Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.150
Filter
2.
Radiology ; 313(1): e232989, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39352287

ABSTRACT

Background Transjugular intrahepatic portosystemic shunt (TIPS) dysfunction in patients with liver cirrhosis and recurrent symptoms of portal hypertension is primarily assessed with US and confirmed with invasive catheter venography, which can be used to measure the portosystemic pressure gradient (PSPG) to identify TIPS-refractory portal hypertension. To avoid the risks and costs of invasive catheter venography, noninvasive PSPG evaluation strategies are needed. Purpose To demonstrate the feasibility of the combination of four-dimensional (4D) flow MRI with computational fluid dynamics (CFD) for noninvasive PSPG assessment in participants with cirrhosis and TIPS. Materials and Methods Abdominal 4D flow MRI was performed prospectively in participants with cirrhosis and TIPS between January 2019 and September 2020. Flow rates were measured within the TIPS and inferior vena cava (IVC). The portal vein (PV), TIPS, right hepatic vein, and IVC were segmented on MRI scans to create a CFD mesh. The PV and infrahepatic IVC were defined as inflows for 4D flow MRI-derived flow rates. The suprahepatic IVC was defined as the outflow. CFD simulations were used to noninvasively estimate PSPG as the difference between the simulated pressures in the PV and suprahepatic IVC. Invasive venographic measurements of the PSPG served as the reference standard, and Pearson correlation analysis was conducted to evaluate the relationship between noninvasive estimates and invasive measurements. Results In all 20 participants with cirrhosis (mean age, 58 years ± 9 [SD]; 11 men), 4D flow MRI-based CFD simulations enabled visualization of flow velocities and pressure distributions within the segmented vasculature and TIPS. Noninvasive estimates and invasive measures of PSPG were strongly correlated (r = 0.77; P < .001). The 4D flow MRI-based CFD simulations correctly classified the presence or absence of a post-TIPS PSPG greater than 12 mm Hg in 16 of 20 participants (80%). Conclusion The combination of 4D flow MRI and CFD was feasible for noninvasive PSPG assessment in participants with cirrhosis, portal hypertension, and TIPS. © RSNA, 2024 See also the editorial by Motosugi and Watanabe in this issue.


Subject(s)
Hydrodynamics , Hypertension, Portal , Liver Cirrhosis , Magnetic Resonance Imaging , Portasystemic Shunt, Transjugular Intrahepatic , Humans , Portasystemic Shunt, Transjugular Intrahepatic/methods , Liver Cirrhosis/diagnostic imaging , Liver Cirrhosis/complications , Liver Cirrhosis/physiopathology , Male , Female , Middle Aged , Magnetic Resonance Imaging/methods , Hypertension, Portal/diagnostic imaging , Hypertension, Portal/physiopathology , Hypertension, Portal/surgery , Prospective Studies , Feasibility Studies , Aged , Computer Simulation
3.
J R Soc Interface ; 21(219): 20240276, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39353564

ABSTRACT

Fatigue curves quantify fish swimming performance, providing information about the time ([Formula: see text]) fish can swim against a steady flow velocity (Uf) before fatiguing. Such curves represent a key tool for many applications in ecological engineering, especially for fish pass design and management. Despite years of research, though, our current ability to model fatigue curves still lacks theoretical foundations and relies primarily on fitting empirical data, as obtained from time-consuming and costly experiments. In the present article, we address this shortcoming by proposing a theoretical analysis that builds upon concepts of fish hydrodynamics to derive scaling laws linking statistical properties of [Formula: see text] to velocities Uf, pertaining to the so-called burst range. Theoretical arguments, in the present study, suggest that the proposed scaling laws may hold true for all fish species and sizes. A new experimental database obtained from over 800 trials and five small-sized Cypriniformes support theoretical predictions satisfactorily and calls for further experiments on more fish species and sizes to confirm their general validity.


Subject(s)
Models, Biological , Swimming , Swimming/physiology , Animals , Fishes/physiology , Hydrodynamics , Cypriniformes/physiology
4.
Bull Math Biol ; 86(11): 134, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39367965

ABSTRACT

The paranasal sinuses are a group of hollow spaces within the human skull, surrounding the nose. They are lined with an epithelium that contains mucus-producing cells and tiny hairlike active appendages called cilia. The cilia beat constantly to sweep mucus out of the sinus into the nasal cavity, thus maintaining a clean mucus layer within the sinuses. This process, called mucociliary clearance, is essential for a healthy nasal environment and disruption in mucus clearance leads to diseases such as chronic rhinosinusitis, specifically in the maxillary sinuses, which are the largest of the paranasal sinuses. We present here a continuum mathematical model of mucociliary clearance inside the human maxillary sinus. Using a combination of analysis and computations, we study the flow of a thin fluid film inside a fluid-producing cavity lined with an active surface: fluid is continuously produced by a wall-normal flux in the cavity and then is swept out, against gravity, due to an effective tangential flow induced by the cilia. We show that a steady layer of mucus develops over the cavity surface only when the rate of ciliary clearance exceeds a threshold, which itself depends on the rate of mucus production. We then use a scaling analysis, which highlights the competition between gravitational retention and cilia-driven drainage of mucus, to rationalise our computational results. We discuss the biological relevance of our findings, noting that measurements of mucus production and clearance rates in healthy sinuses fall within our predicted regime of steady-state mucus layer development.


Subject(s)
Cilia , Computer Simulation , Mathematical Concepts , Maxillary Sinus , Models, Biological , Mucociliary Clearance , Mucus , Mucociliary Clearance/physiology , Humans , Cilia/physiology , Mucus/metabolism , Mucus/physiology , Maxillary Sinus/physiology , Paranasal Sinuses/physiology , Hydrodynamics
5.
Sci Rep ; 14(1): 23106, 2024 10 04.
Article in English | MEDLINE | ID: mdl-39367048

ABSTRACT

This study investigates the influence of body physiology on the rupture risk of cerebral saccular aneurysms. Comprehensive hemodynamic analyses were conducted using computational fluid dynamics to assess the potential for aneurysm rupture under three physiological conditions: rest, normal activity, and exercise. Contours of wall shear stress, oscillatory shear index, and pressure were analyzed and compared to identify regions at high risk of rupture. Additionally, statistical analysis was performed to evaluate the rupture risk of aneurysms. Blood flow dynamics during the peak systolic phase were also examined under these conditions. Our findings indicate that the dome area, where blood pressure is highest and the incoming blood flow first contacts the aneurysm sac, is the critical region with a heightened risk of rupture.


Subject(s)
Carotid Artery, Internal , Hemodynamics , Intracranial Aneurysm , Humans , Carotid Artery, Internal/physiopathology , Intracranial Aneurysm/physiopathology , Blood Pressure/physiology , Aneurysm, Ruptured/physiopathology , Models, Cardiovascular , Blood Flow Velocity , Carotid Artery Diseases/physiopathology , Hydrodynamics
6.
PLoS One ; 19(10): e0311247, 2024.
Article in English | MEDLINE | ID: mdl-39383161

ABSTRACT

BACKGROUND: High-speed flow of clean water or water with sediment released from aging spillways may cause abrasion and cavitation on the concrete surface gradually. The occurrence of irregularities on the concrete surface can exacerbate the erosion problem. Which might jeopardize the safety of dams constantly, hence the rehabilitation efforts become urgent tasks in dam safety projects. METHODS: This study employs a 3D Computational Fluid Dynamics (CFD) model to quantitatively analyze the cavitation risk on the aging concrete surface of the Chay 5 spillway in Ha Giang, Vietnam, under various operation scenarios. There are two standards used to measure cavitation: the cavitation index (σ) which indicates the danger due to the drop of pressure in rapid flow, and the new gasification index (ß) which takes into consideration the formation and collapse of bubbles behind asperities. RESULTS: Three extreme flood cases may not result in potential cavitation because both σ and ß exceed critical thresholds. Regarding the six controlled gate scenarios with normal water level, the σ profiles are approximated 1,0 showing a low likelihood of cavitation damage while the ß values are smaller than 0.8, indicating a considerable risk of cavitation. Besides, the opening height of 100 cm poses the greatest risk of creating severe cavitation erosion in the concave area and slope portion. The flip bucket experienced the most vulnerable cavitation when the opening height is 400 cm. In addition, an approach to spillway surface rehabilitation involving specialized mortars has been presented. CONCLUSION: For aging conveyance structure, gasification index (ß) takes into account irregularities surface, providing a more comprehensive assessment of the likelihood of cavitation damage than cavitation index (σ). After rehabilitation with anti-shrinkage high abrasion resistance mortar, the entire spillway surface is smooth. This allows for reducing the cavitation risk and improvement of life service thereof.


Subject(s)
Hydrodynamics , Construction Materials , Models, Theoretical , Vietnam , Computer Simulation
7.
PLoS One ; 19(9): e0309176, 2024.
Article in English | MEDLINE | ID: mdl-39325769

ABSTRACT

This study uses numerical methods (ANSYS-Fluent) to investigate the viscous fingering of the displaced phase as a shear-thinning fluid in the classic three-dimensional Hele-Shaw cell. Comparing the behavior of fingerings with different properties on the upper and lower surfaces of a three-dimensional model, it was found that when the upper and lower surfaces are walls, under the combined action of moving contact lines and Saffman-Taylor instability, fingering splitting occurs at the tip, resulting in the appearance of two fingers at the interface. In addition, we have found that interfacial tension has a suppressive effect on short waves. As the interfacial tension increases, the velocity at the advancing tip decreases. Therefore, when the interface tension is 0, viscous fingering displacement reaches the farthest distance. We have also conducted research on the viscous fingering at different temperatures. The results indicate that increasing the temperature leads to a decrease in the viscosity of the displaced phase, making the flow more stable. As the temperature rises, the pressure gradient inside the flow path increases, pushing the viscous fingering further.


Subject(s)
Models, Theoretical , Viscosity , Temperature , Surface Tension , Hydrodynamics , Rheology
8.
Sensors (Basel) ; 24(18)2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39338617

ABSTRACT

Vascular diseases are widespread, and sometimes such life-threatening medical disorders cause abnormal blood flow, blood particle damage, changes to flow dynamics, restricted blood flow, and other adverse effects. The study of vascular flow is crucial in clinical practice because it can shed light on the causes of stenosis, aneurysm, blood cancer, and many other such diseases, and guide the development of novel treatments and interventions. Microfluidics and computational fluid dynamics (CFDs) are two of the most promising new tools for investigating these phenomena. When compared to conventional experimental methods, microfluidics offers many benefits, including lower costs, smaller sample quantities, and increased control over fluid flow and parameters. In this paper, we address the strengths and weaknesses of computational and experimental approaches utilizing microfluidic devices to investigate the rheological properties of blood, the forces of action causing diseases related to cardiology, provide an overview of the models and methodologies of experiments, and the fabrication of devices utilized in these types of research, and portray the results achieved and their applications. We also discuss how these results can inform clinical practice and where future research should go. Overall, it provides insights into why a combination of both CFDs, and experimental methods can give even more detailed information on disease mechanisms recreated on a microfluidic platform, replicating the original biological system and aiding in developing the device or chip itself.


Subject(s)
Microfluidics , Humans , Microfluidics/methods , Hydrodynamics , Vascular Diseases/pathology , Vascular Diseases/physiopathology , Lab-On-A-Chip Devices , Computer Simulation
9.
Fluids Barriers CNS ; 21(1): 71, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39261910

ABSTRACT

BACKGROUND: Cardiac pulsation propels blood through the cerebrovascular network to maintain cerebral homeostasis. The cerebrovascular network is uniquely surrounded by paravascular cerebrospinal fluid (pCSF), which plays a crucial role in waste removal, and its flow is suspected to be driven by arterial pulsations. Despite its importance, the relationship between vascular and paravascular fluid dynamics throughout the cardiac cycle remains poorly understood in humans. METHODS: In this study, we developed a non-invasive neuroimaging approach to investigate the coupling between pulsatile vascular and pCSF dynamics within the subarachnoid space of the human brain. Resting-state functional MRI (fMRI) and dynamic diffusion-weighted imaging (dynDWI) were retrospectively cardiac-aligned to represent cerebral hemodynamics and pCSF motion, respectively. We measured the time between peaks (∆TTP) in d d ϕ f M R I and dynDWI waveforms and measured their coupling by calculating the waveforms correlation after peak alignment (correlation at aligned peaks). We compared the ∆TTP and correlation at aligned peaks between younger [mean age: 27.9 (3.3) years, n = 9] and older adults [mean age: 70.5 (6.6) years, n = 20], and assessed their reproducibility within subjects and across different imaging protocols. RESULTS: Hemodynamic changes consistently precede pCSF motion. ∆TTP was significantly shorter in younger adults compared to older adults (-0.015 vs. -0.069, p < 0.05). The correlation at aligned peaks were high and did not differ between younger and older adults (0.833 vs. 0.776, p = 0.153). The ∆TTP and correlation at aligned peaks were robust across fMRI protocols (∆TTP: -0.15 vs. -0.053, p = 0.239; correlation at aligned peaks: 0.813 vs. 0.812, p = 0.985) and demonstrated good to excellent within-subject reproducibility (∆TTP: intraclass correlation coefficient = 0.36; correlation at aligned peaks: intraclass correlation coefficient = 0.89). CONCLUSION: This study proposes a non-invasive technique to evaluate vascular and paravascular fluid dynamics. Our findings reveal a consistent and robust cardiac pulsation-driven coupling between cerebral hemodynamics and pCSF dynamics in both younger and older adults.


Subject(s)
Brain , Cerebrospinal Fluid , Hydrodynamics , Magnetic Resonance Imaging , Pulsatile Flow , Humans , Adult , Aged , Male , Female , Magnetic Resonance Imaging/methods , Cerebrospinal Fluid/physiology , Cerebrospinal Fluid/diagnostic imaging , Brain/blood supply , Brain/physiology , Brain/diagnostic imaging , Pulsatile Flow/physiology , Cerebrovascular Circulation/physiology , Hemodynamics/physiology , Young Adult , Middle Aged , Retrospective Studies , Diffusion Magnetic Resonance Imaging/methods
10.
PLoS One ; 19(9): e0302250, 2024.
Article in English | MEDLINE | ID: mdl-39264883

ABSTRACT

INTRODUCTION: COVID-19 pandemic has highlighted the role of aerosol transmission and the importance of superspreading events. We analyzed a choir rehearsal in November 2020, where all participants, except one who had recently earlier recovered from COVID-19, were infected. We explore the risk factors for severe disease in this event and model the aerosol dispersion in the rehearsal room. MATERIALS AND METHODS: Characteristics of participants were collected by interviews and supplemented with patient records. A computational simulation of aerosol distribution in the rehearsal room and the efficacy of potential safety measures was conducted using the Large-Eddy Simulation approach. Infection risk was studied by analyzing quanta emission and exposure with the Wells-Riley equation. RESULTS: The simulation showed that airborne transmission likely explains this mass contagion event. Every singer was exposed to the virus in only 5 min from the beginning of the rehearsal, and maximum concentration levels were reached at 20 min the concentration levels started to approach a steady state after 20 min. Although concentration differences existed in the room, risk levels near (1 m) and far (5 m) from the aerosol source were similar for certain singers. Modeling indicated infection risk levels of 70-100% after one hour; the risk would have been considerably reduced by wearing high-filtration respirators. Age and pre-existing comorbidities predicted more severe disease. The high incidence of illness may be partly attributed to the relatively high median age of individuals. Additionally, those admitted to the hospital had multiple underlying health conditions that predispose them to more severe disease. CONCLUSIONS: Airborne transmission and indoor space can explain this mass exposure event. High-filtration respirators could have prevented some infections. The importance of safety distances diminishes the longer the indoor event. The concept of safety distance is challenging, as our study suggests that long range airborne transmission may occur in indoor events with extended duration. We encourage informing the public, especially persons at risk, of safety measures during epidemics.


Subject(s)
Aerosols , COVID-19 , SARS-CoV-2 , Humans , COVID-19/transmission , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , Finland/epidemiology , Male , Hydrodynamics , Female , Adult , Middle Aged , Computer Simulation
11.
Commun Biol ; 7(1): 1153, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39284892

ABSTRACT

The colonization of the pelagic realm by the vertebrates represents one of the major transitions in the evolutionary success of the group and in the establishment of modern complex marine ecosystem. It has been traditionally related with the Devonian rise of jawed vertebrates, but new evidences indicate that first active swimmers, invading the water column, occurred within earlier armoured jawless fishes ("ostracoderms"). These "primitive" fishes lacked conventional fish control surfaces and the precise mechanism used to generate lift and stabilizing forces still remains unclear. We show that, because of their shape, the rigid cephalic shield of Pteraspidiformes, a group of Silurian-Devonian "ostracoderms", generate significant forces for hydrodynamic lift. Particle Image Velocimetry and force measurements in a water channel shows that the flow over real-sized Pteraspidiformes models is similar to that over delta wings, dominated by the formation of leading-edge vortices resulting in enhanced vortex lift forces and delayed stall angles of attack. Additionally, experiments simulating ground effect show that Pteraspidiformes present better hydrodynamic performance under fully pelagic conditions than in a benthic scenario. This suggests that, lacking movable appendages other than the caudal fin, leading-edge vortices were exploited by earliest vertebrates to colonize the water column more than 400 Mya.


Subject(s)
Biological Evolution , Hydrodynamics , Wings, Animal , Animals , Wings, Animal/anatomy & histology , Wings, Animal/physiology , Biomechanical Phenomena , Fossils/anatomy & histology , Fishes/anatomy & histology , Fishes/physiology , Swimming
12.
Front Public Health ; 12: 1324260, 2024.
Article in English | MEDLINE | ID: mdl-39290411

ABSTRACT

Recent research has highlighted the beneficial effects of urban green spaces on physical and mental health. This study focused on the hospital population and innovatively subdivided the population into four groups: doctors, caregivers, patients and nurses. A total of 96 volunteers participated in this virtual reality experiment to assess the restoration of a linear canopy landscape and a landscape with different levels of hydrodynamics through interactive audiovisual immersion. We utilized pre-research method, brainwave monitoring technique, psychological scales, observation and interviews in this experiment. The research identified five key findings. First, both linear canopy landscapes and those with low to medium hydrodynamic forces significantly enhance physiological and psychological restoration for all groups, with the most substantial physiological benefits observed in doctors and patients, and the greatest psychological relief noted in caregivers. Second, landscapes with medium hydrodynamic forces yield higher restorative effects than those with low forces in hospital settings. Third, green landscapes with medium and low-density canopies prove more conducive to patient recovery compared to those with high-density canopies. Fourth, the inclusion of bird songs does not markedly affect physiological restoration across the hospital groups. Finally, landscapes that incorporate elements of water dynamics, open skies, and lightly foliated canopies draw significant interest from all groups involved. This study advocates for the integration of natural blue and green elements into hospital environments as complementary therapeutic interventions, aiming to alleviate stress and promote health recovery among hospital communities.


Subject(s)
Hydrodynamics , Humans , Male , Female , Adult , Middle Aged , Virtual Reality , Hospitals , Audiovisual Aids
13.
Bioinspir Biomim ; 19(6)2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39255824

ABSTRACT

A remarkable variety of organisms use metachronal coordination (i.e. numerous neighboring appendages beating sequentially with a fixed phase lag) to swim or pump fluid. This coordination strategy is used by microorganisms to break symmetry at small scales where viscous effects dominate and flow is time-reversible. Some larger organisms use this swimming strategy at intermediate scales, where viscosity and inertia both play important roles. However, the role of individual propulsor kinematics-especially across hydrodynamic scales-is not well-understood, though the details of propulsor motion can be crucial for the efficient generation of flow. To investigate this behavior, we developed a new soft robotic platform using magnetoactive silicone elastomers to mimic the metachronally coordinated propulsors found in swimming organisms. Furthermore, we present a method to passively encode spatially asymmetric beating patterns in our artificial propulsors. We investigated the kinematics and hydrodynamics of three propulsor types, with varying degrees of asymmetry, using Particle Image Velocimetry and high-speed videography. We find that asymmetric beating patterns can move considerably more fluid relative to symmetric beating at the same frequency and phase lag, and that asymmetry can be passively encoded into propulsors via the interplay between elastic and magnetic torques. Our results demonstrate that nuanced differences in propulsor kinematics can substantially impact fluid pumping performance. Our soft robotic platform also provides an avenue to explore metachronal coordination at the meso-scale, which in turn can inform the design of future bioinspired pumping devices and swimming robots.


Subject(s)
Biomimetic Materials , Cilia , Hydrodynamics , Robotics , Swimming , Robotics/instrumentation , Animals , Swimming/physiology , Cilia/physiology , Biomechanical Phenomena , Ctenophora/physiology , Biomimetics/methods , Biomimetics/instrumentation , Equipment Design , Rheology , Silicone Elastomers/chemistry , Viscosity
14.
Biomed Phys Eng Express ; 10(6)2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39260383

ABSTRACT

Freeze casting, a manufacturing technique widely applied in biomedical fields for fabricating biomaterial scaffolds, poses challenges for predicting directional solidification due to its highly nonlinear behavior and complex interplay of process parameters. Conventional numerical methods, such as computational fluid dynamics (CFD), require adequate and accurate boundary condition knowledge, limiting their utility in real-world transient solidification applications due to technical limitations. In this study, we address this challenge by developing a physics-informed neural networks (PINNs) model to predict directional solidification in freeze-casting processes. The PINNs model integrates physical constraints with neural network predictions, requiring significantly fewer predetermined boundary conditions compared to CFD. Through a comparison with CFD simulations, the PINNs model demonstrates comparable accuracy in predicting temperature distribution and solidification patterns. This promising model achieves such a performance with only 5000 data points in space and time, equivalent to 250,000 timesteps, showcasing its ability to predict solidification dynamics with high accuracy. The study's major contributions lie in providing insights into solidification patterns during freeze-casting scaffold fabrication, facilitating the design of biomaterial scaffolds with finely tuned microstructures essential for various tissue engineering applications. Furthermore, the reduced computational demands of the PINNs model offer potential cost and time savings in scaffold fabrication, promising advancements in biomedical engineering research and development.


Subject(s)
Biocompatible Materials , Freezing , Neural Networks, Computer , Tissue Engineering , Tissue Scaffolds , Biocompatible Materials/chemistry , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Computer Simulation , Hydrodynamics , Temperature , Humans , Algorithms
15.
Sci Rep ; 14(1): 21548, 2024 09 16.
Article in English | MEDLINE | ID: mdl-39278964

ABSTRACT

Unruptured giant intracranial aneurysms (GIA) are those with diameters of 25 mm or greater. As aneurysm size is correlated with rupture risk, GIA natural history is poor. Parent artery occlusion or trapping plus bypass revascularization should be considered to encourage intra-aneurysmal thrombosis when other treatment options are contraindicated. The mechanistic background of these methods is poorly studied. Thus, we assessed the potential of computational fluid dynamics (CFD) and fluid-structure interaction (FSI) analyses for clinical use in the preoperative stage. A CFD investigation in three patient-specific flexible models of whole arterial brain circulation was performed. A C6 ICA segment GIA model was created based on CT angiography. Two models were then constructed that simulated a virtual bypass in combination with proximal GIA occlusion, but with differing middle cerebral artery (MCA) recipient vessels for the anastomosis. FSI and CFD investigations were performed in three models to assess changes in flow pattern and haemodynamic parameters alternations (wall shear stress (WSS), oscillatory shear index (OSI), maximal time averaged WSS (TAWSS), and pressure). General flow splitting across the entire domain was affected by virtual bypass procedures, and any deficiency was partially compensated by a specific configuration of the circle of Willis. Following the implementation of bypass procedures, a reduction in haemodynamic parameters was observed within the aneurysm in both cases under analysis. In the case of the temporal MCA branch bypass, the decreases in the studied parameters were slightly greater than in the frontal MCA branch bypass. The reduction in the magnitude of the chosen area-averaged parameters (averaged over the aneurysm wall surface) was as follows: WSS 35.7%, OSI 19.0%, TAWSS 94.7%, and pressure 24.2%. FSI CFD investigation based on patient-specific anatomy models with subsequent stimulation of virtual proximal aneurysm occlusion in conjunction with bypass showed that this method creates a pro-thrombotic favourable environment whilst reducing intra-aneurysmal pressure leading to shrinking. MCA branch recipient selection for optimum haemodynamic conditions should be evaluated individually in the preoperative stage.


Subject(s)
Hemodynamics , Hydrodynamics , Intracranial Aneurysm , Intracranial Aneurysm/surgery , Intracranial Aneurysm/physiopathology , Intracranial Aneurysm/diagnostic imaging , Humans , Computer Simulation , Middle Cerebral Artery/surgery , Middle Cerebral Artery/physiopathology , Middle Cerebral Artery/diagnostic imaging , Cerebrovascular Circulation/physiology , Male , Models, Cardiovascular , Middle Aged , Cerebral Angiography , Computed Tomography Angiography , Cerebral Revascularization/methods
16.
Med Eng Phys ; 131: 104218, 2024 09.
Article in English | MEDLINE | ID: mdl-39284659

ABSTRACT

Heart failure, broadly characterized by the gradual decline of the ability of the heart to maintain adequate blood flow throughout the body's vascular network of veins and arteries, is one of the leading causes of death worldwide. Mechanical Circulatory Support is one of the few available alternative interventions for late-stage heart failure with reduced ejection fraction. A ventricular assist device is surgically implanted and connected to the left and or right heart ventricles to provide additional bloodflow, off-loading the work required by the heart to maintain circulation. Modern mechanical circulatory support devices generate non-physiological flow conditions that can lead to the damage and rupture of blood cells (hemolysis), and the formation of blood clots (thrombosis), which pose severe health risks to the patient. It is essential to improve prediction tools for blood damage to reduce the risk of hemolysis and thrombosis. A simulation-based approach examines the interaction between hemolysis and thrombosis. Incompressible finite-volume computational fluid dynamics simulations are executed on an open-hub axial flow ventricular assist device. A continuum model of thrombosis and the intrinsic coagulation process is extended to include the effect of hemolysis. The model accounts for the effect of activation of platelets by shear stress, paracrine signaling, adhesion, and hemoglobin and ADP released during hemolysis. The effect of hemolysis with thrombosis is modelled by accounting for the hyper-adhesivity of von-Willebrand Factor on extracellular hemoglobin, and the increased rate of platelet activation induced by ADP release. Thrombosis is assessed at varying inflow rates and rotor speeds, and cases are executed where thrombosis is affected by ADP release and Hb-induced hyper-adhesivity. It is found that there is a non-negligible effect from hemolysis on thrombosis across a range of rotor speeds, and that hyperadhesivity plays a dominant role in thrombus formation in the presence of hemolysis.


Subject(s)
Heart-Assist Devices , Hemolysis , Thrombosis , Thrombosis/physiopathology , Heart-Assist Devices/adverse effects , Humans , Hydrodynamics , Models, Biological , Computer Simulation
17.
PLoS One ; 19(9): e0309730, 2024.
Article in English | MEDLINE | ID: mdl-39240842

ABSTRACT

Recurrent epidemics of respiratory infections have drawn attention from the academic community and the general public in recent years. Aircraft plays a pivotal role in facilitating the cross-regional transmission of pathogens. In this study, we initially utilized an Airbus A320 model for computational fluid dynamics (CFD) simulations, subsequently validating the model's efficacy in characterizing cabin airflow patterns through comparison with empirical data. Building upon this validated framework, we investigate the transport dynamics of droplets of varying sizes under three air supply velocities. The Euler-Lagrangian method is employed to meticulously track key parameters associated with droplet transport, enabling a comprehensive analysis of particle behavior within the cabin environment. This study integrates acquired data into a novel PCR (Personal Contamination Rate) equation to assess individual contamination rates. Numerical simulations demonstrate that increasing air supply velocity leads to enhanced stability in the movement of larger particles compared to smaller ones. Results show that the number of potential infections in the cabin decreases by 51.8% at the highest air supply velocity compared to the base air supply velocity, and the total exposure risk rate reduced by 26.4%. Thus, optimizing air supply velocity within a specific range effectively reduces the potential infection area. In contrast to previous research, this study provides a more comprehensive analysis of droplet movement dynamics across various particle sizes. We introduce an improved method for calculating the breathing zone, thereby enhancing droplet counting accuracy. These findings have significant implications for improving non-pharmacological public health interventions and optimizing cabin ventilation system design.


Subject(s)
Aircraft , Humans , Risk Assessment/methods , Air Microbiology , Computer Simulation , Hydrodynamics , Air Movements , Models, Theoretical
18.
PLoS One ; 19(9): e0304826, 2024.
Article in English | MEDLINE | ID: mdl-39269970

ABSTRACT

The objective of the study is to investigate the fluid flow and heat transfer characteristics applying Artificial Neural Networks (ANN) analysis in triangular-shaped cavities for the analysis of magnetohydrodynamics (MHD) mixed convection with varying fluid velocity of water/Al2O3 nanofluid. No study has yet been conducted on this geometric configuration incorporating ANN analysis. Therefore, this study analyzes and predicts the complex interactions among fluid flow, heat transfer, and various influencing factors using ANN analysis. The process of finite element analysis was conducted, and the obtained results have been verified by previous literature. The Levenberg-Marquardt backpropagation technique was selected for ANN. Various values of the Richardson number (0.01 ≤ Ri ≤ 5), Hartmann number (0 ≤ Ha ≤ 100), Reynolds number (50 ≤ Re ≤ 200), and solid volume fraction of the nanofluid (ϕ = 1%, 3% and 4%) have been selected. The ANN model incorporates the Gauss-Newton method and the method of damped least squares, making it suitable for tackling complex problems with a high degree of non-linearity and uncertainty. The findings have been shown through the use of streamlines, isotherm plots, Nusselt numbers, and the estimated Nusselt number obtained by ANN. Increasing the solid volume fraction improves the rate of heat transmission for all situations with varying values of Ri, Re, and Ha. The Nusselt number is greater with larger values of the Ri and Re parameters, but it lessens for higher value of Ha. Furthermore, ANN demonstrates exceptional precision, as evidenced by the Mean Squared Error and R values of 1.05200e-6 and 0.999988, respectively.


Subject(s)
Aluminum Oxide , Convection , Neural Networks, Computer , Water , Aluminum Oxide/chemistry , Water/chemistry , Hydrodynamics , Finite Element Analysis
19.
Food Res Int ; 194: 114908, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39232501

ABSTRACT

Current mesh-based simulation approaches face significant challenges in continuously modeling the mechanical behaviors of foods through processing, storage, deconstruction, and digestion. This is primarily due to the limitations of continuum mechanics in dealing with systems characterized by free boundaries, substantial deformations, mechanical failures, and non-homogenized mechanical properties. The dynamic nature of food microstructure and the transformation of the food bolus, in relation to its composition, present formidable obstacles in computer-aided food design. In response, the Pizza3 project adopts an innovative methodology, utilizing an explicit microstructural representation to construct and subsequently deconstruct food products in a modular, Lego-like fashion. Central to this simulation approach are "food atoms", conceptualized from the principles of smoothed particle hydrodynamics. These units are significantly larger than actual atoms but are finely scaled to represent both solid and liquid states of food faithfully. In solid phases, food atoms interact via pairwise forces akin to bond-peridynamic methods, thus extending the capabilities of continuum mechanics to encompass large deformations and fracturing phenomena. For liquids, the model employs artificial conservative and dissipative forces, enabling the simulation of a variety of phenomena within the framework of partial compressibility. The interaction dynamics between rigid and soft objects and fluids are accurately captured through Hertzian contact mechanics, offering a versatile parameterization applicable to impermeable (but possibly penetrable) surfaces and enforcing no-slip conditions. The efficacy of this framework is showcased through the successful modeling of three time-dependent 3D scenarios, each rigorously validated against established analytical and experimental models. Advancing beyond these initial applications, the framework is further extended to more intricate cases inadequately addressed in current literature. This extension sheds light on the underlying mechanisms of in-mouth texture perception, offering new insights and tools for food engineering and design.


Subject(s)
Computer Simulation , Food Handling , Food Handling/methods , Food , Hydrodynamics
20.
Nat Commun ; 15(1): 7740, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39231922

ABSTRACT

The physical characterization of proteins in terms of their sizes, interactions, and assembly states is key to understanding their biological function and dysfunction. However, this has remained a difficult task because proteins are often highly polydisperse and present as multicomponent mixtures. Here, we address this challenge by introducing single-molecule microfluidic diffusional sizing (smMDS). This approach measures the hydrodynamic radius of single proteins and protein assemblies in microchannels using single-molecule fluorescence detection. smMDS allows for ultrasensitive sizing of proteins down to femtomolar concentrations and enables affinity profiling of protein interactions at the single-molecule level. We show that smMDS is effective in resolving the assembly states of protein oligomers and in characterizing the size of protein species within complex mixtures, including fibrillar protein aggregates and nanoscale condensate clusters. Overall, smMDS is a highly sensitive method for the analysis of proteins in solution, with wide-ranging applications in drug discovery, diagnostics, and nanobiotechnology.


Subject(s)
Proteins , Single Molecule Imaging , Single Molecule Imaging/methods , Proteins/chemistry , Proteins/analysis , Solutions , Diffusion , Microfluidics/methods , Hydrodynamics , Microfluidic Analytical Techniques/methods
SELECTION OF CITATIONS
SEARCH DETAIL