Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.218
Filter
1.
Hum Genomics ; 18(1): 76, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961447

ABSTRACT

BACKGROUND: Lipid-lowering drugs are widely used among the elderly, with some studies suggesting links to muscle-related symptoms. However, the causality remains uncertain. METHODS: Using the Mendelian randomization (MR) approach, we assessed the causal effects of genetically proxied reduced low-density lipoprotein cholesterol (LDL-C) through inhibitions of hydroxy-methyl-glutaryl-CoA reductase (HMGCR), proprotein convertase subtilisin/kexin type 9 (PCSK9), and Niemann-Pick C1-like 1 (NPC1L1) on sarcopenia-related traits, including low hand grip strength, appendicular lean mass, and usual walking pace. A meta-analysis was conducted to combine the causal estimates from different consortiums. RESULTS: Using LDL-C pooled data predominantly from UK Biobank, genetically proxied inhibition of HMGCR was associated with higher appendicular lean mass (beta = 0.087, P = 7.56 × 10- 5) and slower walking pace (OR = 0.918, P = 6.06 × 10- 9). In contrast, inhibition of PCSK9 may reduce appendicular lean mass (beta = -0.050, P = 1.40 × 10- 3), while inhibition of NPC1L1 showed no causal impact on sarcopenia-related traits. These results were validated using LDL-C data from Global Lipids Genetics Consortium, indicating that HMGCR inhibition may increase appendicular lean mass (beta = 0.066, P = 2.17 × 10- 3) and decelerate walking pace (OR = 0.932, P = 1.43 × 10- 6), whereas PCSK9 inhibition could decrease appendicular lean mass (beta = -0.048, P = 1.69 × 10- 6). Meta-analysis further supported the robustness of these causal associations. CONCLUSIONS: Genetically proxied HMGCR inhibition may increase muscle mass but compromise muscle function, PCSK9 inhibition could result in reduced muscle mass, while NPC1L1 inhibition is not associated with sarcopenia-related traits and this class of drugs may serve as viable alternatives to sarcopenia individuals or those at an elevated risk.


Subject(s)
Hydroxymethylglutaryl CoA Reductases , Mendelian Randomization Analysis , Proprotein Convertase 9 , Sarcopenia , Humans , Sarcopenia/genetics , Proprotein Convertase 9/genetics , Hydroxymethylglutaryl CoA Reductases/genetics , Cholesterol, LDL/blood , Cholesterol, LDL/genetics , Membrane Transport Proteins/genetics , Hypolipidemic Agents/therapeutic use , Hypolipidemic Agents/adverse effects , Membrane Proteins/genetics , Male , Female , Aged , Hand Strength
2.
J Transl Med ; 22(1): 615, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961500

ABSTRACT

OBJECTIVE: To explore the correlation between asthma risk and genetic variants affecting the expression or function of lipid-lowering drug targets. METHODS: We conducted Mendelian randomization (MR) analyses using variants in several genes associated with lipid-lowering medication targets: HMGCR (statin target), PCSK9 (alirocumab target), NPC1L1 (ezetimibe target), APOB (mipomersen target), ANGPTL3 (evinacumab target), PPARA (fenofibrate target), and APOC3 (volanesorsen target), as well as LDLR and LPL. Our objective was to investigate the relationship between lipid-lowering drugs and asthma through MR. Finally, we assessed the efficacy and stability of the MR analysis using the MR Egger and inverse variance weighted (IVW) methods. RESULTS: The elevated triglyceride (TG) levels associated with the APOC3, and LPL targets were found to increase asthma risk. Conversely, higher LDL-C levels driven by LDLR were found to decrease asthma risk. Additionally, LDL-C levels (driven by APOB, NPC1L1 and HMGCR targets) and TG levels (driven by the LPL target) were associated with improved lung function (FEV1/FVC). LDL-C levels driven by PCSK9 were associated with decreased lung function (FEV1/FVC). CONCLUSION: In conclusion, our findings suggest a likely causal relationship between asthma and lipid-lowering drugs. Moreover, there is compelling evidence indicating that lipid-lowering therapies could play a crucial role in the future management of asthma.


Subject(s)
Asthma , Hypolipidemic Agents , Mendelian Randomization Analysis , Humans , Asthma/genetics , Asthma/drug therapy , Hypolipidemic Agents/therapeutic use , Hypolipidemic Agents/pharmacology , Proprotein Convertase 9/genetics , Genetic Association Studies , Lung/drug effects , Lung/pathology , Lipoprotein Lipase/genetics , Triglycerides/blood , Receptors, LDL/genetics , Hydroxymethylglutaryl CoA Reductases/genetics , Angiopoietin-Like Protein 3 , Angiopoietin-like Proteins/genetics , Apolipoprotein C-III/genetics , Apolipoproteins B/genetics , Respiratory Function Tests , Cholesterol, LDL/blood , Membrane Transport Proteins , PPAR alpha
3.
Lipids Health Dis ; 23(1): 175, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851763

ABSTRACT

BACKGROUND: The causal associations of lipids and the drug target genes with atrial fibrillation (AF) risk remain obscure. We aimed to investigate the causal associations using genetic evidence. METHODS: Mendelian randomization (MR) analyses were conducted using summary-level genome-wide association studies (GWASs) in European and East Asian populations. Lipid profiles (low-density lipoprotein cholesterol, triglyceride, and lipoprotein[a]) and lipid-modifying drug target genes (3-hydroxy-3-methylglutaryl-CoA reductase, proprotein convertase subtilisin/kexin type 9, NPC1-like intracellular cholesterol transporter 1, apolipoprotein C3, angiopoietin-like 3, and lipoprotein[a]) were used as exposures. AF was used as an outcome. The inverse variance weighted method was applied as the primary method. Summary-data-based Mendelian randomization analyses were performed for further validation using expression quantitative trait loci data. Mediation analyses were conducted to explore the indirect effect of coronary heart disease. RESULTS: In the European population, MR analyses demonstrated that elevated levels of lipoprotein(a) increased AF risk. Moreover, analyses focusing on drug targets revealed that the genetically proxied target gene LPA, which simulates the effects of drug intervention by reducing lipoprotein(a), exhibited an association with AF risk. This association was validated in independent datasets. There were no consistent and significant associations observed for other traits when analyzed in different datasets. This finding was also corroborated by Summary-data-based Mendelian randomization analyses between LPA and AF. Mediation analyses revealed that coronary heart disease plays a mediating role in this association. However, in the East Asian population, no statistically significant evidence was observed to support these associations. CONCLUSIONS: This study provided genetic evidence that Lp(a) may be a causal factor for AF and that LPA may represent a promising pharmacological target for preventing AF in the European population.


Subject(s)
Atrial Fibrillation , Genome-Wide Association Study , Hydroxymethylglutaryl CoA Reductases , Lipoprotein(a) , Mendelian Randomization Analysis , Proprotein Convertase 9 , Humans , Angiopoietin-Like Protein 3 , Atrial Fibrillation/genetics , Atrial Fibrillation/drug therapy , Cholesterol, LDL/blood , Genetic Predisposition to Disease , Genomics/methods , Hydroxymethylglutaryl CoA Reductases/genetics , Lipoprotein(a)/genetics , Lipoprotein(a)/blood , Membrane Transport Proteins , Polymorphism, Single Nucleotide , Proprotein Convertase 9/genetics , Quantitative Trait Loci , Risk Factors , Triglycerides/blood , White People/genetics , East Asian People/genetics
4.
Lipids Health Dis ; 23(1): 163, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831433

ABSTRACT

OBJECTIVE: High low-density-lipoprotein (LDL) cholesterol has been associated with an increased risk of coronary artery diseases (CAD) including acute myocardial infarction (AMI). However, whether lipids lowering drug treatment is causally associated with decreased risk of AMI remains largely unknown. We used Mendelian randomization (MR) to evaluate the influence of genetic variation affecting the function of lipid-lowering drug targets on AMI. METHODS: Single-nucleotide polymorphisms (SNPs) associated with lipids as instruments were extracted from the Global Lipids Genetics Consortium (GLGC). The genome-wide association study (GWAS) data for AMI were obtained from UK Biobank. Two sample MR analysis was used to study the associations between high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, and triglycerides (TG) with AMI (n = 3,927). Genetic variants associated with LDL cholesterol at or near drug target gene were used to mimic drug effects on the AMI events in drug target MR. RESULTS: Genetically predicted higher LDL-C (per one SD increase in LDL-C of 38.67 mg/dL, OR 1.006, 95% CI 1.004-1.007) and TG (per one SD increase in TG of 90.72 mg/dL, 1.004, 1.002-1.006) was associated with increased risk of AMI, but decreased risk for higher HDL-C (per one SD increase in HDL-C of 15.51 mg/dL, 0.997, 0.995-0.999) in univariable MR. Association remained significant for LDL-C, but attenuated toward the null for HDL-C and TG in multivariable MR. Genetically proxied lower LDL-C with genetic variants at or near the PCSK9 region (drug target of evolocumab) and NPC1L1 (drug target of ezetimibe) were associated with decreased risk of AMI (0.997, 0.994-0.999 and 0.986, 0.975-0.998, respectively), whereas genetic variants at HMGCR region (drug target of statin) showed marginal association with AMI (0.995, 0.990-1.000). After excluding drug target-related SNPs, LDL-C related SNPs outside the drug target region remained a causal effect on AMI (0.994, 0.993-0.996). CONCLUSIONS: The findings suggest that genetically predicted LDL-C may play a predominant role in the development of AMI. The drug MR results imply that ezetimibe and evolocumab may decrease the risk of AMI due to their LDL-C lowering effect, and there are other non-drug related lipid lowering pathways that may be causally linked to AMI.


Subject(s)
Cholesterol, HDL , Cholesterol, LDL , Genome-Wide Association Study , Mendelian Randomization Analysis , Myocardial Infarction , Polymorphism, Single Nucleotide , Triglycerides , Humans , Myocardial Infarction/genetics , Myocardial Infarction/drug therapy , Cholesterol, LDL/blood , Triglycerides/blood , Male , Female , Cholesterol, HDL/blood , Middle Aged , Membrane Proteins/genetics , Membrane Transport Proteins/genetics , Proprotein Convertase 9/genetics , Hypolipidemic Agents/therapeutic use , Hydroxymethylglutaryl CoA Reductases/genetics , Aged
5.
Mol Biol Rep ; 51(1): 759, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874818

ABSTRACT

BACKGROUND: The objective of this research was to elucidate the hypocholesterolemic effects of a bioactive compound extracted from buckwheat, and to delineate its influence on the regulatory mechanisms of cholesterol metabolism. The compound under investigation was identified as quercetin. MATERIAL AND RESULTS: In vitro experiments conducted on HepG2 cells treated with quercetin revealed a significant reduction in intracellular cholesterol accumulation. This phenomenon was rigorously quantified by assessing the transcriptional activity of key genes involved in the biosynthesis and metabolism of cholesterol. A statistically significant reduction in the expression of HMG-CoA reductase (HMGCR) was observed, indicating a decrease in endogenous cholesterol synthesis. Conversely, an upregulation in the expression of cholesterol 7 alpha-hydroxylase (CYP7A1) was also observed, suggesting an enhanced catabolism of cholesterol to bile acids. Furthermore, the study explored the combinatory effects of quercetin and simvastatin, a clinically utilized statin, revealing a synergistic action in modulating cholesterol levels at various dosages. CONCLUSIONS: The findings from this research provide a comprehensive insight into the mechanistic pathways through which quercetin, a phytochemical derived from buckwheat, exerts its hypocholesterolemic effects. Additionally, the observed synergistic interaction between quercetin and simvastatin opens up new avenues for the development of combined therapeutic strategies to manage hyperlipidemia.


Subject(s)
Cholesterol 7-alpha-Hydroxylase , Cholesterol , Fagopyrum , Hydroxymethylglutaryl CoA Reductases , Lipid Metabolism , Phytochemicals , Quercetin , Humans , Fagopyrum/chemistry , Fagopyrum/metabolism , Hep G2 Cells , Cholesterol/metabolism , Quercetin/pharmacology , Lipid Metabolism/drug effects , Lipid Metabolism/genetics , Phytochemicals/pharmacology , Hydroxymethylglutaryl CoA Reductases/metabolism , Hydroxymethylglutaryl CoA Reductases/genetics , Cholesterol 7-alpha-Hydroxylase/metabolism , Cholesterol 7-alpha-Hydroxylase/genetics , Anticholesteremic Agents/pharmacology , Simvastatin/pharmacology , Plant Extracts/pharmacology , Gene Expression Profiling/methods , Gene Expression Regulation/drug effects
6.
Lipids Health Dis ; 23(1): 193, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909219

ABSTRACT

BACKGROUNDS: A growing body of evidence has highlighted the interactions of lipids metabolism and immune regulation. Nevertheless, there is still a lack of evidence regarding the causality between lipids and autoimmune diseases (ADs), as well as their possibility as drug targets for ADs. OBJECTIVES: This study was conducted to comprehensively understand the casual associations between lipid traits and ADs, and evaluate the therapeutic possibility of lipid-lowering drug targets on ADs. METHODS: Genetic variants for lipid traits and variants encoding targets of various lipid-lowering drugs were derived from Global Lipid Genetics Consortium (GLGC) and verified in Drug Bank. Summary data of ADs were obtained from MRC Integrative Epidemiology Unit (MER-IEU) database and FinnGen consortium, respectively. The causal inferences between lipid traits/genetic agents of lipid-lowering targets and ADs were evaluated by Mendelian randomization (MR), summary data-based MR (SMR), and multivariable MR (MVMR) analyses. Enrichment analysis and protein interaction network were employed to reveal the functional characteristics and biological relevance of potential therapeutic lipid-lowering targets. RESULTS: There was no evidence of causal effects regarding 5 lipid traits and 9 lipid-lowering drug targets on ADs. Genetically proxied 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) inhibition was associated with a reduced risk of rheumatoid arthritis (RA) in both discovery (OR [odds ratio] = 0.45, 95%CI: 0.32, 0.63, P = 6.79 × 10- 06) and replicate datasets (OR = 0.37, 95%CI: 0.23, 0.61, P = 7.81 × 10- 05). SMR analyses supported that genetically proxied HMGCR inhibition had causal effects on RA in whole blood (OR = 0.48, 95%CI: 0.29, 0.82, P = 6.86 × 10- 03) and skeletal muscle sites (OR = 0.75, 95%CI: 0.56, 0.99, P = 4.48 × 10- 02). After controlling for blood pressure, body mass index (BMI), smoking and drinking alchohol, HMGCR suppression showed a direct causal effect on a lower risk of RA (OR = 0.33, 95%CI: 0.40, 0.96, P = 0.042). CONCLUSIONS: Our study reveals causal links of genetically proxied HMGCR inhibition (lipid-lowering drug targets) and HMGCR expression inhibition with a decreased risk of RA, suggesting that HMGCR may serve as candidate drug targets for the treatment and prevention of RA.


Subject(s)
Autoimmune Diseases , Hypolipidemic Agents , Mendelian Randomization Analysis , Humans , Autoimmune Diseases/genetics , Autoimmune Diseases/drug therapy , Hypolipidemic Agents/therapeutic use , Lipid Metabolism/drug effects , Lipid Metabolism/genetics , Polymorphism, Single Nucleotide , Lipids/blood , Protein Interaction Maps/genetics , Hydroxymethylglutaryl CoA Reductases/genetics
7.
BMC Cardiovasc Disord ; 24(1): 289, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822281

ABSTRACT

LY86, also known as MD1, has been implicated in various pathophysiological processes including inflammation, obesity, insulin resistance, and immunoregulation. However, the role of LY86 in cholesterol metabolism remains incompletely understood. Several studies have reported significant up-regulation of LY86 mRNA in atherosclerosis; nevertheless, the regulatory mechanism by which LY86 is involved in this disease remains unclear. In this study, we aimed to investigate whether LY86 affects ox-LDL-induced lipid accumulation in macrophages. Firstly, we confirmed that LY86 is indeed involved in the process of atherosclerosis and found high expression levels of LY86 in human atherosclerotic plaque tissue. Furthermore, our findings suggest that LY86 may mediate intracellular lipid accumulation induced by ox-LDL through the SREBP2/HMGCR pathway. This mechanism could be associated with increased cholesterol synthesis resulting from enhanced endoplasmic reticulum stress response.


Subject(s)
Atherosclerosis , Endoplasmic Reticulum Stress , Hydroxymethylglutaryl CoA Reductases , Lipoproteins, LDL , Macrophages , Signal Transduction , Sterol Regulatory Element Binding Protein 2 , Up-Regulation , Humans , Lipoproteins, LDL/metabolism , Sterol Regulatory Element Binding Protein 2/metabolism , Sterol Regulatory Element Binding Protein 2/genetics , Macrophages/metabolism , Macrophages/drug effects , Endoplasmic Reticulum Stress/drug effects , Atherosclerosis/metabolism , Atherosclerosis/genetics , Atherosclerosis/pathology , Hydroxymethylglutaryl CoA Reductases/metabolism , Hydroxymethylglutaryl CoA Reductases/genetics , Plaque, Atherosclerotic , THP-1 Cells , Male , Animals , Lipid Metabolism/drug effects , Cholesterol/metabolism
8.
Sci Rep ; 14(1): 12094, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802400

ABSTRACT

Statins are thought to have positive effects on migraine but existing data are inconclusive. We aimed to evaluate the causal effect of such drugs on migraines using Mendelian randomization. We used four types of genetic instruments as proxies for HMG-CoA reductase inhibition. We included the expression quantitative trait loci of the HMG-CoA reductase gene and genetic variation within or near the HMG-CoA reductase gene region. Variants were associated with low-density lipoprotein cholesterol, apolipoprotein B, and total cholesterol. Genome-wide association study summary data for the three lipids were obtained from the UK Biobank. Comparable data for migraine were obtained from the International Headache Genetic Consortium and the FinnGen Consortium. Inverse variance weighting method was used for the primary analysis. Additional analyses included pleiotropic robust methods, colocalization, and meta-analysis. Genetically determined high expression of HMG-CoA reductase was associated with an increased risk of migraines (OR = 1.55, 95% CI 1.30-1.84, P = 6.87 × 10-7). Similarly, three genetically determined HMG-CoA reductase-mediated lipids were associated with an increased risk of migraine. These conclusions were consistent across meta-analyses. We found no evidence of bias caused by pleiotropy or genetic confounding factors. These findings support the hypothesis that statins can be used to treat migraine.


Subject(s)
Genome-Wide Association Study , Hydroxymethylglutaryl CoA Reductases , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Mendelian Randomization Analysis , Migraine Disorders , Polymorphism, Single Nucleotide , Humans , Hydroxymethylglutaryl CoA Reductases/genetics , Hydroxymethylglutaryl CoA Reductases/metabolism , Migraine Disorders/genetics , Migraine Disorders/drug therapy , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Quantitative Trait Loci , Genetic Predisposition to Disease
9.
Medicine (Baltimore) ; 103(18): e38010, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701318

ABSTRACT

Accumulating evidences have indicated that lipid-lowering drugs have effect for the treatment of cancers. However, causal associations between lipid-lowering drugs and the risk of cancers are still unclear. In our study, we utilized single nucleotide polymorphisms of proprotein convertase subtilis kexin 9 (PCSK9) inhibitors and 3-hydroxy-3-methylglutaryl-assisted enzyme A reductase (HMGCR) inhibitors and performed a drug target Mendelian randomization to explore the causal association between lipid-lowering drugs and the risk of cancers. Five regression methods were carried out, including inverse variance weighted (IVW) method, MR Egger, weighted median, simple mode and weighted mode methods, of which IVW method was considered as the main analysis. Our outcome dataset contained the risk of breast cancer (BC), colorectal cancer, endometrial cancer, gastric cancer (GC), hepatocellular carcinoma (HCC), lung cancer, esophageal cancer, prostate cancer (PC), and skin cancer (SC). Our results demonstrated that PCSK9 inhibitors were significant associated with a decreased effect of GC [IVW: OR = 0.482, 95% CI: 0.264-0.879, P = .017]. Besides, genetic inhibitions of HMGCR were significant correlated with an increased effect of BC [IVW: OR = 1.421, 95% CI: 1.056-1.911, P = .020], PC [IVW: OR = 1.617, 95% CI: 1.234-2.120, P = .0005] and SC [IVW: OR = 1.266, 95% CI: 1.022-1.569, P = .031]. For GC [IVW: OR = 0.559, 95% CI: 0.382-0.820, P = .0029] and HCC [IVW: OR = 0.241, 95% CI: 0.085-0.686, P = .0077], HMGCR inhibitors had a protective risk. Our method suggested that PCSK9 inhibitors were significant associated with a protective effect of GC. Genetic inhibitions of HMGCR were significant correlated with an increased effect of BC, PC and SC. Meanwhile, HMGCR inhibitors had a protective risk of GC and HCC. Subsequent studies still needed to assess potential effects between lipid-lowering drugs and the risk of cancers with clinical trials.


Subject(s)
Hydroxymethylglutaryl CoA Reductases , Mendelian Randomization Analysis , Neoplasms , Polymorphism, Single Nucleotide , Proprotein Convertase 9 , Humans , Neoplasms/genetics , Neoplasms/epidemiology , Hydroxymethylglutaryl CoA Reductases/genetics , Female , PCSK9 Inhibitors , Hypolipidemic Agents/therapeutic use , Male , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use
10.
BMC Cancer ; 24(1): 602, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760735

ABSTRACT

BACKGROUND: Melanoma proliferation is partly attributed to dysregulated lipid metabolism. The effectiveness of lipid-lowering drugs in combating cutaneous melanoma (CM) is a subject of ongoing debate in both in vitro and clinical studies. METHOD: This study aims to evaluate the causal relationship between various lipid-lowering drug targets, namely 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR, targeted by statins), Proprotein convertase subtilisin/kexin type 9 (PCSK9, targeted by alirocumab and evolocumab), and Niemann-Pick C1-like 1 (NPC1L1, targeted by ezetimibe), and the outcomes of cutaneous melanoma. To mimic the effects of lipid-lowering drugs, we utilized two genetic tools: analysis of polymorphisms affecting the expression levels of drug target genes, and genetic variations linked to low-density lipoprotein cholesterol levels and drug target genes. These variations were sourced from genome-wide association studies (GWAS). We applied Summary-data-based Mendelian Randomization (SMR) and Inverse Variance Weighted Mendelian Randomization (IVW-MR) to gauge the effectiveness of these drugs. RESULTS: Our findings, with SMR results showing an odds ratio (OR) of 1.44 (95% CI: 1.08-1.92; P = 0.011) and IVW-MR results indicating an OR of 1.56 (95% CI: 1.10-2.23; P = 0.013), demonstrate a positive correlation between PCSK9 expression and increased risk of CM. However, no such correlations were observed in other analyses. CONCLUSION: The study concludes that PCSK9 plays a significant role in the development of CM, and its inhibition is linked to a reduced risk of the disease.


Subject(s)
Genome-Wide Association Study , Hydroxymethylglutaryl CoA Reductases , Melanoma , Mendelian Randomization Analysis , Proprotein Convertase 9 , Skin Neoplasms , Humans , Melanoma/genetics , Melanoma/drug therapy , Skin Neoplasms/genetics , Skin Neoplasms/drug therapy , Proprotein Convertase 9/genetics , Hydroxymethylglutaryl CoA Reductases/genetics , Melanoma, Cutaneous Malignant , Antibodies, Monoclonal, Humanized/therapeutic use , Polymorphism, Single Nucleotide , Membrane Transport Proteins/genetics , Membrane Proteins/genetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Ezetimibe/therapeutic use , Hypolipidemic Agents/therapeutic use , Hypolipidemic Agents/pharmacology
11.
BMC Cancer ; 24(1): 667, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822303

ABSTRACT

BACKGROUND: The causal impact of lipid-lowering drugs on ovarian cancer (OC) and cervical cancer (CC) has received considerable attention, but its causal relationship is still a subject of debate. Hence, the objective of this study is to evaluate the impact of lipid-lowering medications on the occurrence risk of OC and CC through Mendelian randomization (MR) analysis of drug targets. METHODS: This investigation concentrated on the primary targets of lipid-lowering medications, specifically, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) and proprotein convertase kexin 9 (PCSK9). Genetic variations associated with HMGCR and PCSK9 were derived from published genome-wide association study (GWAS) findings to serve as substitutes for HMGCR and PCSK9 inhibitors. Employing a MR approach, an analysis was conducted to scrutinize the impact of inhibitors targeting HMGCR and PCSK9 on the occurrence of OC and CC. Coronary heart disease (CHD) risk was utilized as a positive control, and the primary outcomes encompassed OC and CC. RESULTS: The findings of the study suggest a notable elevation in the risk of OC among patients treated with HMGCR inhibitors (OR [95%CI] = 1.815 [1.316, 2.315], p = 0.019). In contrast, no significant correlation was observed between PCSK9 inhibitors and the occurrence of OC. Additionally, the analysis did not reveal any noteworthy connection between HMGCR inhibitors, PCSK9 inhibitors, and CC. CONCLUSION: HMGCR inhibitors significantly elevate the risk of OC in patients, but their mechanism needs further investigation, and no influence of PCSK9 inhibitors on OC has been observed. There is no significant relationship between HMGCR inhibitors, PCSK9 inhibitors, and CC.


Subject(s)
Genome-Wide Association Study , Hydroxymethylglutaryl CoA Reductases , Mendelian Randomization Analysis , Ovarian Neoplasms , Proprotein Convertase 9 , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/drug therapy , Hydroxymethylglutaryl CoA Reductases/genetics , Ovarian Neoplasms/genetics , Ovarian Neoplasms/drug therapy , Proprotein Convertase 9/genetics , Hypolipidemic Agents/therapeutic use , Hypolipidemic Agents/adverse effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Polymorphism, Single Nucleotide
12.
Br J Pharmacol ; 181(16): 2750-2773, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38641905

ABSTRACT

BACKGROUND AND PURPOSE: Statins are competitive inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (HMGCR), and exert adverse effects on mitochondrial function, although the mechanisms underlying these effects remain unclear. We used a tamoxifen-induced Hmgcr-knockout (KO) mouse model, a multi-omics approach and mitochondrial function assessments to investigate whether decreased HMGCR activity impacts key liver energy metabolism pathways. EXPERIMENTAL APPROACH: We established a new mouse strain using the Cre/loxP system, which enabled whole-body deletion of Hmgcr expression. These mice were crossed with Rosa26Cre mice and treated with tamoxifen to delete Hmgcr in all cells. We performed transcriptomic and metabolomic analyses and thus evaluated time-dependent changes in metabolic functions to identify the pathways leading to cell death in Hmgcr-KO mice. KEY RESULTS: Lack of Hmgcr expression resulted in lethality, due to acute liver damage caused by rapid disruption of mitochondrial fatty acid ß-oxidation and very high accumulation of long-chain (LC) acylcarnitines in both male and female mice. Gene expression and KO-related phenotype changes were not observed in other tissues. The progression to liver failure was driven by diminished peroxisome formation, which resulted in impaired mitochondrial and peroxisomal fatty acid metabolism, enhanced glucose utilization and whole-body hypoglycaemia. CONCLUSION AND IMPLICATIONS: Our findings suggest that HMGCR is crucial for maintaining energy metabolism balance, and its activity is necessary for functional mitochondrial ß-oxidation. Moreover, statin-induced adverse reactions might be rescued by the prevention of LC acylcarnitine accumulation.


Subject(s)
Carnitine , Fatty Acids , Hydroxymethylglutaryl CoA Reductases , Liver , Mice, Knockout , Oxidation-Reduction , Animals , Liver/metabolism , Liver/drug effects , Male , Fatty Acids/metabolism , Oxidation-Reduction/drug effects , Carnitine/analogs & derivatives , Carnitine/metabolism , Carnitine/pharmacology , Mice , Female , Hydroxymethylglutaryl CoA Reductases/metabolism , Hydroxymethylglutaryl CoA Reductases/genetics , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondria/drug effects
13.
Nat Commun ; 15(1): 3642, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684680

ABSTRACT

Triazole antifungals function as ergosterol biosynthesis inhibitors and are frontline therapy for invasive fungal infections, such as invasive aspergillosis. The primary mechanism of action of triazoles is through the specific inhibition of a cytochrome P450 14-α-sterol demethylase enzyme, Cyp51A/B, resulting in depletion of cellular ergosterol. Here, we uncover a clinically relevant secondary mechanism of action for triazoles within the ergosterol biosynthesis pathway. We provide evidence that triazole-mediated inhibition of Cyp51A/B activity generates sterol intermediate perturbations that are likely decoded by the sterol sensing functions of HMG-CoA reductase and Insulin-Induced Gene orthologs as increased pathway activity. This, in turn, results in negative feedback regulation of HMG-CoA reductase, the rate-limiting step of sterol biosynthesis. We also provide evidence that HMG-CoA reductase sterol sensing domain mutations previously identified as generating resistance in clinical isolates of Aspergillus fumigatus partially disrupt this triazole-induced feedback. Therefore, our data point to a secondary mechanism of action for the triazoles: induction of HMG-CoA reductase negative feedback for downregulation of ergosterol biosynthesis pathway activity. Abrogation of this feedback through acquired mutations in the HMG-CoA reductase sterol sensing domain diminishes triazole antifungal activity against fungal pathogens and underpins HMG-CoA reductase-mediated resistance.


Subject(s)
Antifungal Agents , Aspergillus fumigatus , Ergosterol , Fungal Proteins , Hydroxymethylglutaryl CoA Reductases , Triazoles , Aspergillus fumigatus/drug effects , Aspergillus fumigatus/metabolism , Aspergillus fumigatus/genetics , Antifungal Agents/pharmacology , Triazoles/pharmacology , Fungal Proteins/metabolism , Fungal Proteins/genetics , Ergosterol/metabolism , Ergosterol/biosynthesis , Hydroxymethylglutaryl CoA Reductases/metabolism , Hydroxymethylglutaryl CoA Reductases/genetics , Aspergillosis/drug therapy , Aspergillosis/microbiology , Drug Resistance, Fungal/genetics , Drug Resistance, Fungal/drug effects , Gene Expression Regulation, Fungal/drug effects , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Microbial Sensitivity Tests , Sterol 14-Demethylase/metabolism , Sterol 14-Demethylase/genetics , Humans , Mutation
14.
Stroke ; 55(6): 1676-1679, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38572634

ABSTRACT

BACKGROUND: The effects of lipid-lowering drug targets on different ischemic stroke subtypes are not fully understood. We aimed to explore the mechanisms by which lipid-lowering drug targets differentially affect the risk of ischemic stroke subtypes and their underlying pathophysiology. METHODS: Using a 2-sample Mendelian randomization approach, we assessed the effects of genetically proxied low-density lipoprotein cholesterol (LDL-c) and 3 clinically approved LDL-lowering drugs (HMGCR [3-hydroxy-3-methylglutaryl-CoA reductase], PCSK9 [proprotein convertase subtilisin/kexin type 9], and NPC1L1 [Niemann-Pick C1-Like 1]) on stroke subtypes and brain imaging biomarkers associated with small vessel stroke (SVS), including white matter hyperintensity volume and perivascular spaces. RESULTS: In genome-wide Mendelian randomization analyses, lower genetically predicted LDL-c was significantly associated with a reduced risk of any stroke, ischemic stroke, and large artery stroke, supporting previous findings. Significant associations between genetically predicted LDL-c and cardioembolic stroke, SVS, and biomarkers, perivascular space and white matter hyperintensity volume, were not identified in this study. In drug-target Mendelian randomization analysis, genetically proxied reduced LDL-c through NPC1L1 inhibition was associated with lower odds of perivascular space (odds ratio per 1-mg/dL decrease, 0.79 [95% CI, 0.67-0.93]) and with lower odds of SVS (odds ratio, 0.29 [95% CI, 0.10-0.85]). CONCLUSIONS: This study provides supporting evidence of a potentially protective effect of LDL-c lowering through NPC1L1 inhibition on perivascular space and SVS risk, highlighting novel therapeutic targets for SVS.


Subject(s)
Cerebral Small Vessel Diseases , Cholesterol, LDL , Ischemic Stroke , Mendelian Randomization Analysis , Proprotein Convertase 9 , Humans , Ischemic Stroke/genetics , Ischemic Stroke/diagnostic imaging , Cholesterol, LDL/blood , Cerebral Small Vessel Diseases/genetics , Cerebral Small Vessel Diseases/diagnostic imaging , Proprotein Convertase 9/genetics , Biomarkers/blood , Membrane Transport Proteins/genetics , Hydroxymethylglutaryl CoA Reductases/genetics , Brain/diagnostic imaging , Membrane Proteins/genetics , Genome-Wide Association Study , Female
15.
Biochem Biophys Res Commun ; 710: 149841, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38588613

ABSTRACT

Prostate cancer is the most prevalent malignancy in men. While diagnostic and therapeutic interventions have substantially improved in recent years, disease relapse, treatment resistance, and metastasis remain significant contributors to prostate cancer-related mortality. Therefore, novel therapeutic approaches are needed. Statins are inhibitors of the 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the rate-limiting enzyme of the mevalonate pathway which plays an essential role in cholesterol homeostasis. Numerous preclinical studies have provided evidence for the pleiotropic antitumor effects of statins. However, results from clinical studies remain controversial and have shown substantial benefits to even no effects on human malignancies including prostate cancer. Potential statin resistance mechanisms of tumor cells may account for such discrepancies. In our study, we treated human prostate cancer cell lines (PC3, C4-2B, DU-145, LNCaP) with simvastatin, atorvastatin, and rosuvastatin. PC3 cells demonstrated high statin sensitivity, resulting in a significant loss of vitality and clonogenic potential (up to - 70%; p < 0.001) along with an activation of caspases (up to 4-fold; p < 0.001). In contrast, C4-2B and DU-145 cells were statin-resistant. Statin treatment induced a restorative feedback in statin-resistant C4-2B and DU-145 cells through upregulation of the HMGCR gene and protein expression (up to 3-folds; p < 0.01) and its transcription factor sterol-regulatory element binding protein 2 (SREBP-2). This feedback was absent in PC3 cells. Blocking the feedback using HMGCR-specific small-interfering (si)RNA, the SREBP-2 activation inhibitor dipyridamole or the HMGCR degrader SR12813 abolished statin resistance in C4-2B and DU-145 and induced significant activation of caspases by statin treatment (up to 10-fold; p < 0.001). Consistently, long-term treatment with sublethal concentrations of simvastatin established a stable statin resistance of a PC3SIM subclone accompanied by a significant upregulation of both baseline as well as post-statin HMGCR protein (gene expression up to 70-fold; p < 0.001). Importantly, the statin-resistant phenotype of PC3SIM cells was reversible by HMGCR-specific siRNA and dipyridamole. Our investigations reveal a key role of a restorative feedback driven by the HMGCR/SREBP-2 axis in statin resistance mechanisms of prostate cancer cells.


Subject(s)
Acyl Coenzyme A , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Prostatic Neoplasms , Male , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl CoA Reductases/genetics , Hydroxymethylglutaryl CoA Reductases/metabolism , Sterol Regulatory Element Binding Protein 1 , Simvastatin/pharmacology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Caspases , Dipyridamole
16.
Int Immunol ; 36(6): 291-302, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38451254

ABSTRACT

Previous observational and experimental studies have suggested a relationship between statin treatments and the augmentation of immunotherapy effects; however, the causal role of statin usage in promoting antitumor immunity remains largely unexplored. Utilizing large-scale genome-wide association studies, we conducted a Mendelian Randomization (MR) analysis to examine the association between genetically proxied inhibition of the gene for 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), a specific target of statins, and 524 immunotherapy-related profiles, encompassing immune cells, inflammatory cytokines, immune checkpoints, and gut microbiota. Our findings indicated a suggestive association between statin therapy and proinflammatory as well as antitumor effects; notably, inhibition of HMGCR demonstrated a robust link with increased susceptibility of various immune cell types, including basophil cells, white blood cells, eosinophil cells, neutrophil cells, activated CD8+ T cells, dendritic cells, and natural killer cells; furthermore, a causal relationship was observed between statin use and a decrease in terminal CD8+ T cells, granulocytes, monocytes, and myeloid-derived suppressor cells; genetically proxied statin usage was also significantly associated with elevated levels of proinflammatory cytokines and immunotherapy-related gut microbiota; importantly, the potential inhibition of HMGCR in influencing the response to immunotherapy was confirmed in the real-world cohorts. This study provides novel insights into the regulatory role of HMGCR inhibition in antitumor immunity, suggesting that strategies targeting HMGCR or lipid regulation may hold therapeutic potential for enhancing the efficacy of immunotherapy.


Subject(s)
Immunotherapy , Lipid Metabolism , Mendelian Randomization Analysis , Humans , Immunotherapy/methods , Lipid Metabolism/genetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Genome-Wide Association Study , Inflammation/immunology , Hydroxymethylglutaryl CoA Reductases/immunology , Hydroxymethylglutaryl CoA Reductases/genetics , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/genetics
17.
J Cancer Res Clin Oncol ; 150(2): 106, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38418798

ABSTRACT

PURPOSE: De novo synthesis of cholesterol and its rate-limiting enzyme, 3-hydroxy-3-methylglutharyl-coenzyme A reductase (HMGCR), is deregulated in tumors and critical for tumor cell survival and proliferation. However, the role of HMGCR in the induction and maintenance of stem-like states in tumors remains unclear. METHODS: A compiled public database from breast cancer (BC) patients was analyzed with the web application SurvExpress. Cell Miner was used for the analysis of HMGCR expression and statin sensitivity of the NCI-60 cell lines panel. A CRISPRon system was used to induce HMGCR overexpression in the luminal BC cell line MCF-7 and a lentiviral pLM-OSKM system for the reprogramming of MCF-7 cells. Comparisons were performed by two-tailed unpaired t-test for two groups and one- or two-way ANOVA. RESULTS: Data from BC patients showed that high expression of several members of the cholesterol synthesis pathway were associated with lower recurrence-free survival, particularly in hormone-receptor-positive BC. In silico and in vitro analysis showed that HMGCR is expressed in several BC cancer cell lines, which exhibit a subtype-dependent response to statins in silico and in vitro. A stem-like phenotype was demonstrated upon HMGCR expression in MCF-7 cells, characterized by expression of the pluripotency markers NANOG, SOX2, increased CD44 +/CD24low/ -, CD133 + populations, and increased mammosphere formation ability. Pluripotent and cancer stem cell lines showed high expression of HMGCR, whereas cell reprogramming of MCF-7 cells did not increase HMGCR expression. CONCLUSION: HMGCR induces a stem-like phenotype in BC cells of epithelial nature, thus affecting tumor initiation, progression and statin sensitivity.


Subject(s)
Breast Neoplasms , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Female , Breast Neoplasms/pathology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl CoA Reductases/genetics , Hydroxymethylglutaryl CoA Reductases/metabolism , Oxidoreductases , Cholesterol
18.
BMC Med Genomics ; 17(1): 22, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233830

ABSTRACT

BACKGROUND: Coronary artery calcification (CAC) is a highly specific marker of atherosclerosis. Niemann-Pick C1-like 1 (NPC1L1) and 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) are the therapeutic targets of ezetimibe and statins, respectively, which are important for the progression of atherosclerosis. However, CAC's genetic susceptibility with above targets is still unknown. We aimed to investigate the association of NPC1L1 and HMGCR gene polymorphisms with CAC in patients with premature triple-vessel disease (PTVD). METHODS: Four single nucleotide polymorphisms (SNPs) (rs11763759, rs4720470, rs2072183, rs2073547) of NPC1L1, and three SNPs (rs12916, rs2303151, rs4629571) of HMGCR were genotyped in 872 PTVD patients. According to the coronary angiography results, patients were divided into low-degree CAC group and high-degree CAC group. RESULTS: A total of 872 PTVD patients (mean age, 47.71 ± 6.12; male, 72.8%) were finally included for analysis. Multivariate logistic regression analysis showed no significant association between the SNPs of NPC1L1 and HMGCR genes and high-degree CAC in the total population (P > 0.05). Subgroup analysis by gender revealed that the variant genotype (TT/CT) of rs4720470 on NPC1L1 gene was associated with increased risk for high-degree CAC in male patients only (OR = 1.505, 95% CI: 1.008-2.249, P = 0.046) in dominant model, but no significant association was found in female population, other SNPs of NPC1L1 and HMGCR genes (all P > 0.05). CONCLUSIONS: We reported for the first time that the rs4720470 on NPC1L1 gene was associated with high-degree CAC in male patients with PTVD. In the future, whether therapies related to this target could reduce CAC and cardiovascular events deserves further investigation.


Subject(s)
Atherosclerosis , Coronary Artery Disease , Humans , Male , Female , Adult , Middle Aged , Membrane Transport Proteins/genetics , Oxidoreductases/genetics , Coronary Artery Disease/genetics , Polymorphism, Single Nucleotide , Hydroxymethylglutaryl CoA Reductases/genetics
19.
Neurosci Res ; 204: 22-33, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38278219

ABSTRACT

Altered cholesterol metabolism is implicated in brain ageing and Alzheimer's disease. We examined whether key genes regulating cholesterol metabolism and levels of brain cholesterol are altered in dementia and Alzheimer's disease neuropathological change (ADNC). Temporal cortex (n = 99) was obtained from the Cognitive Function and Ageing Study. Expression of the cholesterol biosynthesis rate-limiting enzyme HMG-CoA reductase (HMGCR) and its regulator, SREBP2, were detected using immunohistochemistry. Expression of HMGCR, SREBP2, CYP46A1 and ABCA1 were quantified by qPCR in samples enriched for astrocyte and neuronal RNA following laser-capture microdissection. Total cortical cholesterol was measured using the Amplex Red assay. HMGCR and SREBP2 proteins were predominantly expressed in pyramidal neurones, and in glia. Neuronal HMGCR did not vary with ADNC, oxidative stress, neuroinflammation or dementia status. Expression of HMGCR neuronal mRNA decreased with ADNC (p = 0.022) and increased with neuronal DNA damage (p = 0.049), whilst SREBP2 increased with ADNC (p = 0.005). High or moderate tertiles for cholesterol levels were associated with increased dementia risk (OR 1.44, 1.58). APOE ε4 allele was not associated with cortical cholesterol levels. ADNC is associated with gene expression changes that may impair cholesterol biosynthesis in neurones but not astrocytes, whilst levels of cortical cholesterol show a weak relationship to dementia status.


Subject(s)
Alzheimer Disease , Cholesterol , Dementia , Hydroxymethylglutaryl CoA Reductases , Sterol Regulatory Element Binding Protein 2 , Humans , Cholesterol/metabolism , Cholesterol/biosynthesis , Male , Sterol Regulatory Element Binding Protein 2/metabolism , Hydroxymethylglutaryl CoA Reductases/metabolism , Hydroxymethylglutaryl CoA Reductases/genetics , Female , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Aged , Dementia/metabolism , Dementia/pathology , Aged, 80 and over , Brain/metabolism , Brain/pathology , Cohort Studies , Neurons/metabolism , Cholesterol 24-Hydroxylase/metabolism , Astrocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...