Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 980
Filter
1.
Int J Pharm ; 665: 124691, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39278288

ABSTRACT

Hyperlipidemia and its associated cardiovascular complications are the major causes of mortality and disability worldwide. Simvastatin (SIM) is one of the most commonly prescribed lipid-lowering drugs for the treatment of hyperlipidemia by competitive inhibition of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. However, the extensive first-pass metabolism leading to low oral bioavailability and frequent daily doses may lead to poor patient compliance and adverse effects caused by plasma fluctuations. To overcome these challenges, this work purposed two microneedle (MN) delivery strategies for the potential enhancement of SIM delivery. Firstly, nanocrystal (NC) formulations of SIM were investigated, followed by incorporation into a trilayer dissolving microneedle (DMN) design. Furthermore, a novel effervescent powder-carrying MN (EMN) design was developed to enhance intradermal delivery by incorporating the effervescent agents into the drug powder. Both MN approaches exhibited significantly improved permeation and in-skin deposition ability in the Franz cell study, with the ex vivo delivery efficiency of 64.33 ± 6.17 % and 40.11 ± 4.53 % for EMNs and DMNs, respectively. Most importantly, in vivo studies using a female Sprague-Dawley rat model confirmed the successful delivery of SIM from NCs-loaded DMNs (Cmax = 287.39 ± 106.82 ng/mL) and EMNs (Cmax = 203.05 ± 17.07 ng/mL) and maintain therapeutically relevant plasma concentrations for 15 days following a single application. The enhanced bioavailabilities of DMNs and EMNs were 24.28 % and 103.82 %, respectively, which were both significantly higher than that of conventional oral administration.


Subject(s)
Nanoparticles , Needles , Powders , Rats, Sprague-Dawley , Simvastatin , Animals , Simvastatin/administration & dosage , Simvastatin/pharmacokinetics , Simvastatin/chemistry , Female , Drug Delivery Systems , Rats , Administration, Cutaneous , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics , Skin Absorption , Skin/metabolism , Delayed-Action Preparations
2.
Drug Metab Dispos ; 52(9): 957-965, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39038952

ABSTRACT

The organic anion transporting polypeptide (OATP) 2B1 is considered an emerging drug transporter that is found expressed in pharmacokinetically relevant organs such as the liver, small intestine, and kidney. Despite its interaction with various substrate drugs, the understanding of its in vivo relevance is still limited. In this study, we first validated the interaction of atorvastatin with rat OATP2B1 using transiently transfected HeLa cells. Moreover, we characterized our rSlco2b1-knockout and SLCO2B1-knockin rats for mRNA, protein expression, and localization of OATP2B1 in the liver, small intestine, and kidney. The transporter showed the highest expression in the liver followed by the small intestine. In humanized rats, human OATP2B1 is localized on the sinusoidal membrane of hepatocytes. In enterocytes of wild-type and humanized rats, the transporter was detected in the luminal membrane with the vast majority being localized subapical. Subsequently, we assessed atorvastatin pharmacokinetics in male wild-type, rSlco2b1-knockout, and SLCO2B1-knockin rats after a single-dose administration (orally and intravenously). Investigating the contribution of rat OATP2B1 or human OATP2B1 to oral atorvastatin pharmacokinetics revealed no differences in concentration-time profiles or pharmacokinetic parameters. However, when comparing the pharmacokinetics of atorvastatin after intravenous administration in SLCO2B1-humanized rats and knockout animals, notable differences were observed. In particular, the systemic exposure (area under the curve) decreased by approximately 40% in humanized animals, whereas the clearance was 57% higher in animals expressing human OATP2B1. These findings indicate that human OATP2B1 influences pharmacokinetics of atorvastatin after intravenous administration, most likely by contributing to the hepatic uptake. SIGNIFICANCE STATEMENT: Wild-type, rSlco2b1-knockout, and SLCO2B1-humanized Wistar rats were characterized for the expression of rat and human SLCO2B1/OATP2B1. Pharmacokinetic studies of atorvastatin over 24 hours were conducted in male wild-type, rSlco2b1-knockout, and SLCO2B1-humanized rats. After a single-dose intravenous administration, a lower systemic exposure and an increase in clearance were observed in SLCO2B1-humanized rats compared with knockout animals indicating a contribution of OATP2B1 to the hepatic clearance.


Subject(s)
Atorvastatin , Liver , Organic Anion Transporters , Animals , Atorvastatin/pharmacokinetics , Atorvastatin/administration & dosage , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism , Humans , Male , Rats , Liver/metabolism , HeLa Cells , Rats, Transgenic , Intestine, Small/metabolism , Gene Knockout Techniques/methods , Kidney/metabolism , Gene Knock-In Techniques/methods , Administration, Oral , Administration, Intravenous , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Hepatocytes/metabolism , Tissue Distribution
3.
Clin Transl Sci ; 17(8): e13900, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39078149

ABSTRACT

Elevated triglyceride levels are associated with an increased risk of cardiovascular events despite guideline-based statin treatment of low-density lipoprotein cholesterol. Peroxisome proliferator-activated receptor α (PPARα) agonists exert a significant triglyceride-lowering effect. However, combination therapy of PPARα agonists with statins poses an increased risk of rhabdomyolysis, which is rare but a major concern of the combination therapy. Pharmacokinetic interaction is suspected to be a contributing factor to the risk. To examine the potential for combination therapy with the selective PPARα modulator (SPPARMα) pemafibrate and statins, drug-drug interaction studies were conducted with open-label, randomized, 6-sequence, 3-period crossover designs for the combination of pemafibrate 0.2 mg twice daily and each of 6 statins once daily: pitavastatin 4 mg/day (n = 18), atorvastatin 20 mg/day (n = 18), rosuvastatin 20 mg/day (n = 29), pravastatin 20 mg/day (n = 18), simvastatin 20 mg/day (n = 20), and fluvastatin 60 mg/day (n = 19), involving healthy male volunteers. The pharmacokinetic parameters of pemafibrate and each of the statins were similar regardless of coadministration. There was neither an effect on the systemic exposure of pemafibrate nor a clinically important increase in the systemic exposure of any of the statins on the coadministration although the systemic exposure of simvastatin was reduced by about 15% and its open acid form by about 60%. The HMG-CoA reductase inhibitory activity in plasma samples from the simvastatin and pemafibrate combination group was about 70% of that in the simvastatin alone group. In conclusion, pemafibrate did not increase the systemic exposure of statins, and vice versa, in healthy male volunteers.


Subject(s)
Benzoxazoles , Butyrates , Cross-Over Studies , Drug Interactions , Healthy Volunteers , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Male , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Adult , Butyrates/pharmacokinetics , Butyrates/administration & dosage , Benzoxazoles/pharmacokinetics , Benzoxazoles/administration & dosage , Benzoxazoles/adverse effects , Benzoxazoles/pharmacology , Young Adult , Middle Aged , PPAR alpha/agonists , PPAR alpha/metabolism
4.
Naunyn Schmiedebergs Arch Pharmacol ; 397(10): 7377-7393, 2024 10.
Article in English | MEDLINE | ID: mdl-38748226

ABSTRACT

Management of cancer is challenging due to non-targeting and high side effect issues. Drug repurposing is an innovative method for employing medications for other disease therapy in addition to their original use. Simvastatin, a 3-hydroxy-3-methylglutaryl coenzyme-A reductase inhibitor, is a lipid-lowering drug that is being studied for the treatment of cancer in various in vitro and in vivo models. Nanotechnology offers a potential platform for incorporation of drugs with enhanced pharmaceutical (solubility, release characteristics, stability, etc.) and biological characteristics (targeting, pharmacokinetic, pharmacodynamic). Utilizing a variety of resources such as Scopus, Springer, Web of Science, Elsevier, Bentham Science, Taylor & Francis, and PubMed, a thorough literature search was carried out by looking through electronic records published between 2003 and 2024. The keywords used were simvastatin, drug repurposing, anti-cancer simvastatin, pharmaceutical properties of simvastatin, simvastatin nanoformulations, simvastatin patents, clinical trials, etc. Numerous articles were looked for, filtered, checked out, and incorporated. Pure simvastatin has been researched as a repurposed medication for the treatment of cancer in several in vitro and in vivo models, such as carcinoma of the lung, colon, liver, prostate, breast, and skin. Simvastatin also incorporated into different nanocarriers (nanosuspensions, microparticles/nanoparticles, liposomes, and nanostructured lipid carriers) and showed improvement in solubility, bioavailability, drug loading, release kinetics, and targeting. Clinical trial and patent reports suggest potential of simvastatin in cancer therapy. The preclinical studies of pure simvastatin in in vitro and in vivo models showed the potential for its ability to inhibit cancer cell growth and further incorporation into nanoformulations strengthened its preclinical and pharmaceutical characteristics.


Subject(s)
Antineoplastic Agents , Drug Repositioning , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Neoplasms , Simvastatin , Simvastatin/pharmacology , Simvastatin/administration & dosage , Simvastatin/pharmacokinetics , Simvastatin/therapeutic use , Humans , Animals , Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/chemistry , Nanotechnology , Nanoparticles
5.
Naunyn Schmiedebergs Arch Pharmacol ; 397(10): 7297-7306, 2024 10.
Article in English | MEDLINE | ID: mdl-38717707

ABSTRACT

Dyslipidaemia describes the condition of abnormal lipid levels in a person's bloodstream. Since the 1980s, statin medications have been used to treat dyslipidaemia and other comorbidities, such as stroke risk and atherosclerosis. Statin medications were initially synthesised from fungal metabolites, but many synthetic statin drugs have been manufactured since then. Statin medication is quite effective in reducing total cholesterol levels in the bloodstream, but it has limitations. Due to their poor water solubility, statin drugs possess poor oral bioavailability, which hinders their therapeutic efficacy. Nanoparticle drug delivery technology has been shown to improve the pharmacokinetic profiles of many drug classes, and statins have great potential to benefit from this. This paper reviewed the currently available literature on nanoparticle statin medication and evaluated the possible improvements that can be made to the pharmacokinetic profile and efficacy of conventional statin medication. It was found that the oral bioavailability of nanoparticle medication consistently outperformed conventional medication by up to 400% in some cases. Substantial improvements in time to peak plasma concentration and plasma concentration peaks were also found, and increased periods in circulation before excretion were shown. It was concluded that nanoparticle technology has the potential to completely replace conventional statin medication as it offers more significant benefits with minimal drawbacks. Upon further study and development, the manufacture of nanoparticle statin medication should become feasible enough for large-scale application, which will significantly benefit patients and unburden healthcare systems.


Subject(s)
Biological Availability , Dyslipidemias , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Nanoparticles , Humans , Dyslipidemias/drug therapy , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Animals , Nanoparticle Drug Delivery System/chemistry
6.
Expert Opin Drug Metab Toxicol ; 20(6): 519-528, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38809523

ABSTRACT

INTRODUCTION: In addition to the well-established understanding of the pharmacogenetics of drug-metabolizing enzymes, there is growing data on the effects of genetic variation in drug transporters, particularly ATP-binding cassette (ABC) transporters. However, the evidence that these genetic variants can be used to predict drug effects and to adjust individual dosing to avoid adverse events is still limited. AREAS COVERED: This review presents a summary of the current literature from the PubMed database as of February 2024 regarding the impact of genetic variants on ABCG2 function and their relevance to the clinical use of the HMG-CoA reductase inhibitor rosuvastatin and the xanthine oxidase inhibitor allopurinol. EXPERT OPINION: Although there are pharmacogenetic guidelines for the ABCG2 missense variant Q141K, there is still some conflicting data regarding the clinical benefits of these recommendations. Some caution appears to be warranted in homozygous ABCG2 Q141K carriers when rosuvastatin is administered at higher doses and such information is already included in the drug label. The benefit of dose adaption to lower possible side effects needs to be evaluated in prospective clinical studies.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2 , Allopurinol , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Neoplasm Proteins , Pharmacogenetics , Rosuvastatin Calcium , Humans , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Rosuvastatin Calcium/pharmacokinetics , Rosuvastatin Calcium/administration & dosage , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Allopurinol/pharmacokinetics , Allopurinol/administration & dosage , Allopurinol/pharmacology , Polymorphism, Genetic , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/adverse effects , Animals , Mutation, Missense
7.
Pharmacol Rep ; 76(5): 1184-1195, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38632186

ABSTRACT

BACKGROUND: Regorafenib is used in the treatment of colorectal cancer and hepatocellular carcinoma. Due to the co-morbidity of hyperlipidemia in these conditions, statins, including atorvastatin, are used as potential adjuvant therapy agents. Both regorafenib and atorvastatin are metabolized by CYP3A4. In addition, atorvastatin is a P-gp and BCRP substrate, whereas regorafenib and its active metabolites M-2 and M-5 are inhibitors of these transporters. Hence, the concomitant use of both drugs may increase the risk of a clinically significant drug-drug interaction. Therefore, the present study aimed to assess the pharmacokinetic interactions of atorvastatin and regorafenib and their active metabolites. METHODS: Male Wistar rats were assigned to three groups (eight animals in each) and were orally administered: regorafenib and atorvastatin (IREG+ATO), a carrier with regorafenib (IIREG), and atorvastatin with a carrier (IIIATO). Blood samples were collected for 72 h. UPLC-MS/MS was the method of measurement of regorafenib and atorvastatin concentrations. The pharmacokinetic parameters were calculated with a non-compartmental model. RESULTS: A single administration of atorvastatin increased the exposure to regorafenib and its active metabolites. In the IREG+ATO group, the Cmax, AUC0-t, and AUC0-∞ of regorafenib increased 2.7, 3.2, and 3.2-fold, respectively. Atorvastatin also significantly increased the Cmax, AUC0-t, and AUC0-∞ of both regorafenib metabolites. Regorafenib, in turn, decreased the AUC0-t and AUC0-∞ of 2-OH atorvastatin by 86.9% and 67.3%, and the same parameters of 4-OH atorvastatin by 45.0% and 46.8%, respectively. CONCLUSIONS: This animal model study showed a significant pharmacokinetic interaction between regorafenib and atorvastatin. While this interaction may be clinically significant, this needs to be confirmed in clinical trials involving cancer patients.


Subject(s)
Atorvastatin , Drug Interactions , Phenylurea Compounds , Pyridines , Rats, Wistar , Animals , Atorvastatin/pharmacokinetics , Male , Pyridines/pharmacokinetics , Pyridines/administration & dosage , Phenylurea Compounds/pharmacokinetics , Phenylurea Compounds/administration & dosage , Rats , Area Under Curve , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Tandem Mass Spectrometry , Administration, Oral , Antineoplastic Agents/pharmacokinetics
8.
Am J Vet Res ; 85(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38626797

ABSTRACT

OBJECTIVE: To evaluate the plasma concentrations and determine the pharmacokinetic parameters of atorvastatin and its primary active metabolites (para- and orthohydroxyatorvastatin) after administration of a single oral dose in cockatiels (Nymphicus hollandicus). ANIMALS: 14 adult cockatiels (7 male, 7 female) around 2 years of age. METHODS: A compounded oral suspension of atorvastatin 10 mg/mL made with an oral suspending agent and an oral sweetener was administered via oral gavage at 20 mg/kg to each bird. Blood samples were collected at 7 different time points from 0.5 to 24 hours postadministration in a balanced incomplete block design with 3 blood samples per bird and 6 replicates per time point. Plasma concentrations of atorvastatin, parahydroxyatorvastatin, and orthohydroxyatorvastatin were determined by liquid chromatography-tandem mass spectrometry. Pharmacokinetic analysis was performed using noncompartmental analysis. RESULTS: The estimated time to maximum concentration (tmax) for atorvastatin, parahydroxyatorvastatin, and orthohydroxyatorvastatin was 3 hours for each. The estimated maximum plasma concentration (Cmax) for atorvastatin, parahydroxyatorvastatin, and orthohydroxyatorvastatin was 152.6, 172.4, and 68.8 ng/mL, respectively. The terminal half-lives were 4, 6.8, and 4.6 hours, respectively. CLINICAL RELEVANCE: These results support the therapeutic use of atorvastatin at the dose evaluated in this species based on human pharmacokinetic data. A starting dose of 20 mg/kg PO every 12 to 24 hours could be used to treat lipid disorders in cockatiels pending more data on multidose use and hypolipidemic efficacy.


Subject(s)
Atorvastatin , Cockatoos , Atorvastatin/pharmacokinetics , Atorvastatin/administration & dosage , Animals , Male , Female , Administration, Oral , Half-Life , Area Under Curve , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Hydroxymethylglutaryl-CoA Reductase Inhibitors/blood
9.
CPT Pharmacometrics Syst Pharmacol ; 13(6): 1029-1043, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38576225

ABSTRACT

Statins are used to reduce liver cholesterol levels but also carry a dose-related risk of skeletal muscle toxicity. Concentrations of statins in plasma are often used to assess efficacy and safety, but because statins are substrates of membrane transporters that are present in diverse tissues, local differences in intracellular tissue concentrations cannot be ruled out. Thus, plasma concentration may not be an adequate indicator of efficacy and toxicity. To bridge this gap, we used physiologically based pharmacokinetic (PBPK) modeling to predict intracellular concentrations of statins. Quantitative data on transporter clearance were scaled from in vitro to in vivo conditions by integrating targeted proteomics and transporter kinetics data. The developed PBPK models, informed by proteomics, suggested that organic anion-transporting polypeptide 2B1 (OATP2B1) and multidrug resistance-associated protein 1 (MRP1) play a pivotal role in the distribution of statins in muscle. Using these PBPK models, we were able to predict the impact of alterations in transporter function due to genotype or drug-drug interactions on statin systemic concentrations and exposure in liver and muscle. These results underscore the potential of proteomics-guided PBPK modeling to scale transporter clearance from in vitro data to real-world implications. It is important to evaluate the role of drug transporters when predicting tissue exposure associated with on- and off-target effects.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Liver , Models, Biological , Organic Anion Transporters , Proteomics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics , Liver/metabolism , Proteomics/methods , Humans , Organic Anion Transporters/metabolism , Muscle, Skeletal/metabolism , Multidrug Resistance-Associated Proteins/metabolism , Drug Interactions , Tissue Distribution , Male
10.
Clin Pharmacol Drug Dev ; 13(8): 842-851, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38469999

ABSTRACT

The combined cilostazol and rosuvastatin therapy is frequently used for coronary artery disease treatment. This open-label, 3 × 3 crossover clinical trial evaluated the pharmacokinetics and safety of a fixed-dose combination (FDC) of cilostazol/rosuvastatin (200 + 20 mg) versus a concurrent administration of the separate components (SCs) under both fasted and fed conditions. Among 48 enrolled healthy adults, 38 completed the study. Participants were administered a single oral dose of cilostazol/rosuvastatin (200 + 20 mg), either as an FDC or SCs in a fasted state, or FDC in a fed state, in each period of the trial. Blood samples were taken up to 48 hours after dosing, and plasma concentrations were analyzed using validated liquid chromatography-tandem mass spectrometry. The geometric mean ratios of FDC to SCs for area under the plasma concentration-time curve from time zero to the last quantifiable concentration (AUClast) and maximum plasma concentration (Cmax) were 0.94/1.05 and 1.06/1.15 for cilostazol and rosuvastatin, respectively (AUClast/Cmax). Compared with that during fasting, fed-state administration increased the AUClast and Cmax for cilostazol by approximately 72% and 160% and decreased these parameters for rosuvastatin by approximately 39% and 43%, respectively. To conclude, the FDC is bioequivalent to the SCs, with notable differences in pharmacokinetics when administered in a fed state. No significant safety differences were observed between the treatments.


Subject(s)
Area Under Curve , Cilostazol , Cross-Over Studies , Drug Combinations , Fasting , Healthy Volunteers , Rosuvastatin Calcium , Humans , Rosuvastatin Calcium/pharmacokinetics , Rosuvastatin Calcium/administration & dosage , Rosuvastatin Calcium/adverse effects , Male , Adult , Cilostazol/administration & dosage , Cilostazol/pharmacokinetics , Cilostazol/adverse effects , Female , Fasting/metabolism , Young Adult , Administration, Oral , Middle Aged , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Therapeutic Equivalency , Tandem Mass Spectrometry
11.
Clin Pharmacol Ther ; 115(6): 1428-1440, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38493369

ABSTRACT

In a genome-wide association study of atorvastatin pharmacokinetics in 158 healthy volunteers, the SLCO1B1 c.521T>C (rs4149056) variant associated with increased area under the plasma concentration-time curve from time zero to infinity (AUC0-∞) of atorvastatin (P = 1.2 × 10-10), 2-hydroxy atorvastatin (P = 4.0 × 10-8), and 4-hydroxy atorvastatin (P = 2.9 × 10-8). An intronic LPP variant, rs1975991, associated with reduced atorvastatin lactone AUC0-∞ (P = 3.8 × 10-8). Three UGT1A variants linked with UGT1A3*2 associated with increased 2-hydroxy atorvastatin lactone AUC0-∞ (P = 3.9 × 10-8). Furthermore, a candidate gene analysis including 243 participants suggested that increased function SLCO1B1 variants and decreased activity CYP3A4 variants affect atorvastatin pharmacokinetics. Compared with individuals with normal function SLCO1B1 genotype, atorvastatin AUC0-∞ was 145% (90% confidence interval: 98-203%; P = 5.6 × 10-11) larger in individuals with poor function, 24% (9-41%; P = 0.0053) larger in those with decreased function, and 41% (16-59%; P = 0.016) smaller in those with highly increased function SLCO1B1 genotype. Individuals with intermediate metabolizer CYP3A4 genotype (CYP3A4*2 or CYP3A4*22 heterozygotes) had 33% (14-55%; P = 0.022) larger atorvastatin AUC0-∞ than those with normal metabolizer genotype. UGT1A3*2 heterozygotes had 16% (5-25%; P = 0.017) smaller and LPP rs1975991 homozygotes had 34% (22-44%; P = 4.8 × 10-5) smaller atorvastatin AUC0-∞ than noncarriers. These data demonstrate that genetic variation in SLCO1B1, UGT1A3, LPP, and CYP3A4 affects atorvastatin pharmacokinetics. This is the first study to suggest that LPP rs1975991 may reduce atorvastatin exposure. [Correction added on 6 April, after first online publication: An incomplete sentence ("= 0.017) smaller in heterozygotes for UGT1A3*2 and 34% (22%, 44%; P × 10-5) smaller in homozygotes for LPP noncarriers.") has been corrected in this version.].


Subject(s)
Area Under Curve , Atorvastatin , Cytochrome P-450 CYP3A , Genome-Wide Association Study , Glucuronosyltransferase , Liver-Specific Organic Anion Transporter 1 , Polymorphism, Single Nucleotide , Adult , Female , Humans , Male , Middle Aged , Young Adult , Atorvastatin/pharmacokinetics , Atorvastatin/blood , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Genotype , Glucuronosyltransferase/genetics , Healthy Volunteers , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/blood , Liver-Specific Organic Anion Transporter 1/genetics , Pharmacogenomic Variants , LIM Domain Proteins/genetics , Cytoskeletal Proteins/genetics
12.
Pharm Stat ; 23(4): 530-539, 2024.
Article in English | MEDLINE | ID: mdl-38356204

ABSTRACT

Drug-drug interaction (DDI) trials are an important part of drug development as they provide evidence on the benefits and risks when two or more drugs are taken concomitantly. Sample size calculation is typically recommended to be based on the existence of clinically justified no-effect boundaries but these are challenging to define in practice, while the default no-effect boundaries of 0.8-1.25 are known to be overly conservative requiring a large sample size. In addition, no-effect boundaries are of little use when there is prior pharmacological evidence that a mild or moderate interaction between two drugs may be present, in which case effect boundaries would be more useful. We introduce precision-based sample size calculation that accounts for both the stochastic nature of the pharmacokinetic parameters and the anticipated width of (no-)effect boundaries, should these exist. The methodology is straightforward, requires considerably less sample size and has favorable operating characteristics. A case study on statins is presented to illustrate the ideas.


Subject(s)
Drug Interactions , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Sample Size , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Research Design , Clinical Trials as Topic/methods , Clinical Trials as Topic/statistics & numerical data , Drug Development/methods
13.
J Clin Pharmacol ; 64(6): 704-712, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38299698

ABSTRACT

Statins are widely prescribed and highly susceptible to pharmacokinetic (PK)-based drug-drug interactions (DDIs). To date, there has not been a comprehensive analysis of the basis upon which statin DDI recommendations in US Food and Drug Administration (FDA) prescribing information (PI) are derived. We have conducted such an analysis. We also assessed the degree of concordance of statin DDI recommendations in FDA PI and those provided in common tertiary clinical resources. We catalogued statin DDI information, including PK data and management recommendations, for statin precipitant drugs approved from 2010 to 2021, available from FDA PI and tertiary clinical resource databases. Recommendations were categorized and mapped with associated PK data to assess consistency in the PK basis for labeling recommendations. From the 80 precipitant drugs evaluated, 180 statin DDIs were identified in FDA PI. Dedicated clinical DDI studies were conducted for 54% (n = 97) of these DDIs and 34% (n = 61) of DDI recommendations were extrapolated from clinical data with other statins. Overall, we found that PK-based statin recommendations were consistent across PI. These findings highlight regulatory precedence for translating information across statins without conducting dedicated clinical DDI studies, which may support future efforts toward streamlining the approach to investigation and labeling of statin DDIs. In addition, with the exception of some notable discrepancies, general concordance was observed between FDA and tertiary resources regarding "Dose Adjustment" and "Avoid Coadministration" recommendations. However, further analyses are warranted across other DDI pairs to determine whether discordance can routinely lead to different clinical recommendations depending on the drug information resource.


Subject(s)
Drug Interactions , Drug Labeling , Hydroxymethylglutaryl-CoA Reductase Inhibitors , United States Food and Drug Administration , Humans , United States , Drug Labeling/standards , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics , Databases, Factual
14.
Clin Pharmacokinet ; 63(4): 483-496, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38424308

ABSTRACT

BACKGROUND AND OBJECTIVES: Encorafenib is a kinase inhibitor indicated for the treatment of patients with unresectable or metastatic melanoma or metastatic colorectal cancer, respectively, with selected BRAF V600 mutations. A clinical drug-drug interaction (DDI) study was designed to evaluate the effect of encorafenib on rosuvastatin, a sensitive substrate of OATP1B1/3 and breast cancer resistance protein (BCRP), and bupropion, a sensitive CYP2B6 substrate. Coproporphyrin I (CP-I), an endogenous substrate for OATP1B1, was measured in a separate study to deconvolute the mechanism of transporter DDI. METHODS: DDI study participants received a single oral dose of rosuvastatin (10 mg) and bupropion (75 mg) on days - 7, 1, and 14 and continuous doses of encorafenib (450 mg QD) and binimetinib (45 mg BID) starting on day 1. The CP-I data were collected from participants in a phase 3 study who received encorafenib (300 mg QD) and cetuximab (400 mg/m2 initial dose, then 250 mg/m2 QW). Pharmacokinetic and pharmacodynamic analysis was performed using noncompartmental and compartmental methods. RESULTS: Bupropion exposure was not increased, whereas rosuvastatin Cmax and area under the receiver operating characteristic curve (AUC) increased approximately 2.7 and 1.6-fold, respectively, following repeated doses of encorafenib and binimetinib. Increase in CP-I was minimal, suggesting that the primary effect of encorafenib on rosuvastatin is through BCRP. Categorization of statins on the basis of their metabolic and transporter profile suggests pravastatin would have the least potential for interaction when coadministered with encorafenib. CONCLUSION: The results from these clinical studies suggest that encorafenib does not cause clinically relevant CYP2B6 induction or inhibition but is an inhibitor of BCRP and may also inhibit OATP1B1/3 to a lesser extent. Based on these results, it may be necessary to consider switching statins or reducing statin dosage accordingly for coadministration with encorafenib. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov NCT03864042, registered 6 March 2019.


Subject(s)
Bupropion , Carbamates , Coproporphyrins , Drug Interactions , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Rosuvastatin Calcium , Sulfonamides , Adult , Aged , Female , Humans , Male , Middle Aged , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Bupropion/administration & dosage , Bupropion/pharmacokinetics , Carbamates/administration & dosage , Carbamates/pharmacokinetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Liver-Specific Organic Anion Transporter 1/antagonists & inhibitors , Liver-Specific Organic Anion Transporter 1/genetics , Liver-Specific Organic Anion Transporter 1/metabolism , Rosuvastatin Calcium/pharmacokinetics , Rosuvastatin Calcium/administration & dosage , Sulfonamides/administration & dosage , Sulfonamides/pharmacokinetics , Sulfonamides/pharmacology , Aged, 80 and over
15.
Eur Heart J Cardiovasc Pharmacother ; 10(4): 307-315, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38196131

ABSTRACT

AIMS: Objective methods to determine statin adherence are requested to improve lipid management. We have recently established a method to detect reduced adherence to atorvastatin therapy with cut-off values based on the sum of atorvastatin and its major metabolites in the blood. We aimed to validate this method in patients with and without cardiovascular disease, and optimize previous cut-off values. METHODS AND RESULTS: The pharmacokinetic study included 60 participants treated with atorvastatin 20 mg (N = 20), 40 mg (N = 20), and 80 mg (N = 20). Atorvastatin was then stopped and blood samples collected from day zero to day four. Quantification of the parent drug and its metabolites in blood plasma was performed with a liquid chromatography-tandem mass spectrometry assay. The cut-off values for reduced adherence were validated and optimized by calculating diagnostic sensitivity and specificity. Our candidate cut-off value of dose-normalized six-component sum of atorvastatin plus metabolites <0.10 nM/mg provided a sensitivity of 97% and a specificity of 93% for detecting ≥2 omitted doses. An optimized cut-off <0.062 nM/mg provided a sensitivity of 90% and a specificity of 100%. An alternative simplified two-component metabolite sum with a cut-off value <0.05 nM/mg provided a sensitivity of 98% and a specificity of 76%. An optimized cut-off <0.02 nM/mg provided a sensitivity of 97% and a specificity of 98%. CONCLUSION: This validation study confirms that our direct method discriminates reduced adherence from adherence to atorvastatin therapy with high diagnostic accuracy. The method may improve lipid management in clinical practice and serve as a useful tool in future studies.


Subject(s)
Atorvastatin , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Medication Adherence , Atorvastatin/pharmacokinetics , Atorvastatin/therapeutic use , Atorvastatin/blood , Humans , Male , Female , Middle Aged , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/blood , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Aged , Heptanoic Acids/pharmacokinetics , Heptanoic Acids/administration & dosage , Heptanoic Acids/blood , Heptanoic Acids/therapeutic use , Pyrroles/pharmacokinetics , Pyrroles/blood , Pyrroles/administration & dosage , Tandem Mass Spectrometry , Chromatography, Liquid , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/blood , Cardiovascular Diseases/prevention & control , Reproducibility of Results , Dose-Response Relationship, Drug
16.
Pharmacogenomics ; 24(8): 475-484, 2023 06.
Article in English | MEDLINE | ID: mdl-37318060

ABSTRACT

Objective: This meta-analysis was designed to investigate the associations between SLCO1B1, APOE and CYP2C9 and the lipid-lowering effects and pharmacokinetics of fluvastatin. Methods: Studies were searched from inception to March 2023, including three SNPs related to fluvastatin, SLCO1B1, CYP2C9 and APOE. Weighted mean differences and corresponding 95% CIs were analyzed to evaluate the associations between SNPs and outcomes. Results: SLCO1B1 521T>C was associated with lower total cholesterol and low-density lipoprotein reduction. Patients carrying 521CC or total cholesterol had a significantly higher area under the curve than those carrying 521TT, but no significant difference existed. Conclusion: CYP2C9 and SLCO1B1 may be associated with the efficacy and pharmacokinetics of fluvastatin.


Subject(s)
Cholesterol , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Fluvastatin , Cytochrome P-450 CYP2C9/genetics , Genotype , Apolipoproteins E , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics , Liver-Specific Organic Anion Transporter 1/genetics
17.
Pharmacogenomics ; 24(3): 173-182, 2023 02.
Article in English | MEDLINE | ID: mdl-36661065

ABSTRACT

Statins are among the most commonly prescribed medications worldwide. Rosuvastatin is a moderate- to high-intensity statin depending on the prescribed dose. Statin-associated muscle symptoms are the main side effects, contributing to low adherence to statins. The missense variant rs2231142 in ABCG2 affects the functionality of the ABCG2 transporter, altering the pharmacokinetics and pharmacodynamics of rosuvastatin. This special report aims to accentuate the importance of considering the ABCG2 genotype upon prescribing rosuvastatin in high cardiovascular disease risk subgroups, specifically Native Hawaiian and Pacific Islander populations. Based on the reported frequencies of rs2231142 in ABCG2, it may be justifiable to initiate low-dose rosuvastatin in Samoans relative to Marshallese or Native Hawaiians. Interpopulation differences in pharmacogenetic allele frequencies underscore the need to disaggregate broad population categories to achieve health equity in treatment outcomes.


Rosuvastatin is a medication that is used to decrease levels of bad cholesterol in the blood. One of the side effects of rosuvastatin is muscle aches, which can cause patients to stop taking their medication. ABCG2 is a gene responsible for encoding ABCG2, an important transporter that plays a role in how the body interacts with many medications, including rosuvastatin. Genetic variations in ABCG2 result in a functional or nonfunctional transporter. This special report aims to focus on the importance of considering genetic variations in ABCG2 among different population subgroups, in particular Native Hawaiians, Samoans and Marshallese. The ABCG2 genotype could inform clinicians about the most effective rosuvastatin dose to prescribe. This approach highlights the importance of individualized patient characteristics above and beyond race and ethnicity.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2 , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Rosuvastatin Calcium , Humans , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics , Native Hawaiian or Other Pacific Islander/genetics , Neoplasm Proteins/genetics , Polymorphism, Single Nucleotide/genetics , Rosuvastatin Calcium/adverse effects , Rosuvastatin Calcium/pharmacokinetics
18.
Clin Pharmacol Ther ; 113(4): 887-895, 2023 04.
Article in English | MEDLINE | ID: mdl-36622792

ABSTRACT

Self-perceived statin-associated muscle symptoms (SAMS) are prevalent, but only a minority is drug-dependent. Diagnostic biomarkers are not yet identified. The local statin exposure in skeletal muscle tissue may correlate to the adverse effects. We aimed to determine whether atorvastatin metabolites in blood reflect the corresponding metabolite levels in skeletal muscle, and whether genetic variants of statin transporters modulate this relationship. We also addressed atorvastatin metabolites as potential objective biomarkers of SAMS. Muscle symptoms were examined in patients with coronary disease and self-perceived SAMS during 7 weeks of double-blinded treatment with atorvastatin 40 mg/day and placebo in randomized order. A subset of 12 patients individually identified with more muscle symptoms on atorvastatin than placebo (confirmed SAMS) and 15 patients with no difference in muscle symptom intensity (non-SAMS) attended the present follow-up study. All received 7 weeks of treatment with atorvastatin 40 mg/day followed by 8 weeks without statins. Biopsies from the quadriceps muscle and blood plasma were collected after each treatment period. Strong correlations (rho > 0.7) between muscle and blood plasma concentrations were found for most atorvastatin metabolites. The impact of the SLCO1B1 c.521T>C (rs4149056) gene variant on atorvastatin's systemic pharmacokinetics was translated into muscle tissue. The SLCO2B1 c.395G>A (rs12422149) variant did not modulate the accumulation of atorvastatin metabolites in muscle tissue. Atorvastatin pharmacokinetics in patients with confirmed SAMS were not different from patients with non-SAMS. In conclusion, atorvastatin metabolite levels in skeletal muscle and plasma are strongly correlated, implying that plasma measurements are suitable proxies of atorvastatin exposure in muscle tissue. The relationship between atorvastatin metabolites in plasma and SAMS deserves further investigation.


Subject(s)
Coronary Disease , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Atorvastatin/adverse effects , Atorvastatin/pharmacokinetics , Biomarkers , Coronary Disease/drug therapy , Follow-Up Studies , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics , Liver-Specific Organic Anion Transporter 1/genetics , Muscle, Skeletal
19.
Clin Pharmacol Drug Dev ; 12(3): 279-286, 2023 03.
Article in English | MEDLINE | ID: mdl-36478438

ABSTRACT

Vatiquinone is a small-molecule inhibitor of 15-lipoxygenase in phase 3 development for patients with mitochondrial disease and Friedreich ataxia. The objective of this analysis was to determine the effect of vatiquinone on the pharmacokinetic profile of rosuvastatin, a breast cancer resistance protein substrate. In vitro investigations demonstrated potential inhibition of BCRP by vatiquinone (half maximal inhibitory concentration, 3.8 µM). An open-label, fixed-sequence drug-drug interaction study in healthy volunteers was conducted to determine the clinical relevance of this finding. Subjects received a single dose of 20-mg rosuvastatin followed by a 7-day washout. On days 8 through 14, subjects received 400 mg of vatiquinone 3 times daily. On day 12, subjects concomitantly received a single dose of 20-mg rosuvastatin. The geometric mean ratio for maximum plasma concentration was 77.8%; however, the rosuvastatin disposition phase appeared unaffected. The geometric mean ratios for the area under the plasma concentration-time curve from time 0 to time t and from time 0 to infinity were 103.2% and 99.9%, respectively. Mean rosuvastatin apparent elimination half-life was similar between treatment groups. These results demonstrate that vatiquinone has no clinically relevant effect on the pharmacokinetics of rosuvastatin.


Subject(s)
Breast Neoplasms , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Female , Rosuvastatin Calcium/pharmacokinetics , Lipoxygenase Inhibitors , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Arachidonate 15-Lipoxygenase/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics , Neoplasm Proteins/metabolism , Drug Interactions
20.
Drug Res (Stuttg) ; 72(6): 319-326, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35724670

ABSTRACT

BACKGROUND: Coadministration of statins and direct acting antiviral agents is frequently used. This study explored the effects of both atorvastatin and lovastatin on pharmacokinetics of a fixed-dose combination of sofosbuvir/ledipasvir "FDCSL". METHODS: 12 healthy volunteers participated in a randomized, three-phase crossover trial and were administered a single atorvastatin dose 80 mg plus tablet containing 400/90 mg FDCSL, a single lovastatin dose 40 mg plus tablet containing 400/90 mg FDCSL, or tablets containing 400/90 mg FDCSL alone. Liquid chromatography-tandem mass spectrometry was used to analyze plasma samples of sofosbuvir, ledipasvir and sofosbuvir metabolite "GS-331007" and their pharmacokinetic parameters were determined. RESULTS: Atorvastatin caused a significant rise in sofosbuvir bioavailability as explained by increasing in AUC0-∞ and Cmax by 34.36% and 11.97%, respectively. In addition, AUC0-∞ and Cmax of GS-331007 were increased by 73.73% and 67.86%, respectively after atorvastatin intake. Similarly, co-administration of lovastatin with FDCSL increased the bioavailability of sofosbuvir, its metabolite (AUC0-∞ increase by 17.2%, 17.38%, respectively, and Cmax increase by 12.03%, 22.24%, respectively). However, neither atorvastatin nor lovastatin showed a change in ledipasvir bioavailability. Hepatic elimination was not affected after statin intake with FDCSL. Compared to lovastatin, atorvastatin showed significant increase in AUC0-∞ and Cmax of both sofosbuvir and its metabolite. CONCLUSIONS: Both atorvastatin and lovastatin increased AUC of sofosbuvir and its metabolite after concurrent administration with FDCSL. Statins' P-glycoprotein inhibition is the attributed mechanism of interaction. The increase in sofosbuvir bioavailability was more pronounced after atorvastatin intake. Close monitoring is needed after co-administration of atorvastatin and FDCSL.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Benzimidazoles , Fluorenes , Hepatitis C, Chronic , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Sofosbuvir , Humans , Antiviral Agents/pharmacology , Atorvastatin , ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , Benzimidazoles/pharmacokinetics , Biological Availability , Cross-Over Studies , Drug Combinations , Fluorenes/pharmacokinetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics , Lovastatin , Sofosbuvir/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL