Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 11.239
1.
Sci Rep ; 14(1): 12716, 2024 06 03.
Article En | MEDLINE | ID: mdl-38830933

To explore the molecular pathogenesis of pulmonary arterial hypertension (PAH) and identify potential therapeutic targets, we performed transcriptome sequencing of lung tissue from mice with hypoxia-induced pulmonary hypertension. Our Gene Ontology analysis revealed that "extracellular matrix organization" ranked high in the biological process category, and matrix metallopeptidases (MMPs) and other proteases also played important roles in it. Moreover, compared with those in the normoxia group, we confirmed that MMPs expression was upregulated in the hypoxia group, while the hub gene Timp1 was downregulated. Crocin, a natural MMP inhibitor, was found to reduce inflammation, decrease MMPs levels, increase Timp1 expression levels, and attenuate hypoxia-induced pulmonary hypertension in mice. In addition, analysis of the cell distribution of MMPs and Timp1 in the human lung cell atlas using single-cell RNAseq datasets revealed that MMPs and Timp1 are mainly expressed in a population of fibroblasts. Moreover, in vitro experiments revealed that crocin significantly inhibited myofibroblast proliferation, migration, and extracellular matrix deposition. Furthermore, we demonstrated that crocin inhibited TGF-ß1-induced fibroblast activation and regulated the pulmonary arterial fibroblast MMP2/TIMP1 balance by inhibiting the TGF-ß1/Smad3 signaling pathway. In summary, our results indicate that crocin attenuates hypoxia-induced pulmonary hypertension in mice by inhibiting TGF-ß1-induced myofibroblast activation.


Carotenoids , Hypertension, Pulmonary , Hypoxia , Matrix Metalloproteinase 2 , Tissue Inhibitor of Metalloproteinase-1 , Animals , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics , Mice , Hypoxia/metabolism , Hypoxia/complications , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/metabolism , Carotenoids/pharmacology , Humans , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Male , Signal Transduction/drug effects , Transforming Growth Factor beta1/metabolism , Disease Models, Animal , Cell Proliferation/drug effects , Mice, Inbred C57BL , Smad3 Protein/metabolism , Cell Movement/drug effects , Lung/pathology , Lung/metabolism , Lung/drug effects
2.
Front Immunol ; 15: 1372959, 2024.
Article En | MEDLINE | ID: mdl-38690277

Introduction: Hypoxia is a common pathological driver contributing to various forms of pulmonary vascular diseases leading to pulmonary hypertension (PH). Pulmonary interstitial macrophages (IMs) play pivotal roles in immune and vascular dysfunction, leading to inflammation, abnormal remodeling, and fibrosis in PH. However, IMs' response to hypoxia and their role in PH progression remain largely unknown. We utilized a murine model of hypoxia-induced PH to investigate the repertoire and functional profiles of IMs in response to acute and prolonged hypoxia, aiming to elucidate their contributions to PH development. Methods: We conducted single-cell transcriptomic analyses to characterize the repertoire and functional profiles of murine pulmonary IMs following exposure to hypobaric hypoxia for varying durations (0, 1, 3, 7, and 21 days). Hallmark pathways from the mouse Molecular Signatures Database were utilized to characterize the molecular function of the IM subpopulation in response to hypoxia. Results: Our analysis revealed an early acute inflammatory phase during acute hypoxia exposure (Days 1-3), which was resolved by Day 7, followed by a pro-remodeling phase during prolonged hypoxia (Days 7-21). These phases were marked by distinct subpopulations of IMs: MHCIIhiCCR2+EAR2+ cells characterized the acute inflammatory phase, while TLF+VCAM1hi cells dominated the pro-remodeling phase. The acute inflammatory phase exhibited enrichment in interferon-gamma, IL-2, and IL-6 pathways, while the pro-remodeling phase showed dysregulated chemokine production, hemoglobin clearance, and tissue repair profiles, along with activation of distinct complement pathways. Discussion: Our findings demonstrate the existence of distinct populations of pulmonary interstitial macrophages corresponding to acute and prolonged hypoxia exposure, pivotal in regulating the inflammatory and remodeling phases of PH pathogenesis. This understanding offers potential avenues for targeted interventions, tailored to specific populations and distinct phases of the disease. Moreover, further identification of triggers for pro-remodeling IMs holds promise in unveiling novel therapeutic strategies for pulmonary hypertension.


Gene Expression Profiling , Hypertension, Pulmonary , Hypoxia , Single-Cell Analysis , Transcriptome , Animals , Mice , Hypoxia/metabolism , Hypoxia/immunology , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/immunology , Hypertension, Pulmonary/genetics , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Male , Lung/immunology , Lung/pathology , Lung/metabolism
3.
Zhonghua Jie He He Hu Xi Za Zhi ; 47(5): 404-418, 2024 May 12.
Article Zh | MEDLINE | ID: mdl-38706062

Chronic thromboembolic pulmonary hypertension (CTEPH) is classified as group IV pulmonary hypertension, characterized by thrombotic occlusion of the pulmonary arteries leading to vascular stenosis or obstruction, progressive increase in pulmonary vascular resistance and pulmonary arterial pressure, and eventual right heart failure. Unlike other types of pulmonary hypertension, the prognosis of CTEPH can be significantly improved by surgery, vascular intervention, and/or targeted drug therapy. Pulmonary endarterectomy (PEA) is the preferred treatment of choice for CTEPH. However, PEA is an invasive procedure with high operative risks, and is currently only performed in a few centers in China. Balloon pulmonary angioplasty (BPA) is an emerging interventional technique for CTEPH, serving as an alternative for patients who are ineligible for PEA or with residual pulmonary hypertension after PEA. BPA is gaining traction in China, but its widespread adoption is limited due to its complexity, operator skills, and equipment requirements, a lack of standard operating procedures and technical guidance, which limit the further improvement and development of BPA in China. To address this, a multidisciplinary panel of experts was convened to develop the Consensus on the Procedure of Balloon Pulmonary Angioplasty for the Chronic Thromboembolic Pulmonary Hypertension, which fomulates guidelines on BPA procedural qualification, perioperative management, procedural planning, technical approach, and complication prevention, with the aim of providing recommendations and clinical guidance for BPA treatment in CTEPH and standardizing its clinical application in this setting. Summary of recommendations: Recommendation 1: It is recommended that physicians who specialize in pulmonary vascular diseases take the lead in formulating the diagnostic and treatment plans for CTEPH, using a multidisciplinary approach.Recommendation 2: Training in BPA technique is critical; novice operators should undergo standardized operative training with at least 50 procedures under the guidance of experienced physicians before embarking on independent BPA procedures.Recommendation 3: BPA requires catheterization labs, angiography systems, standard vascular interventional devices and consumables, drugs, and emergency equipment.Recommendation 4: Patient selection for BPA should consider cardiac and pulmonary function, coagulation status, and comorbid conditions to determine indications and contraindications, thereby optimizing the timing of the procedure and improving safety.Recommendation 5: In experienced centers, patients deemed likely to benefit from early BPA, based on clinical and imaging features of CTEPH and without elevated D-dimer levels, could bypass standard 3-month anticoagulation therapy.Recommendation 6: BPA is a complex interventional treatment that requires thorough pre-operative assessment and preparation.Recommendation 7: The use of perioperative anticoagulants in BPA requires a comprehensive risk assessment of intraoperative bleeding by the operator for individualized decision making.Recommendation 8: A variety of venous access routes are available for BPA; unless contraindicated, the right femoral vein is usually preferred because of its procedural convenience and reduced radiation exposure.Recommendation 9: For the different types of vascular lesion in CTEPH, treatment of ring-like stenoses, web-like lesions, and subtotal occlusions should be prioritized before addressing complete occlusions and tortuous lesions, in order to reduce complications and improve procedural safety.Recommendation 10: A targeted, incremental balloon dilatation strategy based on vascular lesions is recommended for BPA.Recommendation 11: Intravascular pulmonary artery imaging technologies, such as OCT and IVUS can assist in accurate vessel sizing and confirmation of wire placement in the true vascular lumen. Pressure wires can be used to objectively assess the efficacy of dilatation during BPA.Recommendation 12: Endpoints for BPA treatment should be individually assessed, taking into account improvements in clinical symptoms, hemodynamics, exercise tolerance, and quality of life.Recommendation 13: Post-BPA routine monitoring of vital signs is essential; anticoagulation therapy should be initiated promptly post-procedure in the absence of complications. In cases of intraoperative hemoptysis, postoperative anticoagulation regimen adjustments should be adjusted according to the bleeding severity.Recommendation 14: If reperfusion pulmonary edema occurs during or after BPA, ensure adequate oxygenation, diuresis, and consider non-invasive positive-pressure ventilation if necessary, while severe cases may require early mechanical ventilation assistance or ECMO.Recommendation 15: In cases of intraoperative hemoptysis, temporary balloon occlusion to stop bleeding is recommended, along with protamine to neutralize heparin. Persistent bleeding may warrant the use of gelatin sponges, coil embolization, or covered stent implantation.Recommendation 16: For contrast imaging during BPA, non-ionic, low or iso-osmolar contrast agents are recommended, with hydration status determined by the patient's clinical condition, cardiac and renal function, and intraoperative contrast volume used.


Angioplasty, Balloon , Hypertension, Pulmonary , Pulmonary Embolism , Humans , Angioplasty, Balloon/methods , Hypertension, Pulmonary/therapy , Hypertension, Pulmonary/etiology , Pulmonary Embolism/therapy , Chronic Disease , Pulmonary Artery/surgery , Endarterectomy/methods , Consensus , China
4.
Narra J ; 4(1): e579, 2024 Apr.
Article En | MEDLINE | ID: mdl-38798867

Research on noncoding RNA, particularly microRNAs (miRNAs), is growing rapidly. Advances in genomic technologies have revealed the complex roles of miRNAs in pulmonary arterial hypertension (PAH) associated with congenital heart disease (CHD). It has been demonstrated that the progression of PAH associated with CHD is characterized by particular dysregulation of miRNAs and is related to cardiovascular remodeling, cell death, and right ventricle dysfunction. This review provides a comprehensive overview of the current state of knowledge regarding the involvement of miRNAs in the pathogenesis and progression of PAH associated with CHD. We commence by explaining the process of miRNA synthesis and its mode of action, as well as the role of miRNA in PAH associated with CHD. Moreover, the article delves into current breakthroughs in research, potential clinical implications, and prospects for future investigations. The review provides the insight into novel approaches for diagnosis, prognosis, and therapy of PAH associated with CHD.


Heart Defects, Congenital , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Heart Defects, Congenital/genetics , Heart Defects, Congenital/complications , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/metabolism , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/etiology , Disease Progression , Prognosis
5.
Port J Card Thorac Vasc Surg ; 31(1): 41-46, 2024 May 13.
Article En | MEDLINE | ID: mdl-38743520

Chronic thromboembolic pulmonary hypertension (CTEPH) presents as a progressive vascular condition arising from previous episodes of acute pulmonary embolism, contributing to the development of pulmonary hypertension (PH). Pulmonary thromboendarterectomy (PTE) is the gold-standard surgical treatment for CTEPH; however, it may be associated with postoperative sequelae, including atrial arrhythmias (AAs). This comprehensive literature review explores the potential mechanisms for PTE-induced AAs with emphasis on the role of PH-related atrial remodelling and the predisposing factors. The identified preoperative predictors for AAs include advanced age, male gender, elevated resting heart rate, previous AAs, and baseline elevated right atrial pressure. Furthermore, we explore the available data on the association between post-PTE pericardial effusions and the development of AAs. Lastly, we briefly discuss the emerging role of radiomic analysis of epicardial adipose tissue as an imaging biomarker for predicting AAs.


Endarterectomy , Hypertension, Pulmonary , Pulmonary Embolism , Humans , Endarterectomy/adverse effects , Endarterectomy/methods , Pulmonary Embolism/surgery , Pulmonary Embolism/physiopathology , Hypertension, Pulmonary/surgery , Hypertension, Pulmonary/etiology , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/surgery , Arrhythmias, Cardiac/physiopathology , Postoperative Complications/etiology , Risk Factors , Pulmonary Artery/surgery
6.
Medicine (Baltimore) ; 103(18): e37992, 2024 May 03.
Article En | MEDLINE | ID: mdl-38701260

BACKGROUND: Multiple takayasu arteritis (TA) is a chronic nonspecific large to medium vasculitis disease that mainly accumulates the aorta and its branches. Pulmonary vascular disease is often seen as stenosis and occlusion, and patients may show no moderate to severe pulmonary hypertension (PH). This study aims to summarize the clinical characteristics and analysis of prognostic factors in patients with PH caused by TA. METHODS: Patients diagnosed with aortitis involving the pulmonary artery by pulmonary arteriography or pulmonary artery and total aortic computed tomography arteriography (CTA). All patients underwent detailed clinical assessment, laboratory data collection, and analysis of imaging data. Patients were followed up and factors affecting the prognosis of the pulmonary arteries were analyzed. RESULTS: Most of the patients' complaints were chest tightness, shortness of breath, decreased activity tolerance, hemoptysis and chest pain. 56.90% of the patients were in at the time of admission. Echocardiographic estimation of pulmonary artery systolic pressure was 90.39 ±â€…22.87 mm Hg. In terms of laboratory tests, 39.66%% of the patients had elevated C-reactive protein and erythrocyte sedimentation rate, and amino-terminal natriuretic peptide precursor on admission. In terms of imaging, all patients had pulmonary artery involvement, which was combined with aortic involvement in 31.03%. Nuclide lung perfusion/ventilation imaging of the patients revealed multiple perfusion defects/absences in the segmental and subsegmental distribution of the lungs. Univariate Cox regression model analysis suggested that patients' WHO functional class at admission, age ≧ 51 years at the time of consultation, and amino-terminal natriuretic peptide precursor ≧ 3500 pg/mL were factors affecting the prognosis. Further multifactorial Cox regression model analysis suggested amino-terminal natriuretic peptide precursor ≧ 3500 pg/mL was an independent predictor of poor prognosis with a hazard ratio (HR) value of 5.248. CONCLUSION: Electrocardiogram and echocardiogram may suggest an increased right heart load; some patients have elevated serum inflammatory indexes. Characteristic imaging manifestations include widening of the main pulmonary artery, multiple pulmonary segmental and subsegmental stenoses.


Hypertension, Pulmonary , Pulmonary Artery , Takayasu Arteritis , Humans , Takayasu Arteritis/complications , Takayasu Arteritis/physiopathology , Female , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/physiopathology , Retrospective Studies , Adult , Male , Prognosis , Pulmonary Artery/diagnostic imaging , Pulmonary Artery/physiopathology , Middle Aged , Young Adult , Echocardiography/methods , Computed Tomography Angiography/methods
7.
Front Immunol ; 15: 1372957, 2024.
Article En | MEDLINE | ID: mdl-38779688

Background: Schistosomiasis is a common cause of pulmonary hypertension (PH) worldwide. Type 2 inflammation contributes to the development of Schistosoma-induced PH. Specifically, interstitial macrophages (IMs) derived from monocytes play a pivotal role by producing thrombospondin-1 (TSP-1), which in turn activates TGF-ß, thereby driving the pathology of PH. Resident and recruited IM subpopulations have recently been identified. We hypothesized that in Schistosoma-PH, one IM subpopulation expresses monocyte recruitment factors, whereas recruited monocytes become a separate IM subpopulation that expresses TSP-1. Methods: Mice were intraperitoneally sensitized and then intravenously challenged with S. mansoni eggs. Flow cytometry on lungs and blood was performed on wildtype and reporter mice to identify IM subpopulations and protein expression. Single-cell RNA sequencing (scRNAseq) was performed on flow-sorted IMs from unexposed and at day 1, 3 and 7 following Schistosoma exposure to complement flow cytometry based IM characterization and identify gene expression. Results: Flow cytometry and scRNAseq both identified 3 IM subpopulations, characterized by CCR2, MHCII, and FOLR2 expression. Following Schistosoma exposure, the CCR2+ IM subpopulation expanded, suggestive of circulating monocyte recruitment. Schistosoma exposure caused increased monocyte-recruitment ligand CCL2 expression in the resident FOLR2+ IM subpopulation. In contrast, the vascular pathology-driving protein TSP-1 was greatest in the CCR2+ IM subpopulation. Conclusion: Schistosoma-induced PH involves crosstalk between IM subpopulations, with increased expression of monocyte recruitment ligands by resident FOLR2+ IMs, and the recruitment of CCR2+ IMs which express TSP-1 that activates TGF-ß and causes PH.


Hypertension, Pulmonary , Macrophages , Animals , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/parasitology , Hypertension, Pulmonary/immunology , Hypertension, Pulmonary/pathology , Mice , Macrophages/immunology , Macrophages/parasitology , Phenotype , Schistosoma mansoni/immunology , Mice, Inbred C57BL , Schistosomiasis/immunology , Schistosomiasis/complications , Schistosomiasis/parasitology , Disease Models, Animal , Schistosomiasis mansoni/immunology , Schistosomiasis mansoni/parasitology , Schistosomiasis mansoni/complications , Schistosomiasis mansoni/pathology , Thrombospondin 1/genetics , Thrombospondin 1/metabolism , Monocytes/immunology , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , Female , Schistosoma/immunology , Schistosoma/physiology , Lung/immunology , Lung/parasitology , Lung/pathology
8.
Clin Chest Med ; 45(2): 405-418, 2024 Jun.
Article En | MEDLINE | ID: mdl-38816096

Chronic thromboembolic pulmonary hypertension (CTEPH) is a complication of pulmonary embolism and is an important cause of pulmonary hypertension. As a clinical entity, it is frequently underdiagnosed with prolonged diagnostic delays. This study reviews the clinical and radiographic findings associated with CTEPH to improve awareness and recognition. Strengths and limitations of multiple imaging modalities are reviewed. Accompanying images are provided to supplement the text and provide examples of important findings for the reader.


Hypertension, Pulmonary , Pulmonary Embolism , Humans , Hypertension, Pulmonary/diagnostic imaging , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/physiopathology , Pulmonary Embolism/diagnostic imaging , Pulmonary Embolism/complications , Pulmonary Embolism/diagnosis , Chronic Disease , Pulmonary Artery/diagnostic imaging , Echocardiography/methods
10.
Arthritis Res Ther ; 26(1): 109, 2024 May 27.
Article En | MEDLINE | ID: mdl-38802957

BACKGROUND AND AIMS: The 2022 European Society of Cardiology/European Respiratory Society (ESC/ERS) guideline has recently revised the hemodynamic definition of pulmonary arterial hypertension. However, there is currently limited research on the prognosis and treatment of system lupus erythematosus-associated pulmonary arterial hypertension (SLE-PAH) patients that have been reclassified by the new hemodynamic definition. This study aims to analyze the prognosis of newly reclassified SLE-PAH patients and provide recommendations for the management strategy. METHODS: This retrospective study analyzed records of 236 SLE-PAH patients who visited Peking Union Medical College Hospital (PUMCH) from 2011 to 2023, among whom 22 patients were reclassified into mild SLE-PAH (mean pulmonary arterial pressure (mPAP) of 21-24 mmHg, pulmonary vascular resistance (PVR) of 2-3 WU, and PAWP ≤ 15 mmHg) according to the guidelines and 14 were defined as unclassified SLE-PAH patients (mPAP 21-24 mmHg and PVR ≤ 2 WU). The prognosis was compared among mild SLE-PAH, unclassified SLE-PH, and conventional SLE-PAH patients (mPAP ≥ 25 mmHg and PVR > 3WU). Besides, the effectiveness of pulmonary arterial hypertension (PAH)-specific therapy was evaluated in mild SLE-PAH patients. RESULTS: Those mild SLE-PAH patients had significantly longer progression-free time than the conventional SLE-PAH patients. Among the mild SLE-PAH patients, 4 did not receive PAH-specific therapy and had a similar prognosis as patients not receiving specific therapy. CONCLUSIONS: This study supports the revised hemodynamic definition of SLE-PAH in the 2022 ESC/ERS guideline. Those mild and unclassified SLE-PH patients had a better prognosis, demonstrating the possibility and significance of early diagnosis and intervention for SLE-PAH. This study also proposed a hypothesis that IIT against SLE might be sufficient for those reclassified SLE-PAH patients.


Lupus Erythematosus, Systemic , Pulmonary Arterial Hypertension , Humans , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/diagnosis , Female , Male , Prognosis , Retrospective Studies , Adult , Middle Aged , Pulmonary Arterial Hypertension/diagnosis , Pulmonary Arterial Hypertension/etiology , Pulmonary Arterial Hypertension/physiopathology , Practice Guidelines as Topic/standards , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/therapy , Hypertension, Pulmonary/physiopathology
12.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731946

Systemic sclerosis (SSc) is a heterogeneous disease characterized by autoimmunity, vasculopathy, and fibrosis which affects the skin and internal organs. One key aspect of SSc vasculopathy is pulmonary arterial hypertension (SSc-PAH) which represents a leading cause of morbidity and mortality in patients with SSc. The pathogenesis of pulmonary hypertension is complex, with multiple vascular cell types, inflammation, and intracellular signaling pathways contributing to vascular pathology and remodeling. In this review, we focus on shared molecular features of pulmonary hypertension and those which make SSc-PAH a unique entity. We highlight advances in the understanding of the clinical and translational science pertinent to this disease. We first review clinical presentations and phenotypes, pathology, and novel biomarkers, and then highlight relevant animal models, key cellular and molecular pathways in pathogenesis, and explore emerging treatment strategies in SSc-PAH.


Pulmonary Arterial Hypertension , Scleroderma, Systemic , Humans , Scleroderma, Systemic/complications , Scleroderma, Systemic/pathology , Animals , Pulmonary Arterial Hypertension/etiology , Pulmonary Arterial Hypertension/metabolism , Biomarkers , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/pathology , Disease Models, Animal , Translational Research, Biomedical , Signal Transduction
13.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38732015

Pulmonary hypertension (PH) is a progressive and potentially fatal complication of sickle cell disease (SCD), affecting 6-10% of adult SCD patients. Various mechanisms and theories have been evaluated to explain the pathophysiology of this disease. However, questions remain, particularly regarding the clinical heterogeneity of the disease in terms of symptoms, complications, and survival. Beyond the classical mechanisms that have been thoroughly investigated and include hemolysis, nitric oxide availability, endothelial disorders, thrombosis, and left heart failure, attention is currently focused on the potential role of genes involved in such processes. Potential candidate genes are investigated through next-generation sequencing, with the transforming growth factor-beta (TGF-ß) pathway being the initial target. This field of research may also provide novel targets for pharmacologic agents in the future, as is already the case with idiopathic PH. The collection and processing of data and samples from multiple centers can yield reliable results that will allow a better understanding of SCD-related PH as a part of the disease's clinical spectrum. This review attempts to capture the most recent findings of studies on gene polymorphisms that have been associated with PH in SCD patients.


Anemia, Sickle Cell , Hypertension, Pulmonary , Humans , Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/complications , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/etiology , Polymorphism, Genetic , Genetic Predisposition to Disease
14.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732160

Despite the end of the pandemic, coronavirus disease 2019 (COVID-19) remains a major public health concern. The first waves of the virus led to a better understanding of its pathogenesis, highlighting the fact that there is a specific pulmonary vascular disorder. Indeed, COVID-19 may predispose patients to thrombotic disease in both venous and arterial circulation, and many cases of severe acute pulmonary embolism have been reported. The demonstrated presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within the endothelial cells suggests that direct viral effects, in addition to indirect effects of perivascular inflammation and coagulopathy, may contribute to pulmonary vasculopathy in COVID-19. In this review, we discuss the pathological mechanisms leading to pulmonary vascular damage during acute infection, which appear to be mainly related to thromboembolic events, an impaired coagulation cascade, micro- and macrovascular thrombosis, endotheliitis and hypoxic pulmonary vasoconstriction. As many patients develop post-COVID symptoms, including dyspnea, we also discuss the hypothesis of pulmonary vascular damage and pulmonary hypertension as a sequela of the infection, which may be involved in the pathophysiology of long COVID.


COVID-19 , SARS-CoV-2 , Humans , COVID-19/complications , COVID-19/virology , COVID-19/pathology , SARS-CoV-2/pathogenicity , Lung/blood supply , Lung/pathology , Lung/virology , Pulmonary Embolism/virology , Pulmonary Embolism/etiology , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/physiopathology , Hypertension, Pulmonary/virology , Hypertension, Pulmonary/pathology , Post-Acute COVID-19 Syndrome , Thrombosis/virology , Thrombosis/etiology , Thrombosis/pathology
15.
Drug Discov Today ; 29(6): 104015, 2024 Jun.
Article En | MEDLINE | ID: mdl-38719143

Chronic hypoxia-induced pulmonary hypertension (CHPH) presents a complex challenge, characterized by escalating pulmonary vascular resistance and remodeling, threatening both newborns and adults with right heart failure. Despite advances in understanding the pathobiology of CHPH, its molecular intricacies remain elusive, particularly because of the multifaceted nature of arterial remodeling involving the adventitia, media, and intima. Cellular imbalance arises from hypoxia-induced mitochondrial disturbances and oxidative stress, reflecting the diversity in pulmonary hypertension (PH) pathology. In this review, we highlight prominent mechanisms causing CHPH in adults and newborns, and emerging therapeutic targets of potential pharmaceuticals.


Drug Development , Hypertension, Pulmonary , Hypoxia , Humans , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/physiopathology , Hypertension, Pulmonary/etiology , Hypoxia/complications , Drug Development/methods , Infant, Newborn , Animals , Adult , Oxidative Stress/drug effects
16.
Curr Probl Cardiol ; 49(7): 102614, 2024 Jul.
Article En | MEDLINE | ID: mdl-38692447

Pulmonary hypertension (PH) with high pulmonary vascular resistance (PVR) is a very often diagnosed contraindication for orthotopic heart transplantation (OHT). It is a direct consequence of left ventricle failure characterized by high diastolic pressure obstructing the collection of blood from the pulmonary vessels. The occurrence of this situation grows with the increasing time of waiting for OHT, and with the progression of heart failure. Mechanical circulatory support (MCS) devices, particularly left ventricular assist devices (LVADs), have emerged as pivotal interventions for patients with fixed PH, offering a potential bridge to transplantation. The pathophysiological impact of PH in heart transplant candidates is profound, as it is associated with increased perioperative risk and heightened mortality post-transplantation. The selection of heart transplant candidates thus mandates a careful evaluation of PH, with an emphasis on distinguishing between reversible and fixed forms of the condition. Reversible PH can often be managed with medical therapies; however, fixed PH presents a more daunting challenge, necessitating more aggressive interventions like MCS. Patients are supported with LVADs until evidence of pulmonary afterload reversal is evident and then can be considered for heart transplantation. However, in those who are non-responders or have complications while being supported, their option for transplant is revoked. Despite these advancements, the heterogeneity of MCS devices and their mechanisms of action necessitates a nuanced understanding of their efficacy.


Heart Failure , Heart Transplantation , Heart-Assist Devices , Hypertension, Pulmonary , Humans , Hypertension, Pulmonary/therapy , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/physiopathology , Heart Failure/therapy , Heart Failure/physiopathology , Treatment Outcome , Vascular Resistance/physiology
17.
J Am Heart Assoc ; 13(11): e032201, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38780193

BACKGROUND: Pulmonary hypertension and right ventricular (RV) dysfunction are major prognostic determinants in patients with heart failure with preserved ejection fraction (HFpEF). The underlying pathomechanisms remain unknown. In this context, we sought to study the pathogenesis of pulmonary hypertension and RV dysfunction in a rat model of obesity-associated HFpEF. METHODS AND RESULTS: HFpEF was induced in obesity-prone rats fed a high-fat diet (n=13) and compared with obesity-resistant rats fed with standard chow (n=9). After 12 months, the animals underwent echocardiographic and hemodynamic evaluation followed by tissue sampling for pathobiological assessment. HFpEF rats presented mild RV pressure overload (with increased RV systolic pressure and pulmonary vascular resistance). No changes in pulmonary artery medial thickness and ex vivo vasoreactivity (to acetylcholine and endothelin-1) were observed and RNA sequencing analysis failed to identify gene clustering in HFpEF lungs. However, released nitric oxide levels were decreased in HFpEF pulmonary artery, while lung expression of preproendothelin-1 was increased. In HFpEF rats, RV structure and function were altered, with RV enlargement, decreased RV fractional area change and free wall longitudinal fractional shortening, together with altered right ventricle-pulmonary artery coupling (estimated by tricuspid annular plane systolic excursion/systolic pulmonary artery pressure). Hypertrophy and apoptosis (evaluated by transferase biotin- dUTP nick-end labeling staining) were increased in right and left ventricles of HFpEF rats. There was an inverse correlation between tricuspid annular plane systolic excursion/systolic pulmonary artery pressure and RV apoptotic rate. Plasma levels of soluble suppression of tumorigenicity-2, interleukin-1ß, -6 and -17A were increased in HFpEF rats. CONCLUSIONS: Obesity-associated HFpEF in rats spontaneously evolves to pulmonary hypertension-HFpEF associated with impaired right ventricle-pulmonary artery coupling that appears disproportionate to a slight increase in RV afterload.


Disease Models, Animal , Heart Failure , Pulmonary Artery , Stroke Volume , Ventricular Dysfunction, Right , Ventricular Function, Right , Animals , Heart Failure/physiopathology , Heart Failure/etiology , Heart Failure/metabolism , Heart Failure/genetics , Pulmonary Artery/physiopathology , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Stroke Volume/physiology , Ventricular Dysfunction, Right/physiopathology , Ventricular Dysfunction, Right/etiology , Ventricular Dysfunction, Right/metabolism , Ventricular Dysfunction, Right/genetics , Male , Ventricular Function, Right/physiology , Rats , Hypertension, Pulmonary/physiopathology , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/metabolism , Heart Ventricles/physiopathology , Heart Ventricles/diagnostic imaging , Heart Ventricles/metabolism , Heart Ventricles/pathology , Obesity/physiopathology , Obesity/complications , Obesity/metabolism , Diet, High-Fat
18.
BMJ Case Rep ; 17(5)2024 May 15.
Article En | MEDLINE | ID: mdl-38749528

Scimitar syndrome is characterised by right lung hypoplasia and abnormal pulmonary venous return, known as the 'scimitar vein'. We report the case of an infant girl with scimitar syndrome who developed a severe respiratory distress mimicking asthma. Pulmonary hypertension (PH) was diagnosed, attributed to scimitar vein stenosis and a left-to-right shunt. Scimitar vein stenosis, a rare complication of scimitar syndrome, can lead to severe PH, highlighting the importance of prompt management in specialised care centres.


Scimitar Syndrome , Humans , Scimitar Syndrome/diagnostic imaging , Scimitar Syndrome/complications , Scimitar Syndrome/diagnosis , Female , Infant , Constriction, Pathologic , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/diagnosis , Diagnosis, Differential , Pulmonary Veins/abnormalities , Pulmonary Veins/diagnostic imaging , Stenosis, Pulmonary Vein/diagnostic imaging , Stenosis, Pulmonary Vein/diagnosis
19.
Sci Rep ; 14(1): 10108, 2024 05 02.
Article En | MEDLINE | ID: mdl-38698005

Pulmonary tuberculosis (TB) can result in irreversible damage and lead to tuberculous destructive lung (TDL), a severe chronic lung disease that is associated with a high mortality rate. Additionally, pulmonary hypertension (PH) is a hemodynamic disorder that can be caused by lung diseases. The objective of this study is to investigate the risk factors associated with PH in active TB patients diagnosed with TDL. We conducted a retrospective review of the medical records of 237 patients who were diagnosed with TDL, active pulmonary tuberculosis, and underwent echocardiography at the Third People' Hospital of Shenzhen from January 1, 2016, to June 30, 2023. Univariate and multivariate logistic regression analyses were performed to identify factors that correlated with the development of pulmonary hypertension. Univariate and multivariate logistic regression analyses revealed that several factors were associated with an increased risk of pulmonary hypertension (PH) in individuals with tuberculosis destroyed lung (TDL). These factors included age (OR = 1.055), dyspnea (OR = 10.728), D-dimer (OR = 1.27), PaCO2 (OR = 1.040), number of destroyed lung lobes (OR = 5.584), bronchiectasis (OR = 3.205), and chronic pleuritis (OR = 2.841). When age, D-dimer, PaCO2, and number of destroyed lung lobes were combined, the predictive value for PH in patients with TDL was found to be 80.6% (95% CI 0.739-0.873),with a sensitivity of 76.6% and specificity of 73.2%. Advanced age, elevated D-dimer levels, hypercapnia, and severe lung damage were strongly correlated with the onset of PH in individuals with active pulmonary tuberculosis (PTB) and TDL. Furthermore, a model incorporating age, D-dimer, PaCO2, and the number of destroyed lung lobes might be valuable in predicting the occurrence of PH in patients with active PTB and TDL.


Hypertension, Pulmonary , Tuberculosis, Pulmonary , Humans , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/complications , Male , Female , Middle Aged , Risk Factors , Retrospective Studies , Tuberculosis, Pulmonary/complications , Adult , Lung/pathology , Lung/diagnostic imaging , Aged , Fibrin Fibrinogen Degradation Products/analysis , Fibrin Fibrinogen Degradation Products/metabolism
20.
Arq Bras Cardiol ; 121(4): e20230565, 2024.
Article Pt, En | MEDLINE | ID: mdl-38695472

Pulmonary veno-occlusive disease (PVOD) and pulmonary capillary hemangiomatosis are rare types of histopathological substrates within the spectrum of pulmonary arterial hypertension (PAH) with a very poor prognosis. They are characterized by a widespread fibroproliferative process of the small caliber veins and/or capillaries with sparing of the larger veins, resulting in a pre-capillary pulmonary hypertension phenotype. Clinical presentation is unspecific and similar to other PAH etiologies. Definitive diagnosis is obtained through histological analysis, although lung biopsy is not advised due to a higher risk of complications. However, some additional findings may allow a presumptive clinical diagnosis of PVOD, particularly a history of smoking, chemotherapy drug use, exposure to organic solvents (particularly trichloroethylene), low diffusing capacity for carbon monoxide (DLCO), exercise induced desaturation, and evidence of venous congestion without left heart disease on imaging, manifested by a classical triad of ground glass opacities, septal lines, and lymphadenopathies. Lung transplant is the only effective treatment, and patients should be referred at the time of diagnosis due to the rapid progression of the disease and associated poor prognosis. We present a case of a 58-year-old man with PAH with features of venous/capillary involvement in which clinical suspicion, prompt diagnosis, and early referral for lung transplantation were determinant factors for the successful outcome.


A doença veno-oclusiva pulmonar (DVOP) e a hemangiomatose capilar pulmonar são tipos raros de substratos histopatológicos dentro do espectro da hipertensão arterial pulmonar (HAP) com prognóstico muito ruim. Caracterizam-se por um processo fibroproliferativo generalizado das veias e/ou capilares de pequeno calibre com preservação das veias maiores, resultando em um fenótipo de hipertensão pulmonar pré-capilar. A apresentação clínica é inespecífica e semelhante a outras etiologias de HAP. O diagnóstico definitivo é obtido por meio de análise histológica, embora a biópsia pulmonar não seja aconselhada devido ao maior risco de complicações. No entanto, alguns achados adicionais podem permitir um diagnóstico clínico presuntivo de DVOP, especialmente história de tabagismo, uso de drogas quimioterápicas, exposição a solventes orgânicos (particularmente tricloroetileno), baixa capacidade de difusão do monóxido de carbono (DLCO), dessaturação ao esforço e evidências de doença venosa sem doença cardíaca esquerda no exame de imagem, manifestada por uma tríade clássica de opacidades em vidro fosco, linhas septais, e linfadenopatias. O transplante pulmonar é o único tratamento eficaz e os pacientes devem ser encaminhados no momento do diagnóstico, devido à rápida progressão da doença e ao prognóstico ruim. Apresentamos o caso de um homem de 58 anos com HAP com características de envolvimento venoso/capilar em que a suspeita clínica, o pronto diagnóstico e o encaminhamento precoce para transplante pulmonar foram determinantes para um bom desfecho.


Pulmonary Veno-Occlusive Disease , Humans , Male , Middle Aged , Pulmonary Veno-Occlusive Disease/diagnostic imaging , Pulmonary Arterial Hypertension/etiology , Hypertension, Pulmonary/etiology
...