264(Pt 2): 130645, 2024 Apr.
Article En | MEDLINE | ID: mdl-38460633

Hyaluronic acid (HA), a biodegradable, biocompatible and non-immunogenic therapeutic polymer is a key component of the cartilage extracellular matrix (ECM) and has been widely used to manage two major types of arthritis, osteoarthritis (OA) and rheumatoid arthritis (RA). OA joints are characterized by lower concentrations of depolymerized (low molecular weight) HA, resulting in reduced physiological viscoelasticity, while in RA, the associated immune cells are over-expressed with various cell surface receptors such as CD44. Due to HA's inherent viscoelastic property and its ability to target CD44, there has been a surge of interest in developing HA-based systems to deliver various bioactives (drugs and biologics) and manage arthritis. Considering therapeutic benefits of HA in arthritis management and potential advantages of novel delivery systems, bioactive delivery through HA-based systems is beginning to display improved outcomes over bioactive only treatment. The benefits include enhanced bioactive uptake due to receptor-mediated targeting, prolonged retention of bioactives in the synovium, reduced expressions of proinflammatory mediators, enhanced cartilage regeneration, reduced drug toxicity due to sustained release, and improved and cost-effective treatment. This review provides an underlying rationale to prepare and use HA-based bioactive delivery systems for arthritis applications. With special emphasis given to preclinical/clinical results, this article reviews various bioactive-loaded HA-based particulate carriers (organic and inorganic), gels, scaffolds and polymer-drug conjugates that have been reported to treat and manage OA and RA. Furthermore, the review identifies several key challenges and provides valuable suggestions to address them. Various developments, strategies and suggestions described in this review may guide the formulation scientists to optimize HA-based bioactive delivery systems as an effective approach to manage and treat arthritis effectively.


Arthritis, Rheumatoid , Osteoarthritis , Humans , Hyaluronic Acid/therapeutic use , Hyaluronic Acid/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Arthritis, Rheumatoid/metabolism , Pharmaceutical Preparations , Polymers/therapeutic use
13.
Carbohydr Polym ; 334: 122074, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38553207

Bacteroides spp. are prominent members of the human gut microbiota that play critical roles in the metabolism of complex carbohydrates from the daily diet. Hyaluronic acid (HA) is a multifunctional polysaccharide which has been extensively used in the food and biomedical industry. However, how HA is degraded and fermented by Bacteroides spp. has not been fully characterized. Here, we comprehensively investigated the detailed degradation profiles and fermentation characteristics of four different HAs with discrete molecular weight (Mw) by fourteen distinctive Bacteroides spp. from the human gut microbiota. Our results indicated that high-Mw HAs were more degradable and fermentable than low-Mw HAs. Interestingly, B. salyersiae showed the best degrading capability for both high-Mw and low-Mw HAs, making it a keystone species for HA degradation among Bacteroides spp.. Specifically, HA degradation by B. salyersiae produced significant amounts of unsaturated tetrasaccharide (udp4). Co-culture experiments indicated that the produced udp4 could be further fermented and utilized by non-proficient HA-degraders, suggesting a possible cross-feeding interaction in the utilization of HA within the Bacteroides spp.. Altogether, our study provides novel insights into the metabolism of HA by the human gut microbiota, which has considerable implications for the development of new HA-based nutraceuticals and medicines.


Gastrointestinal Microbiome , Humans , Fermentation , Hyaluronic Acid/metabolism , Polysaccharides/metabolism , Bacteroides/metabolism
14.
Adv Sci (Weinh) ; 11(19): e2400345, 2024 May.
Article En | MEDLINE | ID: mdl-38477444

Efferocytosis, an intrinsic regulatory mechanism to eliminate apoptotic cells, will be suppressed due to the delayed apoptosis process in aging-related diseases, such as osteoarthritis (OA). In this study, cartilage lesion-localized hydrogel microspheres are developed to remodel the in situ efferocytosis to reverse cartilage senescence and recruit endogenous stem cells to accelerate cartilage repair. Specifically, aldehyde- and methacrylic anhydride (MA)-modified hyaluronic acid hydrogel microspheres (AHM), loaded with pro-apoptotic liposomes (liposomes encapsulating ABT263, A-Lipo) and PDGF-BB, namely A-Lipo/PAHM, are prepared by microfluidic and photo-cross-linking techniques. By a degraded porcine cartilage explant OA model, the in situ cartilage lesion location experiment illustrated that aldehyde-functionalized microspheres promote affinity for degraded cartilage. In vitro data showed that A-Lipo induced apoptosis of senescent chondrocytes (Sn-chondrocytes), which can then be phagocytosed by the efferocytosis of macrophages, and remodeling efferocytosis facilitated the protection of normal chondrocytes and maintained the chondrogenic differentiation capacity of MSCs. In vivo experiments confirmed that hydrogel microspheres localized to cartilage lesion reversed cartilage senescence and promoted cartilage repair in OA. It is believed this in situ efferocytosis remodeling strategy can be of great significance for tissue regeneration in aging-related diseases.


Microspheres , Osteoarthritis , Animals , Swine , Osteoarthritis/pathology , Osteoarthritis/metabolism , Cellular Senescence/physiology , Cellular Senescence/drug effects , Chondrocytes/metabolism , Disease Models, Animal , Apoptosis , Hydrogels , Cartilage, Articular/metabolism , Cartilage/metabolism , Hyaluronic Acid/metabolism , Efferocytosis
15.
Matrix Biol ; 129: 1-14, 2024 May.
Article En | MEDLINE | ID: mdl-38490466

The coordination between odontoblastic differentiation and directed cell migration of mesenchymal progenitors is necessary for regular dentin formation. The synthesis and degradation of hyaluronan (HA) in the extracellular matrix create a permissive niche that directly regulates cell behaviors. However, the role and mechanisms of HA degradation in dentin formation remain unknown. In this work, we present that HA digestion promotes odontoblastic differentiation and cell migration of mouse dental papilla cells (mDPCs). Hyaluronidase 2 (HYAL2) is responsible for promoting odontoblastic differentiation through degrading HA, while hyaluronidase 1 (HYAL1) exhibits negligible effect. Silencing Hyal2 generates an extracellular environment rich in HA, which attenuates F-actin and filopodium formation and in turn inhibits cell migration of mDPCs. In addition, activating PI3K/Akt signaling significantly rescues the effects of HA accumulation on cytodifferentiation. Taken together, the results confirm the contribution of HYAL2 to HA degradation in dentinogenesis and uncover the mechanism of the HYAL2-mediated HA degradation in regulating the odontoblastic differentiation and migration of mDPCs.


Cell Differentiation , Cell Movement , Dental Papilla , Hyaluronic Acid , Hyaluronoglucosaminidase , Odontoblasts , Animals , Hyaluronoglucosaminidase/metabolism , Hyaluronoglucosaminidase/genetics , Mice , Hyaluronic Acid/metabolism , Odontoblasts/metabolism , Odontoblasts/cytology , Dental Papilla/cytology , Dental Papilla/metabolism , Signal Transduction , GPI-Linked Proteins/metabolism , GPI-Linked Proteins/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Cells, Cultured , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics
16.
J Musculoskelet Neuronal Interact ; 24(1): 82-89, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38427372

OBJECTIVE: To investigate the therapeutic effects of autologous platelet-rich plasma (PRP) combined with sodium hyaluronate on tendon healing following rotator cuff injury repair in rabbits. METHODS: New Zealand white rabbits were randomly assigned to five groups: sham operation group, control group, PRP group, sodium hyaluronate group, and combined group, each comprising 12 rabbits. A rotator cuff injury model was established in all groups except the sham operation group. At 8 weeks post-surgery, 12 lateral rotator cuff specimens were taken from each group. Four specimens were randomly selected from each group for biomechanical testing, and analyses were conducted on the expression of vascular endothelial growth factor (VEGF), the fiber area ratio of COL-I and COL-III, and tissue morphology. RESULTS: The combined group exhibited the highest biomechanical strength in the cuff tissue of white rabbits (P < 0.05). There was no significant difference in VEGF levels among the five groups (F = 0.814, P = 0.523). However, a significant difference was observed in the ratio of fiber area between COL-I and COL-III groups (F = 11.600, P < 0.001), with the combined group scoring the highest (3.82 ± 0.47 minutes). The inflammatory infiltration in tendon-bone tissue was minimal, and histological morphology was optimal. CONCLUSION: The combination of PRP and sodium hyaluronate effectively promotes the repair of rotator cuff injuries and accelerates tendon-bone healing.


Platelet-Rich Plasma , Rotator Cuff Injuries , Rabbits , Animals , Rotator Cuff Injuries/therapy , Rotator Cuff Injuries/metabolism , Rotator Cuff Injuries/pathology , Vascular Endothelial Growth Factor A/metabolism , Hyaluronic Acid/pharmacology , Hyaluronic Acid/metabolism , Wound Healing , Disease Models, Animal , Tendons , Platelet-Rich Plasma/metabolism , Biomechanical Phenomena
17.
Acta Biomater ; 178: 50-67, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38382832

Annulus fibrosus (AF) defect is an important cause of disc re-herniation after discectomy. The self-regeneration ability of the AF is limited, and AF repair is always hindered by the inflammatory microenvironment after injury. Hydrogels represent one of the most promising materials for AF tissue engineering strategies. However, currently available commercial hydrogels cannot withstand the harsh mechanical load within intervertebral disc. In the present study, an innovative triple cross-linked oxidized hyaluronic acid (OHA)-dopamine (DA)- polyacrylamide (PAM) composite hydrogel, modified with collagen mimetic peptide (CMP) and supplied with transforming growth factor beta 1 (TGF-ß1) (OHA-DA-PAM/CMP/TGF-ß1 hydrogel) was developed for AF regeneration. The hydrogel exhibited robust mechanical strength, strong bioadhesion, and significant self-healing capabilities. Modified with collagen mimetic peptide, the hydrogel exhibited extracellular-matrix-mimicking properties and sustained the AF cell phenotype. The sustained release of TGF-ß1 from the hydrogel was pivotal in recruiting AF cells and promoting extracellular matrix production. Furthermore, the composite hydrogel attenuated LPS-induced inflammatory response and promote ECM synthesis in AF cells via suppressing NFκB/NLRP3 pathway. In vivo, the composite hydrogel successfully sealed AF defects and alleviated intervertebral disk degeneration in a rat tail AF defect model. Histological evaluation showed that the hydrogel integrated well with host tissue and facilitated AF repair. The strategy of recruiting endogenous cells and providing an extracellular-matrix-mimicking and anti-inflammatory microenvironment using the mechanically tough composite OHA-DA-PAM/CMP/TGF-ß1 hydrogel may be applicable for AF defect repair in the clinic. STATEMENT OF SIGNIFICANCE: Annulus fibrosus (AF) repair is challenging due to its limited self-regenerative capacity and post-injury inflammation. In this study, a mechanically tough and highly bioadhesive triple cross-linked composite hydrogel, modified with collagen mimetic peptide (CMP) and supplemented with transforming growth factor beta 1 (TGF-ß1), was developed to facilitate AF regeneration. The sustained release of TGF-ß1 enhanced AF cell recruitment, while both TGF-ß1 and CMP could modulate the microenvironment to promote AF cell proliferation and ECM synthesis. In vivo, this composite hydrogel effectively promoted the AF repair and mitigated the intervertebral disc degeneration. This research indicates the clinical potential of the OHA-DA-PAM/CMP/TGF-ß1 composite hydrogel for repairing AF defects.


Annulus Fibrosus , Intervertebral Disc Degeneration , Intervertebral Disc Displacement , Intervertebral Disc , Rats , Animals , Annulus Fibrosus/pathology , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/metabolism , Hydrogels/chemistry , Adhesives/pharmacology , Delayed-Action Preparations/pharmacology , Intervertebral Disc/metabolism , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/metabolism , Hyaluronic Acid/pharmacology , Hyaluronic Acid/metabolism , Collagen/metabolism
18.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(4): 159470, 2024 May.
Article En | MEDLINE | ID: mdl-38423452

Hyaluronan is an important extracellular matrix component, with poorly documented physiological role in the context of lipid-rich adipose tissue. We have investigated the global impact of hyaluronan removal from adipose tissue environment by in vitro exposure to exogenous hyaluronidase (or heat inactivated enzyme). Gene set expression analysis from RNA sequencing revealed downregulated adipogenesis as a main response to hyaluronan removal from human adipose tissue samples, which was confirmed by hyaluronidase-mediated inhibition of adipocyte differentiation in the 3T3L1 adipose cell line. Hyaluronidase exposure starting from the time of induction with the differentiation cocktail reduced lipid accumulation in mature adipocytes, limited the expression of terminal differentiation marker genes, and impaired the early induction of co-regulated Cebpa and Pparg mRNA. Reduction of Cebpa and Pparg expression by exogenous hyaluronidase was also observed in cultured primary preadipocytes from subcutaneous, visceral or brown adipose tissue of mice. Mechanistically, inhibition of adipogenesis by hyaluronan removal was not caused by changes in osmotic pressure or cell inflammatory status, could not be mimicked by exposure to threose, a metabolite generated by hyaluronan degradation, and was not linked to alteration in endogenous Wnt ligands expression. Rather, we observed that hyaluronan removal associated with disrupted primary cilia dynamics, with elongated cilium and higher proportions of preadipocytes that remained ciliated in hyaluronidase-treated conditions. Thus, our study points to a new link between ciliogenesis and hyaluronan impacting adipose tissue development.


Cilia , Hyaluronic Acid , Mice , Humans , Animals , Hyaluronic Acid/metabolism , Cilia/metabolism , PPAR gamma/metabolism , Hyaluronoglucosaminidase/genetics , Hyaluronoglucosaminidase/metabolism , Cell Differentiation/physiology , Adipose Tissue, Brown/metabolism , Lipids
19.
Article En | MEDLINE | ID: mdl-38330521

This essay investigates the use of an affinity resin named Capto lentil lectin for the purification of bovine and ovine testicular hyaluronidase. Hyaluronidase, an enzyme that degrades hyaluronic acid, is used widely in medical fields like dermatology, orthopedics, and ophthalmology. The research highlights the importance of optimizing the purification process to increase enzyme activity and purity. A new purification method is proposed, which begins with ammonium sulfate precipitation, followed by Blue Sepharose and Capto Lentil Lectin chromatography. This novel approach significantly increases the yield, purity, and activity of the enzyme. This study paves the way for further research into improving the purification process. The study further discusses challenges in identifying hyaluronidase bands using SDS-PAGE and highlights the necessity of using Western blotting for precise results.


Hyaluronic Acid , Hyaluronoglucosaminidase , Male , Animals , Cattle , Sheep , Hyaluronoglucosaminidase/analysis , Hyaluronic Acid/chemistry , Hyaluronic Acid/metabolism , Blotting, Western , Testis/chemistry , Testis/metabolism , Chromatography, Affinity/methods
20.
Sci Rep ; 14(1): 2797, 2024 02 02.
Article En | MEDLINE | ID: mdl-38307876

Hepatic fibrosis remains a significant clinical challenge due to ineffective treatments. 4-methylumbelliferone (4MU), a hyaluronic acid (HA) synthesis inhibitor, has proven safe in phase one clinical trials. In this study, we aimed to ameliorate liver fibrosis by inhibiting HA synthesis. We compared two groups of mice with CCl4-induced fibrosis, treated with 4-methylumbelliferone (4MU) and hyaluronan synthase 2 (HAS2) targeting siRNA (siHAS2). The administration of 4MU and siHAS2 significantly reduced collagen and HA deposition, as well as biochemical markers of hepatic damage induced by repeated CCl4 injections. The transcriptomic analysis revealed converging pathways associated with downstream HA signalling. 4MU- and siHAS2-treated fibrotic livers shared 405 upregulated and 628 downregulated genes. These genes were associated with xenobiotic and cholesterol metabolism, mitosis, endoplasmic reticulum stress, RNA processing, and myeloid cell migration. The functional annotation of differentially expressed genes (DEGs) in siHAS2-treated mice revealed attenuation of extracellular matrix-associated pathways. In comparison, in the 4MU-treated group, DEGs were related to lipid and bile metabolism pathways and cell cycle. These findings confirm that HAS2 is an important pharmacological target for suppressing hepatic fibrosis using siRNA.


Hyaluronic Acid , Hymecromone , Animals , Mice , Gene Expression Profiling , Hyaluronan Synthases/genetics , Hyaluronan Synthases/metabolism , Hyaluronic Acid/metabolism , Hymecromone/pharmacology , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/genetics , RNA, Small Interfering
...