Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 16.221
Filter
1.
Anim Biotechnol ; 35(1): 2383261, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39091224

ABSTRACT

The aim of this study was to analyze the effects of non-genetic factors on the estimation of genetic parameters of early growth traits in hybrid mutton sheep using ASReml software, in order to provide theoretical basis for screening the optimal hybriding combinations and accelerating the breeding process of new breeds of specialized housed-feeding mutton sheep. We selected the wellgrown hybrid Southhu (Southdown × Hu sheep) and Dorhu (Dorset × Hu sheep) sheep as the research objects, constructed weight correction formulae for SH and DH sheep at 60 and 180 days; and used ASReml software to investigate the effects of non-genetic factors on the estimation of genetic parameters of early growth traits in hybrid sheep. The results showed that the birth month and birth type were found significant for all traits (p < 0.001); the heritability of maternal effects ranged from 0.0709 to 0.1859. It was found that both SH and DH sheep emerged the potential for rapid early growth and development, early growth traits are significantly affected by maternal genetic effects, thereby the maternal effect should be taken into consideration for the purpose of improving accuracy in parameter estimations and therefore increasing the success of breeding programs.


Subject(s)
Breeding , Animals , Sheep/genetics , Female , Hybridization, Genetic/genetics , Software , Male , Body Weight/genetics , Sheep, Domestic/genetics , Sheep, Domestic/growth & development , Sheep, Domestic/physiology
2.
Nat Commun ; 15(1): 6609, 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39098897

ABSTRACT

Hybridization has been recognized to play important roles in evolution, however studies of the genetic consequence are still lagging behind in vertebrates due to the lack of appropriate experimental systems. Fish of the genus Xiphophorus are proposed to have evolved with multiple ancient and ongoing hybridization events. They have served as an informative research model in evolutionary biology and in biomedical research on human disease for more than a century. Here, we provide the complete genomic resource including annotations for all described 26 Xiphophorus species and three undescribed taxa and resolve all uncertain phylogenetic relationships. We investigate the molecular evolution of genes related to cancers such as melanoma and for the genetic control of puberty timing, focusing on genes that are predicted to be involved in pre-and postzygotic isolation and thus affect hybridization. We discovered dramatic size-variation of some gene families. These persisted despite reticulate evolution, rapid speciation and short divergence time. Finally, we clarify the hybridization history in the entire genus settling disputed hybridization history of two Southern swordtails. Our comparative genomic analyses revealed hybridization ancestries that are manifested in the mosaic fused genomes and show that hybridization often preceded speciation.


Subject(s)
Cyprinodontiformes , Evolution, Molecular , Genetic Speciation , Hybridization, Genetic , Phylogeny , Animals , Cyprinodontiformes/genetics , Cyprinodontiformes/classification , Genomics/methods , Genome/genetics
3.
Mol Ecol ; 33(17): e17488, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39119885

ABSTRACT

Replicated secondary contact zones can provide insights into the barriers to gene flow that are important during speciation and can reveal to which degree secondary contact may result in similar evolutionary outcomes. Here, we studied two secondary contact zones between highly differentiated Alpine butterflies of the genus Erebia using whole-genome resequencing data. We assessed the genomic relationships between populations and species and found hybridization to be rare, with no to little current or historical introgression in either contact zone. There are large similarities between contact zones, consistent with an allopatric origin of interspecific differentiation, with no indications for ongoing reinforcing selection. Consistent with expected reduced effective population size, we further find that scaffolds related to the Z-chromosome show increased differentiation compared to the already high levels across the entire genome, which could also hint towards a contribution of the Z chromosome to species divergence in this system. Finally, we detected the presence of the endosymbiont Wolbachia, which can cause reproductive isolation between its hosts, in all E. cassioides, while it appears to be fully or largely absent in contact zone populations of E. tyndarus. We discuss how this rare pattern may have arisen and how it may have affected the dynamics of speciation upon secondary contact.


Subject(s)
Butterflies , Gene Flow , Genetic Speciation , Genetics, Population , Hybridization, Genetic , Reproductive Isolation , Wolbachia , Animals , Butterflies/genetics , Wolbachia/genetics
4.
Mol Ecol ; 33(17): e17495, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39148357

ABSTRACT

Most tree species underwent cycles of contraction and expansion during the Quaternary. These cycles led to an ancient and complex genetic structure that has since been affected by extensive gene flow and by strong local adaptation. The extent to which hybridization played a role in this multi-layered genetic structure is important to be investigated. To study the effect of hybridization on the joint population genetic structure of two dominant species of the Eurasian boreal forest, Picea abies and P. obovata, we used targeted resequencing and obtained around 480 K nuclear SNPs and 87 chloroplast SNPs in 542 individuals sampled across most of their distribution ranges. Despite extensive gene flow and a clear pattern of Isolation-by-Distance, distinct genetic clusters emerged, indicating the presence of barriers and corridors to migration. Two cryptic refugia located in the large hybrid zone between the two species played a critical role in shaping their current distributions. The two species repeatedly hybridized during the Pleistocene and the direction of introgression depended on latitude. Our study suggests that hybridization helped both species to overcome main shifts in their distribution ranges during glacial cycles and highlights the importance of considering whole species complex instead of separate entities to retrieve complex demographic histories.


Subject(s)
Gene Flow , Genetics, Population , Hybridization, Genetic , Picea , Polymorphism, Single Nucleotide , Picea/genetics , Polymorphism, Single Nucleotide/genetics , Norway , DNA, Chloroplast/genetics , Biological Evolution , Sequence Analysis, DNA
5.
Sci Rep ; 14(1): 18608, 2024 08 10.
Article in English | MEDLINE | ID: mdl-39127724

ABSTRACT

This study spanned 6 years and 4 generations, involving the progressive crossbreeding of South African Kalahari Goat (SK) and Guizhou Black Goat (GB) over three generations, followed by cross fixation F3 with F1 in the fourth generation, accompanied by the use of molecular markers technology to select a high fertility population, resulting in the creation of a hybrid goat, BKF4 (11/16 SK lineage and 5/16 GB lineage). A comparative evaluation of the BKF4 hybrid breed and its parental breeds was conducted. Reproductive and production parameters of GB, SK, and BKF4 goat groups were monitored, including lambing rate (LR), survival rate (SR), daily weight gain at 3 months of age (DWG), and adult body weight (ABW) (n = 110, 106, 112 per group). In addition, dressing percentage (DP) (n = 12 per group) and analyses of amino acids (n = 8, 6, 10 per group) and fatty acids (n = 6 per group) were conducted to evaluate meat quality indicators. Results: (1) Reproductive and production performance: The index of LR reached 199%, significantly higher than GB and SK (p ≤ 0.001), with a SR of 95.0%, markedly higher than SK (p ≤ 0.001); DWG was 276.5 g, ABW reached 56.6 kg and with a dressing percentage (DP) of 54.5%, they are significantly surpassing GB (p ≤ 0.001). (2) Regarding meat quality: pH45-value and crude protein content (CP) increased, while intramuscular fat content increased compared to GB and ash content decreased. The amino acid composition was similar to GB, but the taste was more similar to SK. However, there were some negative impacts on fatty acid composition and functionality. (3) PCA analysis revealed that: BKF4 exhibited superior meat quality compared to GB and SK, influenced by two key factors contributing 83.49% and 16.51% to the explained variance, respectively. The key factors affecting meat quality include intramuscular fat (IMF), nutrient index (NI), PUFAs/MUFAs, n-6FAs, and drip loss (DL).


Subject(s)
Goats , Meat , Animals , Goats/genetics , Meat/analysis , Meat/standards , Male , Female , Hybridization, Genetic , Fatty Acids/metabolism , Fatty Acids/analysis , South Africa , Breeding , Amino Acids/analysis , Amino Acids/metabolism , Reproduction , Body Weight
6.
Yi Chuan ; 46(8): 627-639, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39140143

ABSTRACT

Heterosis is the phenomenon that the hybrid offspring outperform two-parent population. Hybridisation has been widely used in plant and animal production as it effectively improves the growth and developmental performance, reproductive performance and disease resistance of the offspring. Hybridization can effectively improve the growth and development performance, reproductive performance and disease resistance of offspring, so it is widely used in animal and plant production. Researchers have used cross-breeding techniques to cultivate excellent new agricultural and animal husbandry strains and supporting lines such as super-excellent Chaoyou 1000 hybrid rice, Xiaoyan No.6 hybrid wheat, Dumeng sheep, and Shanxia black pigs. However, there are still some urgent problems in the current hybrid dominance research: the existing hybrid dominance theory can only partially explain the phenomenon of plant and animal hybrid dominance, and the theory of animal hybrid dominance is less researched, and the accuracy of the existing hybrid dominance prediction methods is limited. China is the world's largest pork production and consumption country. Heterosis can effectively improve the production performance of pigs, and its application in the pig industry has important economic and research value. However, the existing research on pig hybrid production is in its infancy and needs to be further studied. In this review, we summarize the existing heterosis theory, heterosis prediction methods, and their application in pig production, to provide a reference for the application of heterosis in pig breeding.


Subject(s)
Hybrid Vigor , Animals , Swine/genetics , Hybridization, Genetic , Animal Husbandry/methods , Breeding/methods
7.
Elife ; 132024 Aug 19.
Article in English | MEDLINE | ID: mdl-39158559

ABSTRACT

Haldane's rule occupies a special place in biology as one of the few 'rules' of speciation, with empirical support from hundreds of species. And yet, its classic purview is restricted taxonomically to the subset of organisms with heteromorphic sex chromosomes. I propose explicit acknowledgement of generalized hypotheses about Haldane's rule that frame sex bias in hybrid dysfunction broadly and irrespective of the sexual system. The consensus view of classic Haldane's rule holds that sex-biased hybrid dysfunction across taxa is a composite phenomenon that requires explanations from multiple causes. Testing of the multiple alternative hypotheses for Haldane's rule is, in many cases, applicable to taxa with homomorphic sex chromosomes, environmental sex determination, haplodiploidy, and hermaphroditism. Integration of a variety of biological phenomena about hybrids across diverse sexual systems, beyond classic Haldane's rule, will help to derive a more general understanding of the contributing forces and mechanisms that lead to predictable sex biases in evolutionary divergence and speciation.


Subject(s)
Sex Determination Processes , Sex Determination Processes/genetics , Male , Animals , Female , Sex Chromosomes/genetics , Hybridization, Genetic , Genetic Speciation , Biological Evolution
8.
BMC Plant Biol ; 24(1): 767, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134930

ABSTRACT

BACKGROUND: Inter-subspecific hybrid rice represents a significant breakthrough in agricultural genetics, offering higher yields and better resilience to various environmental stresses. While the utilization of these hybrids has shed light on the genetic processes underlying hybridization, understanding the molecular mechanisms driving heterosis remains a complex and ongoing challenge. Here, chromatin immunoprecipitation-sequencing (ChIP-seq) was used to analyze genome-wide profiles of H3K4me3 and H3K27me3 modifications in the inter-subspecific hybrid rice ZY19 and its parents, Z04A and ZHF1015, then combined them with the transcriptome and DNA methylation data to uncover the effects of histone modifications on gene expression and the contribution of epigenetic modifications to heterosis. RESULTS: In the hybrid, there were 8,126 and 1,610 different peaks for H3K4me3 and H3K27me3 modifications when compared to its parents, respectively, with the majority of them originating from the parental lines. The different modifications between the hybrid and its parents were more frequently observed as higher levels in the hybrid than in the parents. In ZY19, there were 476 and 84 allele-specific genes with H3K4me3 and H3K27me3 modifications identified, representing 7.9% and 12% of the total analyzed genes, respectively. Only a small portion of genes that showed differences in parental H3K4me3 and H3K27me3 modifications which demonstrated allele-specific histone modifications (ASHM) in the hybrid. The H3K4me3 modification level in the hybrid was significantly lower compared to the parents. In the hybrid, DNA methylation occurs more frequently among histone modification target genes. Additionally, over 62.58% of differentially expressed genes (DEGs) were affected by epigenetic variations. Notably, there was a strong correlation observed between variations in H3K4me3 modifications and gene expression levels in the hybrid and its parents. CONCLUSION: These findings highlight the substantial impact of histone modifications and DNA methylation on gene expression during hybridization. Epigenetic variations play a crucial role in controlling the differential expression of genes, with potential implications for heterosis.


Subject(s)
Histone Code , Hybrid Vigor , Hybridization, Genetic , Oryza , Plant Leaves , Hybrid Vigor/genetics , Oryza/genetics , Oryza/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Histones/metabolism , Histones/genetics , Epigenesis, Genetic , DNA Methylation , Gene Expression Regulation, Plant
9.
Mol Phylogenet Evol ; 199: 108167, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39103025

ABSTRACT

Disentangling the genomic intricacies underlying speciation and the causes of discordance between sources of evidence can offer remarkable insights into evolutionary dynamics. The ant-eating spider Zodarion nitidum, found across the Middle East and Egypt, displays yellowish and blackish morphs that co-occur sympatrically. These morphs additionally differ in behavioral and physiological features and show complete pre-mating reproductive isolation. In contrast, they possess similar sexual features and lack distinct differences in their mitochondrial DNA. We analyzed both Z. nitidum morphs and outgroups using genome-wide and additional mitochondrial DNA data. The genomic evidence indicated that Yellow and Black are reciprocally independent lineages without signs of recent admixture. Interestingly, the sister group of Yellow is not Black but Z. luctuosum, a morphologically distinct species. Genomic gene flow analyses pinpointed an asymmetric nuclear introgression event, with Yellow contributing nearly 5 % of its genome to Black roughly 320,000 years ago, intriguingly aligning with the independently estimated origin of the mitochondrial DNA of Black. We conclude that the blackish and yellowish morphs of Z. nitidum are long-diverged distinct species, and that the ancient and modest genomic introgression event registered resulted in a complete mitochondrial takeover of Black by Yellow. This investigation underscores the profound long-term effects that even modest hybridization events can have on the genome of organisms. It also exemplifies the utility of phylogenetic networks for estimating historical events and how integrating independent lines of evidence can increase the reliability of such estimations.


Subject(s)
DNA, Mitochondrial , Hybridization, Genetic , Phylogeny , Spiders , Sympatry , Animals , Spiders/genetics , Spiders/classification , DNA, Mitochondrial/genetics , Gene Flow , Genetic Speciation
10.
Mol Biol Rep ; 51(1): 922, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39162931

ABSTRACT

BACKGROUND: A correct and stably expressing reference gene is prerequisite for successful quantitative real-time PCR (qRT-PCR). Investigating gene expression profiling during flower development could enhance our understanding of the molecular mechanisms of flower formation and fertility in Lycium. METHODS AND RESULTS: In this study, 11 candidate reference genes in Lycium flower development were selected from transcriptome sequence data and evaluated with five traditional housekeeping genes from previous studies based on qRT-PCR amplification. Comparing the expression stability result of 16 candidate genes using GeNorm, NormFinder, BestKeeper, and Delta Ct algorithms, Lba04g01649 and Lba12g02820 were validated as the optimal reference genes for the flower development of Lycium. CONCLUSIONS: The reference genes identified in this study would improve the accuracy of qRT-PCR quantification of target gene expression in Lycium flower development and facilitate future functional genomics studies on flower development. This research could lay the foundation for the study of the reproduction and development of the Lycium flower.


Subject(s)
Flowers , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant , Lycium , Real-Time Polymerase Chain Reaction , Reference Standards , Lycium/genetics , Lycium/growth & development , Flowers/genetics , Flowers/growth & development , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/standards , Gene Expression Regulation, Plant/genetics , Gene Expression Profiling/methods , Gene Expression Profiling/standards , Transcriptome/genetics , Genes, Essential/genetics , Hybridization, Genetic
11.
Am J Bot ; 111(8): e16388, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39135339

ABSTRACT

PREMISE: Hybridization is recognized as an important mechanism in fern speciation, with many allopolyploids known among congeners, as well as evidence of ancient genome duplications. Several contemporary instances of deep (intergeneric) hybridization have been noted, invariably resulting in sterile progeny. We chose the christelloid lineage of the family Thelypteridaceae, recognized for its high frequency of both intra- and intergeneric hybrids, to investigate recent hybrid speciation between deeply diverged lineages. We also seek to understand the ecological and evolutionary outcomes of resulting lineages across the landscape. METHODS: By phasing captured reads within a phylogenomic data set of GoFlag 408 nuclear loci using HybPhaser, we investigated candidate hybrids to identify parental lineages. We estimated divergence ages by inferring a dated phylogeny using fossil calibrations with treePL. We investigated ecological niche conservatism between one confirmed intergeneric allotetraploid and its diploid progenitors using the centroid, overlap, unfilling, and expansion (COUE) framework. RESULTS: We provide evidence for at least six instances of intergeneric hybrid speciation within the christelloid clade and estimate up to 45 million years of divergence between progenitors. The niche quantification analysis showed moderate niche overlap between an allopolyploid species and its progenitors, with significant divergence from the niche of one progenitor and conservatism to the other. CONCLUSIONS: The examples provided here highlight the overlooked role that allopolyploidization following intergeneric hybridization may play in fern diversification and range and niche expansions. Applying this approach to other fern taxa may reveal a similar pattern of deep hybridization resulting in highly successful novel lineages.


Subject(s)
Ferns , Genetic Speciation , Hybridization, Genetic , Phylogeny , Ferns/genetics , Ferns/classification , Polyploidy
12.
Sci Rep ; 14(1): 19331, 2024 08 20.
Article in English | MEDLINE | ID: mdl-39164428

ABSTRACT

The polar cod, Boreogadus saida, is an abundant and ubiquitous forage fish and a crucial link in Arctic marine trophic dynamics. Our objective was to unravel layers of genomic structure in B. saida from Canadian waters, specifically screening for potential hybridization with the Arctic cod, Arctogadus glacialis, large chromosomal inversions, and sex-linked regions, prior to interpreting population structure. Our analysis of 53,384 SNPs in 522 individuals revealed hybridization and introgression between A. glacialis and B. saida. Subsequent population level analyses of B. saida using 12,305 SNPs in 511 individuals revealed three large (ca. 7.4-16.1 Mbp) chromosomal inversions, and a 2 Mbp region featuring sex-linked loci. We showcase population structuring across the Western and Eastern North American Arctic, and subarctic regions ranging from the Hudson Bay to the Canadian Atlantic maritime provinces. Genomic signal for the inferred population structure was highly aggregated into a handful of SNPs (13.8%), pointing to potentially important adaptive evolution across the Canadian range. Our study provides a high-resolution perspective on the genomic structure of B. saida, providing a foundation for work that could be expanded to the entire circumpolar range for the species.


Subject(s)
Polymorphism, Single Nucleotide , Canada , Animals , Arctic Regions , Gadiformes/genetics , Genetics, Population , Genomics/methods , Genome , Chromosome Inversion/genetics , Hybridization, Genetic , Male , Female
13.
Funct Plant Biol ; 512024 Aug.
Article in English | MEDLINE | ID: mdl-39190770

ABSTRACT

Heterosis is a crucial factor in enhancing crop yield, particularly in sorghum (Sorghum bicolor ). This research utilised six sorghum restorer lines, six sorghum sterile lines, and 36 hybrid combinations created through the NCII incomplete double-row hybridisation method. We evaluated the performance of F1 generation hybrids for leaf photosynthesis-related parameters, carbon metabolism-related enzymes, and their correlation with yield traits during the flowering stage. Results showed that hybrid sorghum exhibited significant high-parent heterosis in net photosynthetic rate (P n ), transpiration rate (T r ), stomatal conductance (G s ), apparent leaf meat conductance (AMC), ribulose-1,5-bisphosphate (RuBP) carboxylase, phosphoenolpyruvate (PEP) carboxylase, and sucrose phosphate synthase (SPS). Conversely, inter-cellular carbon dioxide concentration (C i ), instantaneous water uses efficiency (WUE), and sucrose synthase (SuSy) displayed mostly negative heterosis. Traits such as 1000-grain weight (TGW), grain weight per spike (GWPS), and dry matter content (DMC) exhibited significant high-parent heterosis, with TGW reaching the highest value of 82.54%. P n demonstrated positive correlations with T r , C i , G s , RuBP carboxylase, PEP carboxylase, GWPS, TGW, and DMC, suggesting that T r , C i , and G s could aid in identifying high-photosynthesis sorghum varieties. Concurrently, P n could help select carbon-efficient sorghum varieties due to its close relationship with yield. Overall, the F1 generation of sorghum hybrids displayed notable heterosis during anthesis. Combined with field performance, P n at athesis can serve as a valuable indicator for early prediction of the yield potential of the F1 generation of sorghum hybrids and for screening carbon-efficient sorghum varieties.


Subject(s)
Hybrid Vigor , Photosynthesis , Sorghum , Sorghum/genetics , Sorghum/metabolism , Sorghum/physiology , Sorghum/growth & development , Hybrid Vigor/genetics , Hybridization, Genetic , Ribulose-Bisphosphate Carboxylase/metabolism , Ribulose-Bisphosphate Carboxylase/genetics , Plant Leaves/genetics , Plant Leaves/metabolism , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Edible Grain/genetics , Edible Grain/metabolism
14.
Planta ; 260(3): 71, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136783

ABSTRACT

MAIN CONCLUSION: Using octoploid somatic hybrids with excessive C genome sets, AABBCCCC, a diverse allohexaploid, AABBCC, was produced by C genome reduction through subsequent crossing with various AABB cultivars. Even when somatic hybrids are produced, the plants that are produced are rarely in themselves an innovative crop. In this study, we used somatic hybrids of Brassica juncea (AABB) and B. oleracea (CC) as model cases for the genetic diversification of the somatic hybrids. One cell of 'Akaoba Takana' (B. juncea) and two cells of 'Snow Crown' (B. oleracea) were fused to create several somatic hybrids with excessive C genomes, AABBCCCC. Using AABBCCCC somatic hybrids as mother plants and crossing with 'Akaoba Takana', the AABBCC progenies were generated. When these AABBCC plants were self-fertilized, and flow cytometric (FCM) analysis was performed on the next generations, differences in the relative amount of genome size variation were observed, depending on the different AABBCCCC parents used for AABBCC creation. Further self-progeny was obtained for AABBCC plants with a theoretical allohexaploid DNA index by FCM. However, as the DNA indices of the progeny populations varied between plants used and aneuploid individuals still occurred in the progeny populations, it was difficult to say that the allohexaploid genome was fully stabilized. Next, to obtain genetic diversification of the allohexaploid, different cultivars of B. juncea were crossed with AABBCCCC, resulting in diverse AABBCC plants. Genetic diversity can be further expanded by crossbreeding plants with different AABBCC genome sets. Although genetic stability is necessary to ensure in the later generations, the results obtained in this study show that the use of somatic hybrids with excess genomes is an effective strategy for creating innovative crops.


Subject(s)
Brassica , Genome, Plant , Hybridization, Genetic , Polyploidy , Genome, Plant/genetics , Brassica/genetics , Mustard Plant/genetics , Genetic Variation , Genome Size
15.
PLoS Genet ; 20(8): e1011360, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39172766

ABSTRACT

Secondary contact between closely related taxa represents a "moment of truth" for speciation-an opportunity to test the efficacy of reproductive isolation that evolved in allopatry and to identify the genetic, behavioral, and/or ecological barriers that separate species in sympatry. Sex chromosomes are known to rapidly accumulate differences between species, an effect that may be exacerbated for neo-sex chromosomes that are transitioning from autosomal to sex-specific inheritance. Here we report that, in the Solomon Islands, two closely related bird species in the honeyeater family-Myzomela cardinalis and Myzomela tristrami-carry neo-sex chromosomes and have come into recent secondary contact after ~1.1 my of geographic isolation. Hybrids of the two species were first observed in sympatry ~100 years ago. To determine the genetic consequences of hybridization, we use population genomic analyses of individuals sampled in allopatry and in sympatry to characterize gene flow in the contact zone. Using genome-wide estimates of diversity, differentiation, and divergence, we find that the degree and direction of introgression varies dramatically across the genome. For sympatric birds, autosomal introgression is bidirectional, with phenotypic hybrids and phenotypic parentals of both species showing admixed ancestry. In other regions of the genome, however, the story is different. While introgression on the Z/neo-Z-linked sequence is limited, introgression of W/neo-W regions and mitochondrial sequence (mtDNA) is highly asymmetric, moving only from the invading M. cardinalis to the resident M. tristrami. The recent hybridization between these species has thus enabled gene flow in some genomic regions but the interaction of admixture, asymmetric mate choice, and/or natural selection has led to the variation in the amount and direction of gene flow at sex-linked regions of the genome.


Subject(s)
Gene Flow , Genetic Introgression , Hybridization, Genetic , Reproductive Isolation , Sex Chromosomes , Animals , Sex Chromosomes/genetics , Genetic Speciation , Sympatry , Male , Female , Birds/genetics , Melanesia , Genetics, Population , Genome/genetics
16.
Int J Mol Sci ; 25(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39125948

ABSTRACT

Polyploids are essential in plant evolution and species formation, providing a rich genetic reservoir and increasing species diversity. Complex polyploids with higher ploidy levels often have a dosage effect on the phenotype, which can be highly detrimental to gametes, making them rare. In this study, offspring plants resulting from an autoallotetraploid (RRRC) derived from the interspecific hybridization between allotetraploid Raphanobrassica (RRCC, 2n = 36) and diploid radish (RR, 2n = 18) were obtained. Fluorescence in situ hybridization (FISH) using C-genome-specific repeats as probes revealed two main genome configurations in these offspring plants: RRRCC (2n = 43, 44, 45) and RRRRCC (2n = 54, 55), showing more complex genome configurations and higher ploidy levels compared to the parental plants. These offspring plants exhibited extensive variation in phenotypic characteristics, including leaf type and flower type and color, as well as seed and pollen fertility. Analysis of chromosome behavior showed that homoeologous chromosome pairing events are widely observed at the diakinesis stage in the pollen mother cells (PMCs) of these allopolyploids, with a range of 58.73% to 78.33%. Moreover, the unreduced C subgenome at meiosis anaphase II in PMCs was observed, which provides compelling evidence for the formation of complex allopolyploid offspring. These complex allopolyploids serve as valuable genetic resources for further analysis and contribute to our understanding of the mechanisms underlying the formation of complex allopolyploids.


Subject(s)
Aneuploidy , Chromosomes, Plant , Polyploidy , Raphanus , Raphanus/genetics , Chromosomes, Plant/genetics , In Situ Hybridization, Fluorescence , Brassica/genetics , Hybridization, Genetic , Meiosis/genetics , Genome, Plant , Pollen/genetics , Phenotype
17.
Genes (Basel) ; 15(7)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39062724

ABSTRACT

TGF-ß1/Smads is a classic signaling pathway, which plays important roles in the development process of organisms. Black porgy Acanthopagrus schlegelii and red porgy Pagrus major are valuable economic fishes, and their hybrid offspring show excellent heterosis traits. Yet the molecular regulation mechanism of the heterosis traits is less clear. Here, we explored the TGF-ß1/Smads pathway's molecular genetic information for heterosis in A. schlegelii ♂ × P. major ♀ (AP) and A. schlegelii ♀ × P. major ♂ (PA) in terms of growth and development. The mRNA expression levels of TGF-ß1, TßR-I, TßR-II, and Smad2 genes in different developmental stages of A. schlegelii were detected. Furthermore, the expression levels of TGF-ß1, TßR-I, TßR-II, and Smad2 genes in different tissues of adult (mRNA level) and larva (mRNA and protein level) of A. schlegelii, P. major, and their hybrids were determined by both real-time quantitative PCR and Western blot techniques. The results indicated the ubiquitous expression of these genes in all developmental stages of A. schlegelii and in all tested tissues of A. schlegelii, P. major, and its hybrids. Among them, the mRNA of TGF-ß1, TßR-I, and TßR-II genes is highly expressed in the liver, gill, kidney, and muscle of black porgy, red porgy, and their hybrid offspring. There are significant changes in gene and protein expression levels in hybrid offspring, which indirectly reflect hybrid advantage. In addition, there was no correlation between protein and mRNA expression levels of Smad2 protein. The results provide novel data for the differential expression of growth and development genes between the reciprocal hybridization generation of black porgy and red porgy and its parents, which is conducive to further explaining the molecular regulation mechanism of heterosis in the growth and development of hybrid porgy.


Subject(s)
Hybrid Vigor , Smad2 Protein , Transforming Growth Factor beta1 , Animals , Smad2 Protein/genetics , Smad2 Protein/metabolism , Hybrid Vigor/genetics , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism , Hybridization, Genetic , Receptor, Transforming Growth Factor-beta Type I/genetics , Receptor, Transforming Growth Factor-beta Type I/metabolism , Perciformes/genetics , Perciformes/growth & development , Perciformes/metabolism , Receptor, Transforming Growth Factor-beta Type II/genetics , Receptor, Transforming Growth Factor-beta Type II/metabolism , Receptors, Transforming Growth Factor beta/genetics , Receptors, Transforming Growth Factor beta/metabolism , Female , Male , Gene Expression Regulation, Developmental
18.
ScientificWorldJournal ; 2024: 6637667, 2024.
Article in English | MEDLINE | ID: mdl-39050384

ABSTRACT

Crossbreeding aims to increase the productivity of local or indigenous animals by introducing exotic breeds. This study aims to assess the effects of crossbreeding using 50% Boer bucks crossed with Ethiopian indigenous Woyto-Guji goats and to evaluate farmers' perceptions towards crossbred kids. Data were collected from five purposively selected districts in southern Ethiopia. Personal interviews, focus group discussions (FGDs), and field observations were employed to gather information on the goat production systems and farmers' perceptions. The mean ± SD of goat flock size in the study area were 7.31 ± 5.89 heads per household (HH) with larger flock sizes observed in the Alaba zone (10.32 ± 6.56). Goats in the studied areas were primarily kept for income generation. The average age at first kidding was 11.3 ± 1.3 months. Relatively better management practices were observed for crossbred goats in the Alaba, Loko Abaya, and Gurage zones. Respondent farmers highly appreciated Boer crossbred goats due to their superior perception of attractive coat color (4.39 times greater, P < 0.001), docile behavior (3.59 times greater, P < 0.001), fast growth rate (1.64 times greater, P < 0.05), and market preference (5.81 times greater, P < 0.001). However, susceptibility to disease and drought was considered as drawbacks of crossbred kids in the studied areas. It was also reported that crossbreed goats fetched better prices than indigenous goats of a similar age group and under the same management system. All visited farmers expressed a strong interest in crossbreeding. Based on these findings, it can be concluded that Boer crossbred goats perform well in southern Ethiopia. Therefore, the continued production of crossbred kids can be disseminated to these areas. Additionally, it is suggested to consider the interests of goat producers in the remaining areas. Integrated improved management systems need to be implemented to enhance the survival of crossbred kids. Sustainable training programs should be organized for goat keepers, focusing on aspects such as crossbreeding, minimizing inbreeding, buck rotation, and improved feeding and management practices.


Subject(s)
Farmers , Goats , Reproduction , Animals , Goats/physiology , Ethiopia , Reproduction/physiology , Animal Husbandry/methods , Female , Hybridization, Genetic , Male , Humans , Breeding
19.
Mol Ecol ; 33(15): e17459, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38994921

ABSTRACT

Hybridization between divergent lineages can result in losses of distinct evolutionary taxa. Alternatively, hybridization can lead to increased genetic variability that may fuel local adaptation and the generation of novel traits and/or taxa. Here, we examined single-nucleotide polymorphisms generated using genotyping-by-sequencing in a population of Dolly Varden char (Pisces: Salmonidae) that is highly admixed within a contact zone between two subspecies (Salvelinus malma malma, Northern Dolly Varden [NDV] and S. m. lordi, Southern Dolly Varden [SDV]) in southwestern Alaska to assess the spatial distribution of hybrids and to test hypotheses on the origin of the admixed population. Ancestry analysis revealed that this admixed population is composed of advanced generation hybrids between NDV and SDV or advanced backcrosses to SDV; no F1 hybrids were detected. Coalescent-based demographic modelling supported the origin of this population about 55,000 years ago by secondary contact between NDV and SDV with low levels of contemporary gene flow. Ancestry in NDV and SDV varies within the watershed and ancestry in NDV was positively associated with distance upstream from the sea, contingent on habitat-type sampled, and negatively associated with the number of migrations that individual fish made to the sea. Our results suggest that divergence between subspecies over hundreds of thousands of years may not be associated with significant reproductive isolation, but that elevated diversity owing to hybridization may have contributed to adaptive divergence in habitat use and life history.


Subject(s)
Gene Flow , Genetics, Population , Hybridization, Genetic , Polymorphism, Single Nucleotide , Animals , Alaska , Polymorphism, Single Nucleotide/genetics , Trout/genetics , Trout/classification , Genotype
20.
Microb Cell Fact ; 23(1): 203, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030609

ABSTRACT

BACKGROUND: Over the last two decades, hybridization has been a powerful tool used to construct superior yeast for brewing and winemaking. Novel hybrids were primarily constructed using at least one Saccharomyces cerevisiae parent. However, little is known about hybrids used for other purposes, such as targeted flavor production, for example, 2-phenylethanol (2-PE). 2-PE, an aromatic compound widely utilised in the food, cosmetic, and pharmaceutical industries, presents challenges in biotechnological production due to its toxic nature. Consequently, to enhance productivity and tolerance to 2-PE, various strategies such as mutagenesis and genetic engineering are extensively explored to improved yeast strains. While biotechnological efforts have predominantly focused on S. cerevisiae for 2-PE production, other Saccharomyces species and their hybrids remain insufficiently described. RESULTS: To address this gap, in this study, we analysed a new interspecies yeast hybrid, II/6, derived from S. uvarum and S. kudriavzevii parents, in terms of 2-PE bioconversion and resistance to its high concentration, comparing it with the parental strains. Two known media for 2-PE biotransformation and three different temperatures were used during this study to determine optimal conditions. In 72 h batch cultures, the II/6 hybrid achieved a maximum of 2.36 ± 0.03 g/L 2-PE, which was 2-20 times higher than the productivity of the parental strains. Our interest lay not only in determining whether the hybrid improved in productivity but also in assessing whether its susceptibility to high 2-PE titers was also mitigated. The results showed that the hybrid exhibited significantly greater resistance to the toxic product than the original strains. CONCLUSIONS: The conducted experiments have confirmed that hybridization is a promising method for modifying yeast strains. As a result, both 2-PE production yield and tolerance to its inhibitory effects can be increased. Furthermore, this strategy allows for the acquisition of non-GMO strains, alleviating concerns related to additional legislative requirements or consumer acceptance issues for producers. The findings obtained have the potential to contribute to the development of practical solutions in the future.


Subject(s)
Phenylethyl Alcohol , Saccharomyces , Phenylethyl Alcohol/metabolism , Phenylethyl Alcohol/analogs & derivatives , Saccharomyces/genetics , Saccharomyces/metabolism , Fermentation , Hybridization, Genetic , Metabolic Engineering/methods , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Pichia
SELECTION OF CITATIONS
SEARCH DETAIL