Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.928
Filter
1.
BMJ Open Diabetes Res Care ; 12(4)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39122366

ABSTRACT

INTRODUCTION: Chronic hyperglycemia affects neutrophil functions, leading to reduced pathogen killing and increased morbidity. This impairment has been directly linked to increased glycemia, however, how this specifically affects neutrophils metabolism and their differentiation in the bone marrow is unclear and difficult to study. RESEARCH DESIGN AND METHODS: We used high-resolution respirometry to investigate the metabolism of resting and activated donor neutrophils, and flow cytometry to measure surface CD15 and CD11b expression. We then used HL-60 cells differentiated towards neutrophil-like cells in standard media and investigated the effect of doubling glucose concentration on differentiation metabolism. We measured the oxygen consumption rate (OCR), and the enzymatic activity of carnitine palmitoyl transferase 1 (CPT1) and citrate synthase during neutrophil-like differentiation. We compared the surface phenotype, functions, and OCR of neutrophil-like cells differentiated under both glucose concentrations. RESULTS: Donor neutrophils showed significant instability of CD11b and OCR after phorbol 12-myristate 13-acetate stimulation at 3 hours post-enrichment. During HL-60 neutrophil-like cell differentiation, there was a significant increase in surface CD15 and CD11b expression together with the loss of mitochondrial mass. Differentiated neutrophil-like cells also exhibited higher CD11b expression and were significantly more phagocytic. In higher glucose media, we measured a decrease in citrate synthase and CPT1 activities during neutrophil-like differentiation. CONCLUSIONS: HL-60 neutrophil-like differentiation recapitulated known molecular and metabolic features of human neutrophil differentiation. Increased glucose concentrations correlated with features described in hyperglycemic donor neutrophils including increased CD11b and phagocytosis. We used this model to describe metabolic features of neutrophil-like cell differentiation in hyperglycemia and show for the first time the downregulation of CPT1 and citrate synthase activity, independently of mitochondrial mass.


Subject(s)
Cell Differentiation , Hyperglycemia , Neutrophils , Humans , Neutrophils/metabolism , HL-60 Cells , Hyperglycemia/metabolism , Hyperglycemia/pathology , CD11b Antigen/metabolism , Glucose/metabolism , Carnitine O-Palmitoyltransferase/metabolism , Oxygen Consumption , Lewis X Antigen/metabolism , Citrate (si)-Synthase/metabolism
2.
Biochim Biophys Acta Gen Subj ; 1868(9): 130666, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38955313

ABSTRACT

BACKGROUND: Diabetic stress acts on the cardiac tissue to induce cardiac hypertrophy and fibrosis. Diabetes induced activated renin angiotensin system (RAS) has been reported to play a critical role in mediating cardiac hypertrophy and fibrosis. Angiotensin converting enzyme (ACE) in producing Angiotensin-II, promotes cardiomyocyte hypertrophy and fibrotic damage. ACE2, a recently discovered molecule structurally homologous to ACE, has been reported to be beneficial in reducing the effect of RAS driven pathologies. METHODS: In vivo diabetic mouse model was used and co-labelling immunostaining assay have been performed to analyse the fibrotic remodeling and involvement of associated target signaling molecules in mouse heart tissue. For in vitro analyses, qPCR and western blot experiments were performed in different groups for RNA and protein expression analyses. RESULTS: Fibrosis markers were observed to be upregulated in the diabetic mouse heart tissue as well as in high glucose treated fibroblast and cardiomyocyte cells. Hyperglycemia induced overexpression of YAP1 leads to increased expression of ß-catenin (CTNNB1) and ACE with downregulated ACE2 expression. The differential expression of ACE/ACE2 promotes TGFB1-SMAD2/3 pathway in the hyperglycemic cardiomyocyte and fibroblast resulting in increased cardiac fibrotic remodeling. CONCLUSION: In the following study, we have reported YAP1 modulates the RAS signaling pathway by inducing ACE and inhibiting ACE2 activity to augment cardiomyocyte hypertrophy and fibrosis in hyperglycemic condition. Furthermore, we have shown that hyperglycemia induced dysregulation of ACE-ACE2 activity by YAP1 promotes cardiac fibrosis through ß-catenin/TGFB1 dependent pathway.


Subject(s)
Adaptor Proteins, Signal Transducing , Angiotensin-Converting Enzyme 2 , Fibrosis , Hyperglycemia , Myocytes, Cardiac , Peptidyl-Dipeptidase A , YAP-Signaling Proteins , Animals , Fibrosis/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Mice , YAP-Signaling Proteins/metabolism , Peptidyl-Dipeptidase A/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Hyperglycemia/metabolism , Hyperglycemia/pathology , Male , Transforming Growth Factor beta1/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Signal Transduction , Myocardium/metabolism , Myocardium/pathology , Smad2 Protein/metabolism , Mice, Inbred C57BL , Cardiomegaly/metabolism , Cardiomegaly/pathology , Smad3 Protein/metabolism , Renin-Angiotensin System , beta Catenin/metabolism
3.
Cells ; 13(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38891086

ABSTRACT

Reduced oxygen during embryo culture in human ART prevents embryo oxidative stress. Oxidative stress is also the major mechanism by which maternal diabetes impairs embryonic development. This study employed induced hyperglycemia prepubertal mice to mimic childhood diabetes to understand the effects of varying oxygen tension during in vitro embryonic development. The oocytes were fertilized and cultured at low (≈5%) oxygen (LOT) or atmospheric (≈20%) oxygen tension (HOT) for up to 96 h. Embryo development, apoptosis in blastocysts, inner cell mass (ICM) outgrowth proliferation, and Hif1α expression were assessed. Though the oocyte quality and meiotic spindle were not affected, the fertilization rate (94.86 ± 1.18 vs. 85.17 ± 2.81), blastocyst rate (80.92 ± 2.92 vs. 69.32 ± 2.54), and ICM proliferation ability (51.04 ± 9.22 vs. 17.08 ± 3.05) of the hyperglycemic embryos were significantly higher in the LOT compared to the HOT group. On the other hand, blastocysts from the hyperglycemic group, cultured at HOT, had a 1.5-fold increase in apoptotic cells compared to the control and lower Hif1α transcripts in ICM outgrowths compared to the LOT. Increased susceptibility of embryos from hyperglycemic mice to higher oxygen tension warrants the need to individualize the conditions for embryo culture systems in ART clinics, particularly when an endogenous maternal pathology affects the ovarian environment.


Subject(s)
Embryonic Development , Hyperglycemia , Oxygen , Animals , Female , Oxygen/metabolism , Oxygen/pharmacology , Mice , Hyperglycemia/metabolism , Hyperglycemia/pathology , Embryonic Development/genetics , Apoptosis/drug effects , Blastocyst/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Oocytes/metabolism , Embryo, Mammalian/metabolism , Cell Proliferation
4.
Tissue Cell ; 88: 102426, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38833941

ABSTRACT

Diabetes mellitus (DM) is a well-known hyperglycemic metabolic condition identified by oxidative stress and biological function disruption. Kiwifruit is a valuable source of polyphenols and vitamin C with great antioxidant, nutritional, and health-promoting effects. Therefore, this study was initiated to explore the antioxidant and anti-hyperglycemic effects of kiwifruit aqueous extract (KFE) against oxidative injury and testis dysfunction in rats with diabetes. Twenty-four male Wistar Albino rats (160-170 g) were divided into four groups: Group 1 served as the control, Group 2 supplemented orally with kiwifruit extract (KFE; 1 g/kg/day) for one month, Group 3 was treated with a single streptozotocin dose (STZ; 50 mg/kg ip), and Group 4 where the diabetic rats were administered with KFE, respectively. According to the results, the GC-MS analysis of KFE revealed several main components with strong antioxidant properties. In diabetic rats, lipid peroxidation and hyperglycemia were accompanied by perturbations in hormone levels and sperm characteristics. Antioxidant enzymes, glutathione content, aminotransferase, phosphatase activities, and protein content were decreased. Furthermore, histology, immunohistochemical PCNA expression, and histochemical analysis of collagen, DNA, RNA, and total protein. were altered in rat testis sections, supporting the changes in biochemistry. Furthermore, diabetic rats supplemented with KFE manifested considerable amendment in all the tested parameters besides improved tissue structure and gene expressions (NF-kB, p53, IL-1ß, Bax, IL-10, and Bcl2) relative to the diabetic group. In conclusion, KFE has beneficial effects as it can improve glucose levels and testis function, so it might be used as a complementary therapy in DM.


Subject(s)
Actinidia , Apoptosis , Diabetes Mellitus, Experimental , Hyperglycemia , Inflammation , Oxidative Stress , Plant Extracts , Rats, Wistar , Testis , Animals , Male , Actinidia/chemistry , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Rats , Testis/drug effects , Testis/metabolism , Testis/pathology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/metabolism , Apoptosis/drug effects , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Hyperglycemia/pathology , Inflammation/drug therapy , Inflammation/pathology , Streptozocin , Antioxidants/pharmacology
5.
Life Sci ; 351: 122854, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38901688

ABSTRACT

AIMS: To evaluate the cell proliferation and death, and structural morphology of the pancreatic islet cells of the rats with hyperglycemia in the first month of life and compare to those of the control rats. MAIN METHODS: Female Sprague-Dawley newborn rats received Streptozotocin (a beta-cytotoxic drug) at birth for diabetes induction. Control and hyperglycemic animals were euthanized on different days of life: 5, 10, 15, and 30. The pancreas was collected and processed for immunohistochemical analysis of cleaved Caspase-3 (cell death), Ki-67 (cell proliferation), PDX-1 (transcription factor responsible for insulin synthesis), and endocrine hormones (insulin, glucagon, and somatostatin). KEY FINDINGS: Control females showed a higher percentage (%) of Ki-67-positive(+) cells on D10 and D15, a higher % of insulin+ and somatostatin+ cells on D15 and D30, a lower % of PDX-1+ cells on D10, and a higher % of glucagon+ cells on D10 and D30. Hyperglycemic females showed a lower % of Ki-67+ cells on D15, a higher % of cleaved Caspase-3+ cells on D15, and insulin+ cells on D15 and D30. In the comparison among the experimental groups, the hyperglycemic females showed an increased % of cleaved Caspase-3+ and Ki-67+ cells and a lower % of PDX-1+ cells. SIGNIFICANCE: This study enabled a better understanding of the abnormal pancreas development regarding cellular proliferation, apoptosis, and hormonal synthesis in the neonatal period. Thus, the pancreatic islets of hyperglycemic rats do not reestablish the normal endocrine cell population, and cellular apoptosis overcame the proliferative activity of these cells.


Subject(s)
Animals, Newborn , Cell Proliferation , Hyperglycemia , Islets of Langerhans , Rats, Sprague-Dawley , Animals , Female , Hyperglycemia/metabolism , Hyperglycemia/pathology , Rats , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/metabolism , Cell Death , Glucagon/metabolism , Insulin/metabolism , Ki-67 Antigen/metabolism , Caspase 3/metabolism , Somatostatin/metabolism , Apoptosis , Trans-Activators , Homeodomain Proteins
6.
J Neuroinflammation ; 21(1): 137, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802820

ABSTRACT

Hyperglycemia has been shown to modulate the immune response of peripheral immune cells and organs, but the impact of hyperglycemia on neuroinflammation within the brain remains elusive. In the present study, we provide evidences that streptozotocin (STZ)-induced hyperglycemic condition in mice drives a phenotypic switch of brain astrocytes to a proinflammatory state, and increases brain vulnerability to mild peripheral inflammation. In particular, we found that hyperglycemia led to a significant increase in the astrocyte proliferation as determined by flow cytometric and immunohistochemical analyses of mouse brain. The increased astrocyte proliferation by hyperglycemia was reduced by Glut1 inhibitor BAY-876. Transcriptomic analysis of isolated astrocytes from Aldh1l1CreERT2;tdTomato mice revealed that peripheral STZ injection induced astrocyte reprogramming into proliferative, and proinflammatory phenotype. Additionally, STZ-induced hyperglycemic condition significantly enhanced the infiltration of circulating myeloid cells into the brain and the disruption of blood-brain barrier in response to mild lipopolysaccharide (LPS) administration. Systemic hyperglycemia did not alter the intensity and sensitivity of peripheral inflammation in mice to LPS challenge, but increased the inflammatory potential of brain microglia. In line with findings from mouse experiments, a high-glucose environment intensified the LPS-triggered production of proinflammatory molecules in primary astrocyte cultures. Furthermore, hyperglycemic mice exhibited a significant impairment in cognitive function after mild LPS administration compared to normoglycemic mice as determined by novel object recognition and Y-maze tasks. Taken together, these results demonstrate that hyperglycemia directly induces astrocyte reprogramming towards a proliferative and proinflammatory phenotype, which potentiates mild LPS-triggered inflammation within brain parenchymal regions.


Subject(s)
Astrocytes , Brain , Hyperglycemia , Lipopolysaccharides , Mice, Inbred C57BL , Neuroinflammatory Diseases , Animals , Hyperglycemia/chemically induced , Hyperglycemia/pathology , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/pathology , Mice , Lipopolysaccharides/toxicity , Lipopolysaccharides/pharmacology , Brain/pathology , Brain/metabolism , Brain/drug effects , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/chemically induced , Male , Cellular Reprogramming/drug effects , Cellular Reprogramming/physiology , Mice, Transgenic , Cells, Cultured
7.
Dis Model Mech ; 17(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38747698

ABSTRACT

Diabetic nephropathy (DN), as a complication of diabetes, is a substantial healthcare challenge owing to the high risk of morbidity and mortality involved. Although significant progress has been made in understanding the pathogenesis of DN, more efficient models are required to develop new therapeutics. Here, we created a DN model in zebrafish by crossing diabetic Tg(acta1:dnIGF1R-EGFP) and proteinuria-tracing Tg(l-fabp::VDBP-GFP) lines, named zMIR/VDBP. Overfed adult zMIR/VDBP fish developed severe hyperglycemia and proteinuria, which were not observed in wild-type zebrafish. Renal histopathology revealed human DN-like characteristics, such as glomerular basement membrane thickening, foot process effacement and glomerular sclerosis. Glomerular dysfunction was restored upon calorie restriction. RNA sequencing analysis demonstrated that DN zebrafish kidneys exhibited transcriptional patterns similar to those seen in human DN pathogenesis. Notably, the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway was activated, a phenomenon observed in the early phase of human DN. In addition, metformin improved hyperglycemia and proteinuria in DN zebrafish by modulating Akt phosphorylation. Our results indicate that zMIR/VDBP fish are suitable for elucidating the mechanisms underlying human DN and could be a powerful tool for therapeutic discovery.


Subject(s)
Diabetic Nephropathies , Disease Models, Animal , Hyperglycemia , Proteinuria , Proto-Oncogene Proteins c-akt , Signal Transduction , Zebrafish , Animals , Hyperglycemia/complications , Hyperglycemia/pathology , Proto-Oncogene Proteins c-akt/metabolism , Diabetic Nephropathies/pathology , Diabetic Nephropathies/metabolism , Signal Transduction/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Humans , Phosphorylation/drug effects , Animals, Genetically Modified , Metformin/pharmacology , Metformin/therapeutic use , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Kidney/pathology , Kidney/drug effects , Kidney/metabolism , Kidney Glomerulus/pathology , Kidney Glomerulus/drug effects , Kidney Glomerulus/metabolism , Enzyme Activation/drug effects
8.
Exp Neurol ; 378: 114824, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38777250

ABSTRACT

Ischemic stroke (IS), characterized by high mortality rate, occurs owing to diminished or blocked blood flow to the brain. Hyperglycemia (HG) is a major contributor to the risk of IS. HG induces augmented oxidative stress and Blood-Brain Barrier breakdown, which increases the influx of blood-derived myeloid cells into the brain parenchyma. In cerebral ischemia, infiltrating monocytes undergo differentiation into pro-inflammatory or anti-inflammatory macrophages, having a large effect on outcomes of ischemic stroke. In addition, interleukin-4 (IL-4) and interleukin-13 (IL-13) engage in post-ischemia repair by polarizing the infiltrating monocytes into an anti-inflammatory phenotype. In this study, we aimed to determine the effect of phenotypic polarization of monocyte-derived macrophages on the prognosis of IS with HG (HG-IS). We first established a hyperglycemic mouse model using streptozotocin (150 mg/kg) and induced transient middle cerebral artery occlusion. We observed that blood-brain barrier permeability increased in HG-IS mice, as per two-photon live imaging and Evans blue staining. We also confirmed the increased infiltration of monocyte-derived macrophages and the downregulation of anti-inflammatory macrophages related to tissue remodeling after inflammation in HG-IS mice through immunohistochemistry, western blotting, and flow cytometry. We observed phenotypic changes in monocyte-derived macrophages, alleviated infarct volume, and improved motor function in HG-IS mice treated with IL-4 and IL-13. These findings suggest that the modulation of phenotypic changes in monocyte-derived macrophages following IS in hyperglycemic mice may influence ischemic recovery.


Subject(s)
Brain Ischemia , Hyperglycemia , Macrophages , Mice, Inbred C57BL , Animals , Mice , Hyperglycemia/pathology , Macrophages/metabolism , Macrophages/pathology , Macrophages/drug effects , Male , Brain Ischemia/pathology , Cell Polarity/drug effects , Cell Polarity/physiology , Blood-Brain Barrier/pathology , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Infarction, Middle Cerebral Artery/pathology , Monocytes/pathology , Monocytes/metabolism , Monocytes/drug effects
9.
Mini Rev Med Chem ; 24(3): 341-354, 2024.
Article in English | MEDLINE | ID: mdl-38282447

ABSTRACT

PURPOSE: Diabetes is one of the important and growing diseases in the world. Among the most common diabetic complications are renal adverse effects. The use of apigenin may prevent the development and progression of diabetes-related injuries. The current study aims to review the effects of apigenin in the treatment of diabetic nephropathy. METHODS: In this review, a systematic search was performed based on PRISMA guidelines for obtaining all relevant studies on "the effects of apigenin against diabetic nephropathy" in various electronic databases up to September 2022. Ninety-one articles were obtained and screened in accordance with the predefined inclusion and exclusion criteria. Seven eligible articles were finally included in this review. RESULTS: The experimental findings revealed that hyperglycemia led to the decreased cell viability of kidney cells and body weight loss and an increased kidney weight of rats; however, apigenin administration had a reverse effect on these evaluated parameters. It was also found that hyperglycemia could induce alterations in the biochemical and renal function-related parameters as well as histopathological injuries in kidney cells or tissue; in contrast, the apigenin administration could ameliorate the hyperglycemia-induced renal adverse effects. CONCLUSION: The results indicated that the use of apigenin could mitigate diabetes-induced renal adverse effects, mainly through its antioxidant, anti-apoptotic, and anti-inflammatory activities. Since the findings of this study are based on experimental studies, suggesting the use of apigenin (as a nephroprotective agent) against diabetic nephropathy requires further clinical studies.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Hyperglycemia , Rats , Animals , Diabetic Nephropathies/drug therapy , Apigenin/pharmacology , Apigenin/therapeutic use , Apigenin/metabolism , Oxidative Stress , Kidney , Hyperglycemia/metabolism , Hyperglycemia/pathology , Hyperglycemia/prevention & control , Diabetes Mellitus/pathology
10.
Graefes Arch Clin Exp Ophthalmol ; 262(1): 81-91, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37367995

ABSTRACT

PURPOSES: This work aimed to assess the possible role of TRIM25 in regulating hyperglycemia-induced inflammation, senescence, and oxidative stress in retinal microvascular endothelial cells, all of which exert critical roles in the pathological process of diabetic retinopathy. METHODS: The effects of TRIM25 were investigated using streptozotocin-induced diabetic mice, human primary retinal microvascular endothelial cells cultured in high glucose, and adenoviruses for TRIM25 knockdown and overexpression. TRIM25 expression was evaluated by western blot and immunofluorescence staining. Inflammatory cytokines were detected by western blot and quantitative real-time PCR. Cellular senescence level was assessed by detecting senescent marker p21 and senescence-associated-ß-galactosidase activity. The oxidative stress state was accessed by detecting reactive oxygen species and mitochondrial superoxide dismutase. RESULTS: TRIM25 expression is elevated in the endothelial cells of the retinal fibrovascular membrane from diabetic patients compared with that of the macular epiretinal membrane from non-diabetic patients. Moreover, we have also observed a significant increase in TRIM25 expression in diabetic mouse retina and retinal microvascular endothelial cells under hyperglycemia. TRIM25 knockdown suppressed hyperglycemia-induced inflammation, senescence, and oxidative stress in human primary retinal microvascular endothelial cells while TRIM25 overexpression further aggregates those injuries. Further investigation revealed that TRIM25 promoted the inflammatory responses mediated by the TNF-α/NF-κB pathway and TRIM25 knockdown improved cellular senescence by increasing SIRT3. However, TRIM25 knockdown alleviated the oxidative stress independent of both SIRT3 and mitochondrial biogenesis. CONCLUSION: Our study proposed TRIM25 as a potential therapeutic target for the protection of microvascular function during the progression of diabetic retinopathy.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Retinopathy , Hyperglycemia , Sirtuin 3 , Animals , Humans , Mice , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetic Retinopathy/metabolism , Endothelial Cells/metabolism , Endothelial Cells/pathology , Hyperglycemia/metabolism , Hyperglycemia/pathology , Inflammation/metabolism , Oxidative Stress , Retina/pathology , Sirtuin 3/metabolism , Sirtuin 3/pharmacology , Transcription Factors , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/pharmacology , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/pharmacology
11.
Perit Dial Int ; 44(2): 125-132, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37525525

ABSTRACT

BACKGROUND: Peritoneal dialysis (PD) is a crucial dialysis method for treating end-stage kidney disease. However, its use is restricted due to high glucose-induced peritoneal injury and hyperglycaemia, particularly in patients with diabetes mellitus. In this study, we investigated whether partially replacing d-glucose with the rare sugar d-allose could ameliorate peritoneal injury and hyperglycaemia induced by peritoneal dialysis fluid (PDF). METHODS: Rat peritoneal mesothelial cells (RPMCs) were exposed to a medium containing d-glucose or d-glucose partially replaced with different concentrations of d-allose. Cell viability, oxidative stress and cytokine production were evaluated. Sprague-Dawley (SD) rats were administrated saline, a PDF containing 4% d-glucose (PDF-G4.0%) or a PDF containing 3.6% d-glucose and 0.4% d-allose (PDF-G3.6%/A0.4%) once a day for 4 weeks. Peritoneal injury and PD efficiency were assessed using immuno-histological staining and peritoneal equilibration test, respectively. Blood glucose levels were measured over 120 min following a single injection of saline or PDFs to 24-h fasted SD rats. RESULTS: In RPMCs, the partial replacement of d-glucose with d-allose increased cell viability and decreased oxidative stress and cytokine production compared to d-glucose alone. Despite the PDF-G3.6%/A0.4% having a lower d-glucose concentration compared to PDF-G4.0%, there were no significant changes in osmolality. When administered to SD rats, the PDF-G3.6%/A0.4% suppressed the elevation of peritoneal thickness and blood d-glucose levels induced by PDF-G4.0%, without impacting PD efficiency. CONCLUSIONS: Partial replacement of d-glucose with d-allose ameliorated peritoneal injury and hyperglycaemia induced by high concentration of d-glucose in PDF, indicating that d-allose could be a potential treatment option in PD.


Subject(s)
Hyperglycemia , Peritoneal Dialysis , Humans , Rats , Animals , Peritoneal Dialysis/adverse effects , Peritoneal Dialysis/methods , Hyperglycemia/pathology , Rats, Sprague-Dawley , Dialysis Solutions/adverse effects , Peritoneum/pathology , Glucose , Cytokines
12.
Cardiovasc Pathol ; 69: 107601, 2024.
Article in English | MEDLINE | ID: mdl-38072092

ABSTRACT

BACKGROUND: This study aims to develop a fetal rat model of ventricular noncompaction (NVM) using streptozotocin (STZ)-induced gestational hyperglycemia and compare it with a retinoic acid (RA) model. METHODS: Female SD rats were categorized into STZ, RA, and normal control (NC) groups. The STZ group was given a high-fat diet pre-pregnancy and 35 mg/kg of 2% STZ postpregnancy. The RA group received a 90 mg/kg dose of RA on day 13 postpregnancy. Embryonic myocardial morphology was analyzed through HE staining, and embryonic cardiomyocyte ultrastructures were studied using electron microscopy. Diagnoses of NVM were based on a ratio of noncompact myocardium (N) to compact myocardium (C) >1.4, accompanied by thick myocardial trabeculae and a thin myocardial compaction layer. Kruskal-Wallis test determined N/C ratio differences among groups. RESULTS: Both STZ and RA groups displayed significant NVM characteristics. The left ventricular (LV) N/C in the STZ, RA, and NC groups were 1.983 (1.423-3.527), 1.640 (1.197-2.895), and 0.927 (0.806-1.087), respectively, with a statistically significant difference (P<0.001). The right ventricular (RV) N/C in the STZ, RA, and NC groups were 2.097 (1.364-3.081), 1.897 (1.337-2.662), and 0.869 (0.732-1.022), respectively, with a significant difference (P<0.001). Electron microscopy highlighted marked endoplasmic reticulum swelling in embryonic cardiomyocytes from both STZ and RA groups. CONCLUSION: Our model underscores the pivotal role of an adverse intrauterine developmental environment in the onset of NVM. This insight holds significant implications for future studies exploring the pathogenesis of NVM.


Subject(s)
Heart Ventricles , Hyperglycemia , Pregnancy , Rats , Animals , Female , Rats, Sprague-Dawley , Myocardium/pathology , Hyperglycemia/complications , Hyperglycemia/pathology , Tretinoin
13.
Ageing Res Rev ; 93: 102142, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38030091

ABSTRACT

Ageing retina is prone to ferroptosis due to the iron accumulation and impaired efficiency of intracellular antioxidant defense system. Ferroptosis acts as a cell death modality that is characterized by the iron-dependent accumulation of lipid peroxidation. Ferroptosis is distinctively different from other types of regulated cell death (RCD) at the morphological, biochemical, and genetic levels. Diabetic retinopathy (DR) is a common microvascular complication of diabetes. Its prevalence and severity increase progressively with age. Recent reports have shown that ferroptosis is implicated in the pathophysiology of DR. Under hyperglycemia condition, the endothelial cell and retinal pigment epithelium (RPE) cell will undergo ferroptosis, which contributes to the increased vascular permeability and the disrupted blood retinal barrier (BRB). The underlying etiology of DR can be attributed to the impaired BRB integrity and subsequent damages of the neurovascular units. In the absence of timely intervention, the compromised BRB can ultimately cause profound visual impairments. In particular, the ageing retina is vulnerable to ferroptosis, and hyperglycemia will accelerate the progression of this pathological process. In this article, we discuss the contributory role of ferroptosis in DR pathogenesis, and summarize recent therapeutic trials that targeting the ferroptosis. Further study on the ferroptosis mediated damage would enrich our knowledge of DR pathology, and promote the development of clinical treatment for this degenerative retinopathy.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Retinopathy , Ferroptosis , Hyperglycemia , Humans , Aging , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetic Retinopathy/etiology , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/metabolism , Hyperglycemia/complications , Hyperglycemia/metabolism , Hyperglycemia/pathology , Iron/metabolism , Retina/metabolism
14.
J Mol Cell Biol ; 15(12)2024 04 10.
Article in English | MEDLINE | ID: mdl-38140943

ABSTRACT

Endothelial damage is the initial and crucial factor in the occurrence and development of vascular complications in diabetic patients, contributing to morbidity and mortality. Although hyperglycemia has been identified as a damaging effector, the detailed mechanisms remain elusive. In this study, identified by ATAC-seq and RNA-seq, JunB reverses the inhibition of proliferation and the promotion of apoptosis in human umbilical vein endothelial cells treated with high glucose, mainly through the cell cycle and p53 signaling pathways. Furthermore, JunB undergoes phase separation in the nucleus and in vitro, mediated by its intrinsic disordered region and DNA-binding domain. Nuclear localization and condensation behaviors are required for JunB-mediated proliferation and apoptosis. Thus, our study uncovers the roles of JunB and its coacervation in repairing vascular endothelial damage caused by high glucose, elucidating the involvement of phase separation in diabetes and diabetic endothelial dysfunction.


Subject(s)
Endothelium, Vascular , Glucose , Human Umbilical Vein Endothelial Cells , Hyperglycemia , Transcription Factors , Humans , Apoptosis , Cell Cycle , Cell Nucleus/metabolism , Cell Proliferation , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Glucose/metabolism , Glucose/pharmacology , Human Umbilical Vein Endothelial Cells/metabolism , Hyperglycemia/metabolism , Hyperglycemia/pathology , Hyperglycemia/complications , Signal Transduction , Transcription Factors/metabolism , Transcription Factors/genetics , Tumor Suppressor Protein p53/metabolism
15.
Front Endocrinol (Lausanne) ; 14: 1280060, 2023.
Article in English | MEDLINE | ID: mdl-38152132

ABSTRACT

Background: Metabolic disorders are involved in the development of numerous cancers, but their association with the progression of cervical cancer is unclear. This study aims to investigate the association between metabolic disorders and the pathological risk factors and survival in patients with early cervical cancer. Methods: Patients with FIGO IB1 (2009) primary cervical cancer who underwent radical hysterectomy and systematic pelvic lymph node dissection at our institution from October 2014 to December 2017 were included retrospectively. Clinical data regarding the metabolic syndrome and surgical pathology of the patient were collected. The correlations between metabolic disorders (hypertension, hyperglycemia, and obesity) and clinicopathological characteristics as well as survival after surgery were analyzed. Results: The study included 246 patients with clinical IB1 cervical cancer, 111 (45.1%) of whom had at least one of the comorbidities of hypertension, obesity, or hyperglycemia. Hypertension was positively correlated with parametrial invasion and poorly differentiated histology; hyperglycemia was positively correlated with stromal invasion; obesity was negatively associated with lymph node metastasis; but arbitrary disorder did not show any correlation with pathologic features. Hypertension was an independent risk factor for parametrial invasion (OR=6.54, 95% CI: 1.60-26.69); hyperglycemia was an independent risk factor for stromal invasion (OR=2.05, 95% CI: 1.07-3.95); and obesity was an independent protective factor for lymph node metastasis (OR=0.07, 95% CI: 0.01-0.60). Moreover, the patients with hypertension had a significantly lower 5-year OS rate (70.0% vs. 95.3%, P<0.0001) and a significantly lower 5-year PFS rate than those without hypertension (70.0% vs. 91.2%, P=0.010). Conclusion: Hypertension and hyperglycemia are positively associated with local invasion of early cervical cancer, which need to be verified in multi-center, large scale studies.


Subject(s)
Hyperglycemia , Hypertension , Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/complications , Uterine Cervical Neoplasms/epidemiology , Uterine Cervical Neoplasms/surgery , Retrospective Studies , Lymphatic Metastasis , Hyperglycemia/complications , Hyperglycemia/pathology , Neoplasm Staging , Hypertension/complications , Hypertension/epidemiology , Hypertension/pathology , Obesity/complications , Obesity/pathology
16.
Endocr J ; 70(12): 1131-1140, 2023 Dec 28.
Article in English | MEDLINE | ID: mdl-37914275

ABSTRACT

To examine the association between prediabetes/type 2 diabetes mellitus (T2DM) and hippocampal subfields and to investigate the effects of glycemic control (HbA1c and FBG)/diabetes duration on the volume of hippocampal subfields in T2DM patients. This cross-sectional study included 268 participants from Tianjin Union Medical Center between August 2019 and July 2022. The participants were divided into three groups: T2DM, prediabetes and no diabetes. All participants underwent brain MRI examination on a 3T MRI scanner. FreeSurfer was performed to segment hippocampus automatically based on T1 MPRAGE images. The relationships between glycemic status/glycemic control/diabetes duration and hippocampal subfield volumes were estimated by multiple linear regression analysis/generalized additive modeling (GAM). Among all participants, 76 (28.36%) had prediabetes, and 96 (35.82%) had T2DM. In multi-adjusted linear regression models, those with prediabetes had a significantly lower volume of bilateral parasubiculum (ßright = -5.540; ßleft = -6.497). Those with diabetes had lower volume of parasubiculum (ßleft = -7.868), presubiculum-head (ßleft = -6.244) and fimbria (ßleft = -7.187). We did not find relationship between diabetes duration and hippocampal subfield volumes. In stratified analysis, long duration with high FBG related with lower volume of right fimbria (ßright = -15.583). Long duration with high HbA1c related with lower volume of presubiculum-head (ßright = -19.693), subiculum-head (ßright = -28.303), subiculum-body (ßleft = -38.599), CA1-head (ßright = -62.300, ßleft = -47.922), CA1-body (ßright = -19.043), CA4-body (ßright = -14.392), GC-ML-DG-head (ßright = -20.521), GC-ML-DG-body (ßright = -16.293, ßleft = -12.799), molecular_layer_HP-head (ßright = -44.202, ßleft = -26.071) and molecular_layer_HP-body, (ßright = -31.368), hippocampal_tail (ßleft = -80.073). Prediabetes related with lower bilateral parasubiculum volume, and T2DM related with lower left parasubiculum, presubiculum-head and fimbria. T2DM with chronic poor glycemic control had lower volume in multiple hippocampal subregions.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperglycemia , Prediabetic State , Humans , Cross-Sectional Studies , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/pathology , Prediabetic State/complications , Prediabetic State/pathology , Glycated Hemoglobin , Glycemic Control , Hippocampus/diagnostic imaging , Hippocampus/pathology , Magnetic Resonance Imaging/methods , Hyperglycemia/pathology , Atrophy/pathology
17.
Free Radic Biol Med ; 208: 153-164, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37543166

ABSTRACT

Diabetes is one of the significant risk factors for ischemic stroke. Hyperglycemia exacerbates the pathogenesis of stroke, leading to more extensive cerebral damage and, as a result, to more severe consequences. However, the mechanism whereby the hyperglycemic status in diabetes affects biochemical processes during the development of ischemic injury is still not fully understood. In the present work, we record for the first time the real-time dynamics of H2O2 in the matrix of neuronal mitochondria in vitro in culture and in vivo in the brain tissues of rats during development of ischemic stroke under conditions of hyperglycemia and normal glucose levels. To accomplish this, we used a highly sensitive HyPer7 biosensor and a fiber-optic interface technology. We demonstrated that a high glycemic status does not affect the generation of H2O2 in the tissues of the ischemic core, while significantly exacerbating the consequences of pathogenesis. For the first time using Raman microspectroscopy approach, we have shown how a sharp increase in the blood glucose level increases the relative amount of reduced cytochromes in the mitochondrial electron transport chain in neurons under normal conditions in awake mice.


Subject(s)
Brain Ischemia , Diabetes Mellitus , Hyperglycemia , Ischemic Stroke , Stroke , Rats , Mice , Animals , Hydrogen Peroxide , Stroke/pathology , Hyperglycemia/pathology , Brain Ischemia/pathology
18.
BMC Musculoskelet Disord ; 24(1): 585, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37464323

ABSTRACT

BACKGROUND: Diabetes mellitus (DM) causes bone dysfunction due to poor bone quality, leading to severe deterioration in patient of quality of life. The mechanisms of bone metabolism in DM remain unclear, although chemical and/or mechanical factors are known to disrupt the homeostasis of osteoblasts and osteoclasts. The purpose of this study was to identify the changes of osteoblasts and osteoclasts under long-term hyperglycaemic conditions, using a mouse fracture model of long-term hyperglycemia (LT-HG). METHODS: C57BL/6J mice and green fluorescent protein (GFP) -positive bone marrow transplanted C57BL/6J mice with LT-HG, maintained under a state of hyperglycaemia for 2 months, were used in this study. After the experimental fracture, we examined the immunohistochemical expression of proinsulin and tumor necrosis factor (TNF) -α at the fracture site. C57BL/6J fracture model mice without hyperglycaemia were used as controls. RESULTS: In the LT-HG mice, chondrocyte resorption was delayed, and osteoblasts showed an irregular arrangement at the callus site. The osteoclasts were scattered with a decrement in the number of nuclei. The expression of proinsulin was confirmed in bone marrow derived cells (BMDCs) with neovascularization 2 and 3 weeks after fracture. Immunopositivity for TNF-α was also confirmed in immature chondrocytes and BMDCs with neovascularization at 2 weeks, and the number of positive cells was not decreased at 3 weeks. Examination of GFP-grafted hyperglycaemic mice showed that the majority of cells at the fracture site were GFP-positive. Immunohistochemistry showed that the rate of double positives was 15% for GFP and proinsulin and 47% for GFP and TNF-α. CONCLUSION: LT-HG induces an increase in the number of proinsulin and TNF-α positive cells derived from BMDCs. We suggest that proinsulin and TNF-α positive cells are involved in both bone formation and bone resorption after fracture under hyperglycaemic conditions, resulting in the delay of bone healing.


Subject(s)
Diabetes Mellitus, Experimental , Fractures, Bone , Hyperglycemia , Animals , Mice , Fracture Healing , Cytokines , Tumor Necrosis Factor-alpha/metabolism , Proinsulin , Bone Marrow/pathology , Diabetes Mellitus, Experimental/complications , Quality of Life , Mice, Inbred C57BL , Bony Callus/pathology , Fractures, Bone/pathology , Hyperglycemia/complications , Hyperglycemia/pathology , Bone Marrow Cells/metabolism
19.
J Mol Med (Berl) ; 101(8): 1015-1028, 2023 08.
Article in English | MEDLINE | ID: mdl-37462767

ABSTRACT

Multiple molecular pathways including the receptor for advanced glycation end-products-diaphanous related formin 1 (RAGE-Diaph1) signaling are known to play a role in diabetic peripheral neuropathy (DPN). Evidence suggests that neuropathological alterations in type 1 diabetic spinal cord may occur at the same time as or following peripheral nerve abnormalities. We demonstrated that DPN was associated with perturbations of RAGE-Diaph1 signaling pathway in peripheral nerve accompanied by widespread spinal cord molecular changes. More than 500 differentially expressed genes (DEGs) belonging to multiple functional pathways were identified in diabetic spinal cord and of those the most enriched was RAGE-Diaph1 related PI3K-Akt pathway. Only seven of spinal cord DEGs overlapped with DEGs from type 1 diabetic sciatic nerve and only a single gene cathepsin E (CTSE) was common for both type 1 and type 2 diabetic mice. In silico analysis suggests that molecular changes in spinal cord may act synergistically with RAGE-Diaph1 signaling axis in the peripheral nerve. KEY MESSAGES: Molecular perturbations in spinal cord may be involved in the progression of diabetic peripheral neuropathy. Diabetic peripheral neuropathy was associated with perturbations of RAGE-Diaph1 signaling pathway in peripheral nerve accompanied by widespread spinal cord molecular changes. In silico analysis revealed that PI3K-Akt signaling axis related to RAGE-Diaph1 was the most enriched biological pathway in diabetic spinal cord. Cathepsin E may be the target molecular hub for intervention against diabetic peripheral neuropathy.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Diabetic Neuropathies , Hyperglycemia , Animals , Mice , Receptor for Advanced Glycation End Products/genetics , Receptor for Advanced Glycation End Products/metabolism , Diabetic Neuropathies/genetics , Diabetic Neuropathies/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/complications , Cathepsin E , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Sciatic Nerve/pathology , Hyperglycemia/genetics , Hyperglycemia/pathology
20.
Front Endocrinol (Lausanne) ; 14: 1134530, 2023.
Article in English | MEDLINE | ID: mdl-37324273

ABSTRACT

Introduction: Diabetic neuropathy and diabetic eye disease are well known complications of type 1 diabetes. We hypothesized that chronic hyperglycemia also damages the optic tract, which can be measured using routine magnetic resonance imaging. Our aim was to compare morphological differences in the optic tract between individuals with type 1 diabetes and healthy control subjects. Associations between optic tract atrophy and metabolic measures, cerebrovascular and microvascular diabetic complications were further studied among individuals with type 1 diabetes. Methods: We included 188 subjects with type 1 diabetes and 30 healthy controls, all recruited as part of the Finnish Diabetic Nephropathy Study. All participants underwent a clinical examination, biochemical work-up, and brain magnetic resonance imaging (MRI). Two different raters manually measured the optic tract. Results: The coronal area of the optic chiasm was smaller among those with type 1 diabetes compared to non-diabetic controls (median area 24.7 [21.0-28.5] vs 30.0 [26.7-33.3] mm2, p<0.001). In participants with type 1 diabetes, a smaller chiasmatic area was associated with duration of diabetes, glycated hemoglobin, and body mass index. Diabetic eye disease, kidney disease, neuropathy and the presence of cerebral microbleeds (CMBs) in brain MRI were associated with smaller chiasmatic size (p<0.05 for all). Conclusion: Individuals with type 1 diabetes had smaller optic chiasms than healthy controls, suggesting that diabetic neurodegenerative changes extend to the optic nerve tract. This hypothesis was further supported by the association of smaller chiasm with chronic hyperglycemia, duration of diabetes, diabetic microvascular complications, as well as and CMBs in individuals with type 1 diabetes.


Subject(s)
Diabetes Complications , Diabetes Mellitus, Type 1 , Hyperglycemia , Humans , Optic Chiasm/pathology , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/pathology , Diabetes Complications/pathology , Chronic Disease , Atrophy , Hyperglycemia/pathology
SELECTION OF CITATIONS
SEARCH DETAIL