Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.951
Filter
1.
BMC Microbiol ; 24(1): 255, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982358

ABSTRACT

BACKGROUND: Alternaria alternata is the primary pathogen of potato leaf spot disease, resulting in significant potato yield losses globally. Endophytic microorganism-based biological control, especially using microorganisms from host plants, has emerged as a promising and eco-friendly approach for managing plant diseases. Therefore, this study aimed to isolate, identify and characterize the endophytic fungi from healthy potato leaves which had great antifungal activity to the potato leaf spot pathogen of A. alternata in vitro and in vivo. RESULTS: An endophytic fungal strain SD1-4 was isolated from healthy potato leaves and was identified as Talaromyces muroii through morphological and sequencing analysis. The strain SD1-4 exhibited potent antifungal activity against the potato leaf spot pathogen A. alternata Lill, with a hyphal inhibition rate of 69.19%. Microscopic and scanning electron microscope observations revealed that the strain SD1-4 grew parallel to, coiled around, shrunk and deformed the mycelia of A. alternata Lill. Additionally, the enzyme activities of chitinase and ß-1, 3-glucanase significantly increased in the hyphae of A. alternata Lill when co-cultured with the strain SD1-4, indicating severe impairment of the cell wall function of A. alternata Lill. Furthermore, the mycelial growth and conidial germination of A. alternata Lill were significantly suppressed by the aseptic filtrate of the strain SD1-4, with inhibition rates of 79.00% and 80.67%, respectively. Decrease of leaf spot disease index from 78.36 to 37.03 was also observed in potato plants treated with the strain SD1-4, along with the significantly increased plant growth characters including plant height, root length, fresh weight, dry weight, chlorophyll content and photosynthetic rate of potato seedlings. CONCLUSION: The endophyte fungus of T. muroii SD1-4 isolated from healthy potato leaves in the present study showed high biocontrol potential against potato leaf spot disease caused by A. alternata via direct parasitism or antifungal metabolites, and had positive roles in promoting potato plant growth.


Subject(s)
Alternaria , Endophytes , Plant Diseases , Plant Leaves , Solanum tuberosum , Talaromyces , Alternaria/growth & development , Alternaria/physiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Solanum tuberosum/microbiology , Talaromyces/genetics , Talaromyces/growth & development , Endophytes/physiology , Endophytes/isolation & purification , Endophytes/genetics , Plant Leaves/microbiology , Hyphae/growth & development , Antibiosis , Chitinases/metabolism , Biological Control Agents , Pest Control, Biological/methods
2.
Phytopathology ; 114(7): 1502-1514, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39023506

ABSTRACT

Late blight, caused by the notorious pathogen Phytophthora infestans, poses a significant threat to potato (Solanum tuberosum) crops worldwide, impacting their quality as well as yield. Here, we aimed to investigate the potential use of cinnamaldehyde, carvacrol, and eugenol as control agents against P. infestans and to elucidate their underlying mechanisms of action. To determine the pathogen-inhibiting concentrations of these three plant essential oils (PEOs), a comprehensive evaluation of their effects using gradient dilution, mycelial growth rate, and spore germination methods was carried out. Cinnamaldehyde, carvacrol, and eugenol were capable of significantly inhibiting P. infestans by hindering its mycelial radial growth, zoospore release, and sporangium germination; the median effective inhibitory concentration of the three PEOs was 23.87, 8.66, and 89.65 µl/liter, respectively. Scanning electron microscopy revealed that PEOs caused the irreversible deformation of P. infestans, resulting in hyphal shrinkage, distortion, and breakage. Moreover, propidium iodide staining and extracellular conductivity measurements demonstrated that all three PEOs significantly impaired the integrity and permeability of the pathogen's cell membrane in a time- and dose-dependent manner. In vivo experiments confirmed the dose-dependent efficacy of PEOs in reducing the lesion diameter of potato late blight. Altogether, these findings provide valuable insight into the antifungal mechanisms of PEOs vis-à-vis late blight-causing P. infestans. By utilizing the inherent capabilities of these natural compounds, we could effectively limit the harmful impacts of late blight on potato crops, thereby enhancing agricultural practices and ensuring the resilience of global potato food production.


Subject(s)
Cymenes , Eugenol , Oils, Volatile , Phytophthora infestans , Plant Diseases , Solanum tuberosum , Phytophthora infestans/drug effects , Phytophthora infestans/physiology , Solanum tuberosum/microbiology , Oils, Volatile/pharmacology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Eugenol/pharmacology , Cymenes/pharmacology , Monoterpenes/pharmacology , Mycelium/drug effects , Mycelium/growth & development , Plant Oils/pharmacology , Hyphae/drug effects , Hyphae/growth & development , Spores/drug effects , Spores/physiology , Acrolein/analogs & derivatives
3.
Fungal Biol ; 128(5): 1899-1906, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39059845

ABSTRACT

A range of fungal species showed variable abilities to colonize and penetrate a mortar substrate. Calcium biomineralization was a common feature with calcium-containing crystals deposited in the microenvironment or encrusting hyphae, regardless of the specific mortar composition. Several species caused significant damage to the mortar surface, exhibiting burrowing and penetration, surface etching, and biomineralization. In some cases, extensive biomineralization of hyphae, probably by carbonatization, resulted in the formation of crystalline tubes after hyphal degradation on mortar blocks, including those amended with Co or Sr carbonate. Ca was the only metal detected in the biomineralized formations with Co or Sr undetectable. Aspergillus niger, Stemphylium sp. and Paecilomyces sp. could penetrate mortar with differential responses depending on the porosity. Fluorescent staining of thin sections recorded penetration depths of ∼530 um for A. niger and ∼620 um for Stemphylium sp. Penetration depth varied inversely with porosity and greater penetration depths were achieved in mortar with a lower porosity (lower water/cement ratio). These results have provided further understanding of biodeteriorative fungal interactions with cementitious substrates that can clearly affect structural integrity. The potential significance of fungal colonization and such biodeteriorative phenomena should not be overlooked in built environment contexts, including radionuclide storage and surface decontamination.


Subject(s)
Construction Materials , Fungi , Construction Materials/microbiology , Fungi/metabolism , Calcium/metabolism , Hyphae/metabolism , Hyphae/growth & development
4.
Mol Biol Cell ; 35(9): br17, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39046771

ABSTRACT

The stereotypical tip growth of filamentous fungi supports their lifestyles and functions. It relies on the polarized remodeling and expansion of a protective elastic cell wall (CW) driven by large cytoplasmic turgor pressure. Remarkably, hyphal filament diameters and cell elongation rates can vary extensively among different fungi. To date, however, how fungal cell mechanics may be adapted to support these morphological diversities while ensuring surface integrity remains unknown. Here, we combined super-resolution imaging and deflation assays to measure local CW thickness, elasticity and turgor in a set of fungal species spread on the evolutionary tree that spans a large range in cell size and growth speeds. While CW elasticity exhibited dispersed values, presumably reflecting differences in CW composition, both thickness and turgor scaled in dose-dependence with cell diameter and growth speeds. Notably, larger cells exhibited thinner lateral CWs, and faster cells thinner apical CWs. Counterintuitively, turgor pressure was also inversely scaled with cell diameter and tip growth speed, challenging the idea that turgor is the primary factor dictating tip elongation rates. We propose that fast-growing cells with rapid CW turnover have evolved strategies based on a less turgid cytoplasm and thin walls to safeguard surface integrity and survival.


Subject(s)
Cell Wall , Fungi , Hyphae , Cell Wall/metabolism , Cell Wall/physiology , Hyphae/growth & development , Fungi/physiology , Elasticity , Cytoplasm/metabolism , Biomechanical Phenomena
5.
PLoS Biol ; 22(7): e3002726, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39078817

ABSTRACT

The importance of fungi in ecological systems and pathogenicity hinges on their ability to search for nutrients, substrates, and hosts. Despite this, the question of whether fungal hyphae exhibit chemotropism toward them remains largely unresolved and requires close examination at the cellular level. Here, we designed a microfluidic device to assess hyphal chemotropism of Aspergillus nidulans in response to carbon and nitrogen sources, as well as pH. Within this device, hyphae could determine their growth direction in a two-layer flow with distinct compositions that were adjacent but non-mixing. Under conditions with and without a carbon source, hyphae changed growth direction to remain in the presence of a carbon source, but it was still difficult to distinguish between differences in growth and chemotropism. Although nitrogen sources such as ammonia and nitrate are important for growth, the hyphae indicated negative chemotropism to avoid them depending on the specific transporters. This fungus grows equally well at the colony level in the pH range of 4 to 9, but the hyphae exhibited chemotropism to acidic pH. The proton pump PmaA is vital for the chemotropism to acid pH, while the master regulatory for pH adaptation PacC is not involved, suggesting that chemotropism and adaptive growth via gene expression regulation are distinct regulatory mechanisms. Despite various plasma membrane transporters are distributed across membranes except at the hyphal tip, the control of growth direction occurs at the tip. Finally, we explored the mechanisms linking these two phenomena, tip growth and chemotropism.


Subject(s)
Aspergillus nidulans , Hyphae , Aspergillus nidulans/metabolism , Aspergillus nidulans/physiology , Hyphae/metabolism , Hyphae/growth & development , Hydrogen-Ion Concentration , Nitrogen/metabolism , Nutrients/metabolism , Fungal Proteins/metabolism , Fungal Proteins/genetics , Carbon/metabolism , Gene Expression Regulation, Fungal , Ammonia/metabolism
6.
Microbiology (Reading) ; 170(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-39073411

ABSTRACT

Mucormycosis is an emerging and deadly invasive fungal infection caused by fungi belonging to the Mucorales order. We investigated the myosin superfamily, which encompasses diverse actin-based motor proteins with various cellular functions. Specifically, the role of the Myo5B (ID 179665) protein from the myosin class V family in Mucor lusitanicus was explored by generating silencing phenotypes and null mutants corresponding to the myo5B gene. Silencing fungal transformants exhibited a markedly reduced growth rate and a nearly complete absence of sporulation compared to the wild-type strain. The myo5BΔ null mutant strain displayed atypical characteristics, including abnormally short septa and inflated hyphae. Notably, there were a majority of small yeast-like cells instead of filamentous hyphae in the mutant. These yeast-like cells cannot germinate normally, resulting in a loss of polarity. In vivo virulence assays conducted in the Galleria mellonella invertebrate model revealed that the myo5BΔ mutant strain was avirulent. These findings shed light on the crucial contributions of the Myo5B protein to the dimorphism and pathogenicity of M. lusitanicus. Therefore, the myosin V family is a potential target for future therapeutic interventions aimed at treating mucormycosis.


Subject(s)
Fungal Proteins , Hyphae , Mucor , Hyphae/growth & development , Hyphae/genetics , Mucor/genetics , Mucor/pathogenicity , Mucor/growth & development , Virulence , Animals , Fungal Proteins/genetics , Fungal Proteins/metabolism , Myosin Type V/genetics , Myosin Type V/metabolism , Mucormycosis/microbiology , Moths/microbiology , Humans , Spores, Fungal/growth & development , Spores, Fungal/genetics
7.
Cell Host Microbe ; 32(6): 779-781, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38870893

ABSTRACT

In a recent issue of Nature, Zhao et al. have demonstrated that Streptomyces spp. produce "umbrella"-shaped polymorphic toxin particles, a novel class of non-lethal toxins that gently inhibit competitors by arresting hyphal growth in closely related bacteria, unveiling a unique bacterial defense strategy in microbial ecological interactions.1.


Subject(s)
Bacterial Toxins , Streptomyces , Streptomyces/metabolism , Bacterial Toxins/metabolism , Bacterial Toxins/toxicity , Antibiosis , Hyphae/growth & development , Microbial Interactions
8.
Front Cell Infect Microbiol ; 14: 1414618, 2024.
Article in English | MEDLINE | ID: mdl-38903941

ABSTRACT

Candida species comprise a ubiquitous pathogenic fungal genus responsible for causing candidiasis. They are one of the primary causatives of several mucosal and systemic infections in humans and can survive in various environments. In this study, we investigated the antifungal, anti-biofilm, and anti-hyphal effects of six N-substituted phthalimides against three Candida species. Of the derivatives, N-butylphthalimide (NBP) was the most potent, with a minimum inhibitory concentration (MIC) of 100 µg/ml and which dose-dependently inhibited biofilm at sub-inhibitory concentrations (10-50 µg/ml) in both the fluconazole-resistant and fluconazole-sensitive Candida albicans and Candida parapsilosis. NBP also effectively inhibited biofilm formation in other pathogens including uropathogenic Escherichia coli, Staphylococcus epidermidis, Staphylococcus aureus, and Vibrio parahaemolyticus, along with the polymicrobial biofilms of S. epidermidis and C. albicans. NBP markedly inhibited the hyphal formation and cell aggregation of C. albicans and altered its colony morphology in a dose-dependent manner. Gene expression analysis showed that NBP significantly downregulated the expression of important hyphal- and biofilm-associated genes, i.e., ECE1, HWP1, and UME6, upon treatment. NBP also exhibited mild toxicity at concentrations ranging from 2 to 20 µg/ml in a nematode model. Therefore, this study suggests that NBP has anti-biofilm and antifungal potential against various Candida strains.


Subject(s)
Antifungal Agents , Biofilms , Candida albicans , Hyphae , Microbial Sensitivity Tests , Phthalimides , Biofilms/drug effects , Biofilms/growth & development , Antifungal Agents/pharmacology , Phthalimides/pharmacology , Candida albicans/drug effects , Hyphae/drug effects , Hyphae/growth & development , Candida/drug effects , Candidiasis/microbiology , Candidiasis/drug therapy , Animals , Humans , Candida parapsilosis/drug effects , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fluconazole/pharmacology
9.
Sheng Wu Gong Cheng Xue Bao ; 40(6): 1776-1791, 2024 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-38914491

ABSTRACT

Filamentous fungi are a group of eukaryotic microorganisms widely found in nature. Some filamentous fungi have been developed as "cell factories" and extensively used for the production of recombinant proteins, organic acids, and secondary metabolites due to their strong protein secretion capabilities or effective synthesis of many natural products. The growth morphology of filamentous fungi significantly influences the quality and quantity of fermented products. Previous research conducted by the authors' group revealed that an increase in hyphal branches leads to enhanced protein secretion during liquid fermentation. With the development of morphological engineering of filamentous fungi, an increasing number of studies have focused on modifying fungal mycelium morphology to improve the yield of target metabolites during fermentation. While there have been a few reviews on the relationship between fungal fermentation morphology and productivity, research in this area is rapidly developing and requires updates. The paper presents a comprehensive review of domestic and international research reports, along with the authors' own research findings, to systematically review the morphological patterns of filamentous fungi, the impact of fungal morphology on industrial fermentation, as well as methods and strategies for regulating mycelial morphology. The aim of this review is to enhance the understanding of relevant domestic scholars regarding the morphological development of filamentous fungi and provide ideas for the rational engineering of fungal strains suitable for industrial fermentation.


Subject(s)
Fermentation , Fungi , Mycelium , Fungi/genetics , Fungi/metabolism , Mycelium/genetics , Mycelium/metabolism , Mycelium/growth & development , Industrial Microbiology , Genetic Engineering , Recombinant Proteins/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/metabolism , Hyphae/genetics , Hyphae/growth & development
10.
Fungal Biol ; 128(4): 1868-1875, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38876539

ABSTRACT

In the development of fungal based materials for applications in construction through to biomedical materials and fashion, understanding how to regulate and direct growth is key for gaining control over the form of material generated. Here, we show how simple 'chemical food' cues can be used to manipulate the growth of fungal networks by taking Aspergillus niger as an exemplar species. Chemotrophic responses towards a range of nitrogen and carbon containing biomolecules including amino acids, sugars and sugar alcohols were quantified in terms of chemotrophic index (CI) under a range of basal media compositions (low and high concentrations of N and C sources). Growth of filamentous networks was followed using fluorescence microscopy at single time points and during growth by an AI analytical approach to explore chemo sensing behaviour of the fungus when exposed to pairs (C-C, C-N, N-N) of biomolecules simultaneously. Data suggests that the directive growth of A. niger can be controlled towards simple biomolecules with CI values giving a good approximation for expected growth under a range of growth conditions. This is a first step towards identifying conditions for researcher-led directed growth of hyphae to make mycelial mats with tuneable morphological, physicochemical, and mechanical characteristics.


Subject(s)
Aspergillus niger , Culture Media , Hyphae , Nitrogen , Aspergillus niger/growth & development , Aspergillus niger/metabolism , Hyphae/growth & development , Culture Media/chemistry , Nitrogen/metabolism , Carbon/metabolism , Amino Acids/metabolism , Microscopy, Fluorescence
11.
Microb Pathog ; 193: 106750, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38906491

ABSTRACT

The antifungal activity of Serratia plymuthica CCGG2742, a bacterial strain isolated from grapes berries skin, against a phytopathogenic fungus isolated from blueberries was evaluated in vitro and in vivo. In order to characterize the wild fungal isolate, phylogenetic analysis using concatenated DNA sequences from the RPB2 and TEF1 genes and of the ITS region was performed, allowing the identification of the fungal isolate that was called Alternaria tenuissima CC17. Hyphae morphology, mycelium ultrastructure, conidia and reproductive structures were in agreement with the phylogenetic analysis. The antifungal activity of the S. plymuthica strain was dependent on the composition of the culture medium. The greatest inhibition of mycelial growth of A. tenuissima CC17 by S. plymuthica CCGG2742 was observed on YTS medium, which lacks of an easily assimilable carbon source. Fungal growth medium supplemented with 50 % of bacterial supernatant decreased the conidia germination of A. tenuissima CC17 up to 32 %. Preventive applications of S. plymuthica CCGG2742 to blueberries and tomato leaves at conidia:bacteria ratio of 1:100, protected in 77.8 ± 4.6 % and 98.2 ± 0.6 % to blueberries and tomato leaves from infection caused by A. tenuissima CC17, respectively. To the best of our knowledge, this is the first report on the antifungal activity of S. plymuthica against A. tenuissima, which could be used as a biological control agent of plant diseases caused by this fungal species. In addition, the results of this work could be a starting point to attribute the real importance of A. tenuissima as a pathogen of blueberries in Chile, which until now had been considered almost exclusively to A. alternata. Likewise, this research could be relevant to start developing highly effective strategies based on S. plymuthica CCGG2742 for the control of this important phytopathogenic fungus.


Subject(s)
Alternaria , Antibiosis , Phylogeny , Plant Diseases , Serratia , Spores, Fungal , Plant Diseases/microbiology , Plant Diseases/prevention & control , Alternaria/growth & development , Alternaria/genetics , Serratia/genetics , Serratia/physiology , Spores, Fungal/growth & development , Mycelium/growth & development , Antifungal Agents/pharmacology , Solanum lycopersicum/microbiology , Hyphae/growth & development , Culture Media/chemistry , Plant Leaves/microbiology , Vitis/microbiology
12.
Microbiol Res ; 286: 127792, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38852300

ABSTRACT

Botrytis cinerea is the phytopathogenic fungus responsible for the gray mold disease that affects crops worldwide. Essential oils (EOs) have emerged as a sustainable tool to reduce the adverse impact of synthetic fungicides. Nevertheless, the scarce information about the physiological mechanism action and the limitations to applying EOs has restricted its use. This study focused on elucidating the physiological action mechanisms and prospection of lipid nanoparticles to apply EO of Mentha piperita. The results showed that the EO of M. piperita at 500, 700, and 900 µL L-1 inhibited the mycelial growth at 100 %. The inhibition of spore germination of B. cinerea reached 31.43 % at 900 µL L-1. The EO of M. piperita decreased the dry weight and increased pH, electrical conductivity, and cellular material absorbing OD260 nm of cultures of B. cinerea. The fluorescence technique revealed that EO reduced hyphae width, mitochondrial activity, and viability, and increased ROS production. The formulation of EO of M. piperita loaded- solid lipid nanoparticles (SLN) at 500, 700, and 900 µL L-1 had particle size ∼ 200 nm, polydispersity index < 0.2, and stability. Also, the thermogravimetric analysis indicated that the EO of M. piperita-loaded SLN has great thermal stability at 50 °C. EO of M. piperita-loaded SLN reduced the mycelial growth of B. cinerea by 70 %, while SLN formulation (without EO) reached 42 % inhibition. These results supported that EO of M. piperita-loaded SLN is a sustainable tool for reducing the disease produced by B. cinerea.


Subject(s)
Botrytis , Mentha piperita , Nanoparticles , Oils, Volatile , Spores, Fungal , Botrytis/drug effects , Botrytis/growth & development , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Nanoparticles/chemistry , Mentha piperita/chemistry , Spores, Fungal/drug effects , Spores, Fungal/growth & development , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Mycelium/drug effects , Mycelium/growth & development , Plant Diseases/prevention & control , Plant Diseases/microbiology , Lipids/chemistry , Lipids/pharmacology , Particle Size , Reactive Oxygen Species/metabolism , Plant Oils/pharmacology , Hyphae/drug effects , Hyphae/growth & development , Microbial Sensitivity Tests , Antifungal Agents/pharmacology , Liposomes
13.
Microbiol Res ; 286: 127789, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38870619

ABSTRACT

Plants have developed intricate immune mechanisms to impede Phytophthora colonization. In response, Phytophthora secretes RxLR effector proteins that disrupt plant defense and promote infection. The specific molecular interactions through which Phytophthora RxLR effectors undermine plant immunity, however, remain inadequately defined. In this study, we delineate the role of the nuclear-localized RxLR effector PcAvh87, which is pivotal for the full virulence of Phytophthora cinnamomi. Gene expression analysis indicates that PcAvh87 expression is significantly upregulated during the initial infection stages, interacting with the immune responses triggered by the elicitin protein INF1 and pro-apoptotic protein BAX. Utilizing PEG/CaCl2-mediated protoplast transformation and CRISPR/Cas9-mediated gene editing, we generated PcAvh87 knockout mutants, which demonstrated compromised hyphal growth, sporangium development, and zoospore release, along with a marked reduction in pathogenicity. This underscores PcAvh87's crucial role as a virulence determinant. Notably, PcAvh87, conserved across the Phytophthora genus, was found to modulate the activity of plant immune protein 113, thereby attenuating plant immune responses. This implies that the PcAvh87-mediated regulatory mechanism could be a common strategy in Phytophthora species to manipulate plant immunity. Our findings highlight the multifaceted roles of PcAvh87 in promoting P. cinnamomi infection, including its involvement in sporangia production, mycelial growth, and the targeting of plant immune proteins to enhance pathogen virulence.


Subject(s)
Cell Death , Phytophthora , Plant Diseases , Plant Immunity , Phytophthora/pathogenicity , Phytophthora/genetics , Plant Diseases/microbiology , Plant Diseases/immunology , Virulence , Virulence Factors/genetics , Cell Nucleus/metabolism , Host-Pathogen Interactions , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/immunology , Nicotiana/microbiology , Nicotiana/immunology , Hyphae/genetics , Hyphae/growth & development , Hyphae/immunology
14.
Appl Microbiol Biotechnol ; 108(1): 398, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940906

ABSTRACT

Grey mould caused by Botrytis cinerea is a devastating disease responsible for large losses to agricultural production, and B. cinerea is a necrotrophic model fungal plant pathogen. Membrane proteins are important targets of fungicides and hotspots in the research and development of fungicide products. Wuyiencin affects the permeability and pathogenicity of B. cinerea, parallel reaction monitoring revealed the association of membrane protein Bcsdr2, and the bacteriostatic mechanism of wuyiencin was elucidated. In the present work, we generated and characterised ΔBcsdr2 deletion and complemented mutant B. cinerea strains. The ΔBcsdr2 deletion mutants exhibited biofilm loss and dissolution, and their functional activity was illustrated by reduced necrotic colonisation on strawberry and grape fruits. Targeted deletion of Bcsdr2 also blocked several phenotypic defects in aspects of mycelial growth, conidiation and virulence. All phenotypic defects were restored by targeted gene complementation. The roles of Bcsdr2 in biofilms and pathogenicity were also supported by quantitative real-time RT-PCR results showing that phosphatidylserine decarboxylase synthesis gene Bcpsd and chitin synthase gene BcCHSV II were downregulated in the early stages of infection for the ΔBcsdr2 strain. The results suggest that Bcsdr2 plays important roles in regulating various cellular processes in B. cinerea. KEY POINTS: • The mechanism of wuyiencin inhibits B. cinerea is closely associated with membrane proteins. • Wuyiencin can downregulate the expression of the membrane protein Bcsdr2 in B. cinerea. • Bcsdr2 is involved in regulating B. cinerea virulence, growth and development.


Subject(s)
Biofilms , Botrytis , Fragaria , Fungal Proteins , Hyphae , Membrane Proteins , Plant Diseases , Botrytis/pathogenicity , Botrytis/genetics , Botrytis/growth & development , Botrytis/drug effects , Biofilms/growth & development , Biofilms/drug effects , Virulence , Hyphae/growth & development , Hyphae/drug effects , Plant Diseases/microbiology , Fragaria/microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Vitis/microbiology , Spores, Fungal/growth & development , Spores, Fungal/drug effects , Spores, Fungal/genetics , Gene Deletion
15.
Microbiol Spectr ; 12(7): e0341923, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38842336

ABSTRACT

Cryptococcus neoformans is a fungal pathogen responsible for >200,000 yearly cases with a mortality as high as 81%. This burden results, in part, from an incomplete understanding of its pathogenesis and ineffective antifungal treatments; hence, there is a pressing need to understand the biology and host interactions of this yeast to develop improved treatments. Protein palmitoylation is important for cryptococcal virulence, and we previously identified the substrates of its main palmitoyl transferase. One of them was encoded by the uncharacterized gene CNAG_02129. In the filamentous fungus Neurospora crassa, a homolog of this gene named hyphal anastomosis protein 13 plays a role in proper cellular communication and filament fusion. In Cryptococcus, cellular communication is essential during mating; therefore, we hypothesized that CNAG_02129, which we named hyphal anastomosis protein 1 (HAM1), may play a role in mating. We found that ham1Δ mutants produce more fusion products during mating, filament more robustly, and exhibit competitive fitness defects under mating and non-mating conditions. Additionally, we found several differences with the major virulence factor, the polysaccharide capsule, that may affect virulence, consistent with prior studies linking virulence to mating. We observed that ham1Δ mutants have decreased capsule attachment and transfer but exhibit higher amounts of exopolysaccharide shedding and biofilm production. Finally, HAM1 expression is significantly lower in mating media relative to non-mating conditions, consistent with it acting as a negative regulator of mating. Understanding the connection between mating and virulence in C. neoformans may open new avenues of investigation into ways to improve the treatment of this disease. IMPORTANCE: Fungal mating is a vital part of the lifecycle of the pathogenic yeast Cryptococcus neoformans. More than just ensuring the propagation of the species, mating allows for sexual reproduction to occur and generates genetic diversity as well as infectious propagules that can invade mammalian hosts. Despite its importance in the biology of this pathogen, we still do not know all of the major players regulating the mating process and if they are involved or impact its pathogenesis. Here, we identified a novel negative regulator of mating that also affects certain cellular characteristics known to be important for virulence. This gene, which we call HAM1, is widely conserved across the cryptococcal family as well as in many pathogenic fungal species. This study will open new avenues of exploration regarding the function of uncharacterized but conserved genes in a variety of pathogenic fungal species and specifically in serotype A of C. neoformans.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Fungal Proteins , Virulence Factors , Cryptococcus neoformans/genetics , Cryptococcus neoformans/pathogenicity , Cryptococcus neoformans/physiology , Cryptococcus neoformans/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Virulence/genetics , Cryptococcosis/microbiology , Virulence Factors/genetics , Virulence Factors/metabolism , Genes, Mating Type, Fungal/genetics , Phenotype , Gene Expression Regulation, Fungal , Animals , Hyphae/genetics , Hyphae/growth & development , Hyphae/metabolism , Mice
16.
Virulence ; 15(1): 2362748, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38860453

ABSTRACT

Rad6 functions as a ubiquitin-conjugating protein that regulates cellular processes in many fungal species. However, its role in filamentous entomopathogenic fungi remains poorly understood. This study characterizes Rad6 in Beauveria bassiana, a filamentous fungus widely employed as a critical fungicide globally. The results demonstrate a significant association between Rad6 and conidial properties, heat shock response, and UV-B tolerance. Concurrently, the mutant strain exhibited heightened sensitivity to oxidative stress, cell wall interfering agents, DNA damage stress, and prolonged heat shock. Furthermore, the absence of Rad6 significantly extended the median lethal time (LT50) of Galleria mellonella infected by B. bassiana. This delay could be attributed to reduced Pr1 proteases and extracellular cuticle-degrading enzymes, diminished dimorphic transition rates, and dysregulated antioxidant enzymes. Additionally, the absence of Rad6 had a more pronounced effect on genetic information processing, metabolism, and cellular processes under normal conditions. However, its impact was limited to metabolism in oxidative stress. This study offers a comprehensive understanding of the pivotal roles of Rad6 in conidial and hyphal stress tolerance, environmental adaptation, and the pathogenesis of Beauveria bassiana.


Subject(s)
Beauveria , Fungal Proteins , Spores, Fungal , Animals , Beauveria/pathogenicity , Beauveria/genetics , Beauveria/physiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Heat-Shock Response , Hyphae/growth & development , Moths/microbiology , Oxidative Stress , Spores, Fungal/genetics , Stress, Physiological , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Virulence
17.
BMC Microbiol ; 24(1): 227, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937715

ABSTRACT

This study investigated the influence of bacterial cyclic lipopeptides (LP; surfactins, iturins, fengycins) on microbial interactions. The objective was to investigate whether the presence of bacteria inhibits fungal growth and whether this inhibition is due to the release of bacterial metabolites, particularly LP. Selected endophytic bacterial strains with known plant-growth promoting potential were cultured in the presence of Fusarium oxysporum f.sp. strigae (Fos), which was applied as model fungal organism. The extracellular metabolome of tested bacteria, with a focus on LP, was characterized, and the inhibitory effect of bacterial LP on fungal growth was investigated. The results showed that Bacillus velezensis GB03 and FZB42, as well as B. subtilis BSn5 exhibited the strongest antagonism against Fos. Paraburkholderia phytofirmans PsJN, on the other hand, tended to have a slight, though non-significant growth promotion effect. Crude LP from strains GB03 and FZB42 had the strongest inhibitory effect on Fos, with a significant inhibition of spore germination and damage of the hyphal structure. Liquid chromatography tandem mass spectrometry revealed the production of several variants of iturin, fengycin, and surfactin LP families from strains GB03, FZB42, and BSn5, with varying intensity. Using plate cultures, bacillomycin D fractions were detected in higher abundance in strains GB03, FZB42, and BSn5 in the presence of Fos. Additionally, the presence of Fos in dual plate culture triggered an increase in bacillomycin D production from the Bacillus strains. The study demonstrated the potent antagonistic effect of certain Bacillus strains (i.e., GB03, FZB42, BSn5) on Fos development. Our findings emphasize the crucial role of microbial interactions in shaping the co-existence of microbial assemblages.


Subject(s)
Antibiosis , Antifungal Agents , Bacillus , Fusarium , Lipopeptides , Fusarium/drug effects , Fusarium/growth & development , Lipopeptides/pharmacology , Lipopeptides/metabolism , Bacillus/metabolism , Antifungal Agents/pharmacology , Peptides, Cyclic/pharmacology , Microbial Interactions , Burkholderiaceae/growth & development , Burkholderiaceae/metabolism , Spores, Fungal/drug effects , Spores, Fungal/growth & development , Hyphae/drug effects , Hyphae/growth & development
18.
Microbes Environ ; 39(2)2024.
Article in English | MEDLINE | ID: mdl-38866480

ABSTRACT

Mn(II)-oxidizing microorganisms are considered to play significant roles in the natural geochemical cycles of Mn and other heavy metals because the insoluble biogenic Mn oxides (BMOs) that are produced by these microorganisms adsorb other dissolved heavy metals and immobilize them as precipitates. In the present study, a new Mn(II)-oxidizing fungal strain belonging to the ascomycete genus Periconia, a well-studied plant-associating fungal genus with Mn(II)-oxidizing activity that has not yet been exami-ned in detail, was isolated from natural groundwater outflow sediment. This isolate, named strain TS-2, was confirmed to oxidize dissolved Mn(II) and produce insoluble BMOs that formed characteristic, separately-located nodules on their hyphae while leaving major areas of the hyphae free from encrustation. These BMO nodules also adsorbed and immobilized dissolved Cu(II), a model analyte of heavy metals, as evidenced by elemental mapping ana-lyses of fungal hyphae-BMO assemblages using a scanning electron microscope with energy-dispersive X-ray spectroscopy (SEM-EDX). Analyses of functional genes within the whole genome of strain TS-2 further revealed the presence of multiple genes predicted to encode laccases/multicopper oxidases that were potentially responsible for Mn(II) oxidation by this strain. The formation of BMO nodules may have functioned to prevent the complete encrustation of fungal hyphae, thereby enabling the control of heavy metal concentrations in their local microenvironments while maintaining hyphal functionality. The present results will expand our knowledge of the physiological and morphological traits of Mn(II)-oxidizing Periconia, which may affect the natural cycle of heavy metals through their immobilization.


Subject(s)
Copper , Hyphae , Manganese Compounds , Oxides , Hyphae/metabolism , Hyphae/growth & development , Copper/metabolism , Manganese Compounds/metabolism , Oxides/metabolism , Oxides/chemistry , Ascomycota/genetics , Ascomycota/metabolism , Ascomycota/chemistry , Oxidation-Reduction , Groundwater/microbiology , Groundwater/chemistry , Phylogeny , Geologic Sediments/microbiology , Microscopy, Electron, Scanning , Manganese/metabolism
19.
Int J Biol Macromol ; 274(Pt 1): 133216, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38901513

ABSTRACT

Secreted common fungal extracellular membrane (CFEM) domain proteins have been implicated in multiple biological functions in fungi. However, it is still largely unknown whether the ferric iron (Fe3+), as an important trace element, was involved with the biological function of CFEM proteins. In this study, a new CFEM protein CgCsa, with high expression levels at the early inoculation stage on peppers by Colletotrichum gloeosporioides was investigated. Deletion of the targeted gene CgCsa revealed multiple biological roles in hyphal growth restriction, highly reduced conidial yield, delayed conidial germination, abnormal appressorium with elongated bud tubes, and significantly reduced virulence of C. gloeosporioides. Moreover, in CgCsa mutants, the expression levels of four cell wall synthesis-related genes were downregulated, and cell membrane permeability and electrical conductivity were increased. Compared to the wild-type, the CgCsa mutants downregulated expressions of iron transport-related genes, in addition, its three-dimensional structure was capable binding with iron. Increase in the Fe3+ concentration in the culture medium partially recovered the functions of ΔCgCsa mutant. This is probably the first report to show the association between CgCsa and iron homeostasis in C. gloeosporioides. The results suggest an alternative pathway for controlling plant fungal diseases by deplete their trace elements.


Subject(s)
Colletotrichum , Fungal Proteins , Gene Expression Regulation, Fungal , Homeostasis , Iron , Colletotrichum/pathogenicity , Colletotrichum/genetics , Colletotrichum/growth & development , Fungal Proteins/genetics , Fungal Proteins/metabolism , Iron/metabolism , Virulence/genetics , Spores, Fungal/growth & development , Plant Diseases/microbiology , Hyphae/growth & development , Mutation , Membrane Proteins/genetics , Membrane Proteins/metabolism
20.
Int J Food Microbiol ; 422: 110802, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-38943772

ABSTRACT

In feed, propionic acid is the weak organic acid of choice to prevent growth of spoilage fungi. For safe and easy industrial handling this antifungal agent is applied in the presence of neutralizing ammonium, which however has the disadvantage to negatively affect the efficacy of fungus-inhibiting properties of the formulation. In the present study we investigated the impact of medium chain fatty acids (MCFA) on the antifungal efficacy of an ammonium propionate formulation on dormant- and germinating conidia as well as germ tubes and hyphae of Aspergillus chevalieri, a xerophilic fungus predominant on moulded feed. Dormant conidia were not affected by 32 mM of ammonium propionate after a 28 h-treatment in demi water. Similar results were obtained with solely 0.52 mM MCFA. However, the combination of both components nearly eradicated formation of colonies from these conidia and was accompanied by distortion of the cellular structure as was visible with light- and transmission electron microscopy. Germination of conidia, characterised by swelling and germ tube formation, was significantly decreased in the presence of 16 mM ammonium propionate and 0.26 mM MCFA, while the latter component itself did not significantly decrease germination. We conclude that a combination of ammonium propionate and MCFA had a synergistic antifungal effect on dormant and germinating conidia. When the combination of ammonium propionate and MCFA was tested on hyphae for 30 min, we observed that cell death was significantly increased in comparison to components alone. Treatment of the hyphae with 16 mM of ammonium propionate caused aberrant mitochondria, as evidenced by irregularly shaped and enlarged mitochondria that contained electron-dense inclusions as observed by transmission electron microscopy. When the combination of ammonium propionate and MCFA was applied against the hyphae, more severe cell damage was observed, with signs of autophagy. Summarised, our results demonstrate synergistic antifungal effects of ammonium propionate and medium chain fatty acids on fungal survival structures, during their germination and after a short (sudden) treatment of growing cells. This is of potential importance for several areas of feed and food storage and shelf-life.


Subject(s)
Antifungal Agents , Aspergillus , Drug Synergism , Fatty Acids , Hyphae , Propionates , Spores, Fungal , Propionates/pharmacology , Antifungal Agents/pharmacology , Hyphae/drug effects , Hyphae/growth & development , Hyphae/ultrastructure , Spores, Fungal/drug effects , Spores, Fungal/growth & development , Aspergillus/drug effects , Aspergillus/growth & development , Fatty Acids/pharmacology , Animal Feed/microbiology , Food Preservatives/pharmacology , Food Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL