Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.206
Filter
2.
Biol Lett ; 20(8): 20240163, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39106946

ABSTRACT

Social bonds increase fitness in a range of mammals. One pathway by which social bonds may increase fitness is by reducing the exposure to physiological stress, i.e. glucocorticoid (GC) hormones, that can be detrimental to health and survival. This is achieved through downregulating hypothalamic-pituitary-adrenal (HPA)-axis activity. Indeed, long-term measures of social (grooming) bonds are often negatively correlated with HPA-axis activity. However, the proximate role of physical touch through allogrooming remains an open question in the sociality-health-fitness debate. Demonstrating the potential anxiolytic benefits of grooming in the wild is hindered by methodological limitations. Here, we match accelerometer-identified grooming in wild female chacma baboons (Papio ursinus) to non-invasive faecal GC metabolite concentrations (fGCs). Consistent with previous work, we found a negative (but statistically non-significant) overall relationship between individual averaged fGCs and grooming rates. However, when time-matching grooming to fGCs, we found that both more giving and receiving grooming were followed by higher fGCs. This upregulation of HPA-axis activity suggests that maintaining social bonds (and its ultimate fitness benefits) may come at a shorter-term physiological cost. This finding sheds new light on a ubiquitous social behaviour typically considered 'relaxing' and suggests that sociopositive contact can trigger physiological stress.


Subject(s)
Grooming , Stress, Physiological , Animals , Female , Feces/chemistry , Glucocorticoids/metabolism , Social Behavior , Papio ursinus/physiology , Hypothalamo-Hypophyseal System/physiology , Pituitary-Adrenal System/physiology
3.
Elife ; 122024 Jul 31.
Article in English | MEDLINE | ID: mdl-39082939

ABSTRACT

The kidneys facilitate energy conservation through reabsorption of nutrients including glucose. Almost all the filtered blood glucose is reabsorbed by the kidneys. Loss of glucose in urine (glycosuria) is offset by an increase in endogenous glucose production to maintain normal energy supply in the body. How the body senses this glucose loss and consequently enhances glucose production is unclear. Using renal Slc2a2 (also known as Glut2) knockout mice, we demonstrate that elevated glycosuria activates the hypothalamic-pituitary-adrenal axis, which in turn drives endogenous glucose production. This phenotype was attenuated by selective afferent renal denervation, indicating the involvement of the afferent nerves in promoting the compensatory increase in glucose production. In addition, through plasma proteomics analyses we observed that acute phase proteins - which are usually involved in the body's defense mechanisms against a threat - were the top candidates which were either upregulated or downregulated in renal Slc2a2 KO mice. Overall, afferent renal nerves contribute to promoting endogenous glucose production in response to elevated glycosuria and loss of glucose in urine is sensed as a biological threat in mice. These findings may be useful in improving the efficiency of drugs like SGLT2 inhibitors that are intended to treat hyperglycemia by enhancing glycosuria but are met with a compensatory increase in endogenous glucose production.


Subject(s)
Glucose Transporter Type 2 , Glucose , Glycosuria , Hypothalamus , Kidney , Mice, Knockout , Animals , Mice , Glucose/metabolism , Kidney/metabolism , Glycosuria/metabolism , Glucose Transporter Type 2/metabolism , Glucose Transporter Type 2/genetics , Hypothalamus/metabolism , Male , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiology , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiology
4.
PLoS One ; 19(7): e0305193, 2024.
Article in English | MEDLINE | ID: mdl-38990830

ABSTRACT

Recent works have called into question whether p-curve can reliably assess the presence of "evidential value" within a set of studies. To examine an as-yet unexplored issue, we examined the method used to identify p-values for inclusion in a p-curve analysis. We developed iterated p-curve analysis (IPA), which calculates and p-curves every permutation for a set of reported p-values, and applied it to the data reported in several published p-curve analyses. Specifically, we investigated two phenomena for which p-curves have been used to evaluate the presence of evidential value: the power pose and the hypothalamic-pituitary-adrenal (HPA) reactivity debates. The iterated p-curve analyses revealed that the p-curve method fails to provide reliable estimates or reproducible conclusions. We conclude that p-curve should not be used to make conclusions regarding the presence or absence of evidence for a specific phenomenon.


Subject(s)
Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Humans , Hypothalamo-Hypophyseal System/physiology , Pituitary-Adrenal System/physiology , Reproducibility of Results
5.
J Exp Biol ; 227(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39022893

ABSTRACT

Social status directly affects the health of humans and other animals. Low status individuals receive more antagonistic encounters, have fewer supportive relationships and have worse health outcomes. However, the physiological and cellular processes that mediate the relationship between the social environment and health are incompletely known. Epigenetic regulation of the hypothalamic-pituitary-adrenal (HPA) axis, the neuroendocrine pathway that activates in response to stressors, may be one process that is sensitive to the social environment. Here, we experimentally manipulated plumage, a key social signal in female tree swallows (Tachycineta bicolor) and quantified methylation of four genes in the HPA axis before and after treatment. We found that dulling the white breast plumage affected methylation in one gene, CRHR1; however, the effect depended on the original brightness of the bird. Methylation in this gene was correlated with baseline corticosterone levels, suggesting that DNA methylation of CRHR1 helps regulate glucocorticoid production in this species. Methylation in two other genes, FKBP5 and GR, changed over the course of the experiment, independent of treatment. These results show that methylation of these genes is labile into adulthood and suggest that epigenetic regulation of the HPA axis could help birds respond to current environmental conditions.


Subject(s)
DNA Methylation , Feathers , Hypothalamo-Hypophyseal System , Receptors, Corticotropin-Releasing Hormone , Swallows , Animals , Female , Feathers/physiology , Swallows/genetics , Swallows/physiology , Receptors, Corticotropin-Releasing Hormone/genetics , Receptors, Corticotropin-Releasing Hormone/metabolism , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiology , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism , Corticosterone/blood , Corticosterone/metabolism , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiology , Epigenesis, Genetic , Stress, Physiological/genetics , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Avian Proteins/genetics , Avian Proteins/metabolism
6.
Physiol Genomics ; 56(8): 531-543, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38881429

ABSTRACT

The circadian timing system and integrated stress response (ISR) systems are fundamental regulatory mechanisms that maintain body homeostasis. The central circadian pacemaker in the suprachiasmatic nucleus (SCN) governs daily rhythms through interactions with peripheral oscillators via the hypothalamus-pituitary-adrenal (HPA) axis. On the other hand, ISR signaling is pivotal for preserving cellular homeostasis in response to physiological changes. Notably, disrupted circadian rhythms are observed in cases of impaired ISR signaling. In this work, we examine the potential interplay between the central circadian system and the ISR, mainly through the SCN and HPA axis. We introduce a semimechanistic mathematical model to delineate SCN's capacity for indirectly perceiving physiological stress through glucocorticoid-mediated feedback from the HPA axis and orchestrating a cellular response via the ISR mechanism. Key components of our investigation include evaluating general control nonderepressible 2 (GCN2) expression in the SCN, the effect of physiological stress stimuli on the HPA axis, and the interconnected feedback between the HPA and SCN. Simulation revealed a critical role for GCN2 in linking ISR with circadian rhythms. Experimental findings have demonstrated that a Gcn2 deletion in mice leads to rapid re-entrainment of the circadian clock following jetlag as well as to an elongation of the circadian period. These phenomena are well replicated by our model, which suggests that both the swift re-entrainment and prolonged period can be ascribed to a reduced robustness in neuronal oscillators. Our model also offers insights into phase shifts induced by acute physiological stress and the alignment/misalignment of physiological stress with external light-dark cues. Such understanding aids in strategizing responses to stressful events, such as nutritional status changes and jetlag.NEW & NOTEWORTHY This study is the first theoretical work to investigate the complex interaction between integrated stress response (ISR) sensing and central circadian rhythm regulation, encompassing the suprachiasmatic nucleus (SCN) and hypothalamus-pituitary-adrenal (HPA) axis. The findings carry implications for the development of dietary or pharmacological interventions aimed at facilitating recovery from stressful events, such as jetlag. Moreover, they provide promising prospects for potential therapeutic interventions that target circadian rhythm disruption and various stress-related disorders.


Subject(s)
Circadian Rhythm , Computer Simulation , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Protein Serine-Threonine Kinases , Stress, Physiological , Suprachiasmatic Nucleus , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiology , Animals , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiology , Suprachiasmatic Nucleus/physiology , Suprachiasmatic Nucleus/metabolism , Circadian Rhythm/physiology , Mice , Stress, Physiological/physiology , Protein Serine-Threonine Kinases/metabolism , Circadian Clocks/physiology , Signal Transduction/physiology
7.
Sheng Li Xue Bao ; 76(3): 407-417, 2024 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-38939935

ABSTRACT

Noise, as an unavoidable stress (pressure) source in the modern life, affects animals in many ways, both behaviorally and physiologically. Behavioral changes may be driven by changes in hormone secretion in animals. When animals face with noise stress, the neuroendocrine systems, mainly the hypothalamic-pituitary-adrenal (HPA) axis, are activated, which promotes the secretion and release of stress hormones, and then leads to a series of behavioral changes. The behavioral changes can be easily observed, but the changes in physiological indicators such as hormone levels need to be accurately measured. Currently, many studies have measured the variations of stress hormone levels in animals under different noise conditions. Taking glucocorticoid as an example, this paper summarizes the different measurement methods of stress hormones, especially the non-invasive measurement methods, and compares the advantages and shortcomings of them. It provides a variety of measurement choices for the study of related issues, and also helps us to further understand the sources of animal stress, in order to provide a better habitat for animals.


Subject(s)
Hypothalamo-Hypophyseal System , Noise , Pituitary-Adrenal System , Stress, Physiological , Animals , Hypothalamo-Hypophyseal System/physiology , Pituitary-Adrenal System/physiology , Stress, Physiological/physiology , Glucocorticoids/metabolism , Stress, Psychological/physiopathology
8.
Front Endocrinol (Lausanne) ; 15: 1422711, 2024.
Article in English | MEDLINE | ID: mdl-38915898

ABSTRACT

Spexin (SPX, NPQ) is a 14-amino acid neuroactive peptide identified using bioinformatics. This amino acid sequence of the mature spexin peptide has been highly conserved during species evolution and is widely distributed in the central nervous system and peripheral tissues and organs. Therefore, spexin may play a role in various biological functions. Spexin, the cognate ligand for GALR2/3, acting as a neuromodulator or endocrine signaling factor, can inhibit reproductive performance. However, controversies and gaps in knowledge persist regarding spexin-mediated regulation of animal reproductive functions. This review focuses on the hypothalamic-pituitary-gonadal axis and provides a comprehensive overview of the impact of spexin on reproduction. Through this review, we aim to enhance understanding and obtain in-depth insights into the regulation of reproduction by spexin peptides, thereby providing a scientific basis for future investigations into the molecular mechanisms underlying the influence of spexin on reproductive function. Such investigations hold potential benefits for optimizing farming practices in livestock, poultry, and fish industries.


Subject(s)
Peptide Hormones , Reproduction , Vertebrates , Animals , Reproduction/physiology , Peptide Hormones/metabolism , Peptide Hormones/physiology , Vertebrates/physiology , Humans , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiology
9.
FASEB J ; 38(13): e23744, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38885031

ABSTRACT

The hypothalamic-pituitary-gonadal axis (HPG) is the key neuroendocrine axis involved in reproductive regulation. Brain and muscle ARNT-like protein 1 (Bmal1) participates in regulating the metabolism of various endocrine hormones. However, the regulation of Bmal1 on HPG and female fertility is unclear. This study aims to explore the regulation of female reproduction by Bmal1 via the HPG axis in mice. Bmal1-knockout (Ko) mice were generated using the CRISPR/Cas9 technology. The structure, function, and estrous cycle of ovarian in Bmal1 Ko female mice were measured. The key genes and proteins of the HPG axis involved in regulating female reproduction were examined through transcriptome analysis and then verified by RT-PCR, immunohistochemistry, and western blot. Furthermore, the fertility of female mice was detected after intervening prolactin (PRL) and progesterone (Pg) in Bmal1 ko mice. The number of offspring and ovarian weight were significantly lower in Bmal1-Ko mice than in wild-type (Wt) mice. In Bmal1-Ko mice, ovarian cells were arranged loosely and irregularly, and the total number of follicles was significantly reduced. No corpus luteum was found in the ovaries. Vaginal smears revealed that Bmal1-Ko mice had an irregular estrus cycle. In Bmal1-Ko mice, Star expression was decreased, PRL and luteinizing hormone (LH) levels were increased, and dopamine (DA) and Pg levels were decreased. Inhibition of PRL partially recovered the estrous cycle, corpus luteum formation, and Star expression in the ovaries. Pg supplementation promoted embryo implantation in Bmal1-Ko female mice. Bmal1 Ko increases serum PRL levels in female mice likely by reducing DA levels, thus affecting luteal formation, resulting in decreased Star expression and Pg production, hindering female reproduction. Inhibition of PRL or restoration of Pg can partially restore reproductive capacity in female Bmal1-Ko mice. Thus, Bmal1 may regulate female reproduction via the HPG axis in mice, suggesting that Bmal1 is a potential target to treat female infertility.


Subject(s)
ARNTL Transcription Factors , Hypothalamo-Hypophyseal System , Ovary , Reproduction , Animals , Female , Mice , ARNTL Transcription Factors/metabolism , ARNTL Transcription Factors/genetics , Estrous Cycle , Fertility , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiology , Mice, Inbred C57BL , Mice, Knockout , Ovary/metabolism , Progesterone/metabolism , Prolactin/metabolism
10.
Dev Psychobiol ; 66(5): e22491, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38698633

ABSTRACT

Developmental plasticity is particularly important for humans and other primates because of our extended period of growth and maturation, during which our phenotypes adaptively respond to environmental cues. The hypothalamus-pituitary-gonadal (HPG) and hypothalamus-pituitary-adrenal (HPA) axes are likely to be principal targets of developmental "programming" given their roles in coordinating fitness-relevant aspects of the phenotype, including sexual development, adult reproductive and social strategies, and internal responses to the external environment. In social animals, including humans, the social environment is believed to be an important source of cues to which these axes may adaptively respond. The effects of early social environments on the HPA axis have been widely studied in humans, and to some extent, in other primates, but there are still major gaps in knowledge specifically relating to males. There has also been relatively little research examining the role that social environments play in developmental programming of the HPG axis or the HPA/HPG interface, and what does exist disproportionately focuses on females. These topics are likely understudied in males in part due to the difficulty of identifying developmental milestones in males relative to females and the general quiescence of the HPG axis prior to maturation. However, there are clear indicators that early life social environments matter for both sexes. In this review, we examine what is known about the impact of social environments on HPG and HPA axis programming during male development in humans and nonhuman primates, including the role that epigenetic mechanisms may play in this programming. We conclude by highlighting important next steps in this research area.


Subject(s)
Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Primates , Social Environment , Animals , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiology , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiology , Male , Primates/physiology , Humans , Female
11.
Front Endocrinol (Lausanne) ; 15: 1272270, 2024.
Article in English | MEDLINE | ID: mdl-38689729

ABSTRACT

During parturition and the immediate post-partum period there are two opposite, yet interdependent and intertwined systems that are highly active and play a role in determining lifelong health and behaviour in both the mother and her infant: the stress and the anti-stress (oxytocin) system. Before attempting to understand how the environment around birth determines long-term health trajectories, it is essential to understand how these two systems operate and how they interact. Here, we discuss together the hormonal and neuronal arms of both the hypothalamic-pituitary-adrenal (HPA) axis and the oxytocinergic systems and how they interact. Although the HPA axis and glucocorticoid stress axis are well studied, the role of oxytocin as an extremely powerful anti-stress hormone deserves more attention. It is clear that these anti-stress effects depend on oxytocinergic nerves emanating from the supraoptic nucleus (SON) and paraventricular nucleus (PVN), and project to multiple sites at which the stress system is regulated. These, include projections to corticotropin releasing hormone (CRH) neurons within the PVN, to the anterior pituitary, to areas involved in sympathetic and parasympathetic nervous control, to NA neurons in the locus coeruleus (LC), and to CRH neurons in the amygdala. In the context of the interaction between the HPA axis and the oxytocin system birth is a particularly interesting period as, for both the mother and the infant, both systems are very strongly activated within the same narrow time window. Data suggest that the HPA axis and the oxytocin system appear to interact in this early-life period, with effects lasting many years. If mother-child skin-to-skin contact occurs almost immediately postpartum, the effects of the anti-stress (oxytocin) system become more prominent, moderating lifelong health trajectories. There is clear evidence that HPA axis activity during this time is dependent on the balance between the HPA axis and the oxytocin system, the latter being reinforced by specific somatosensory inputs, and this has long-term consequences for stress reactivity.


Subject(s)
Hypothalamo-Hypophyseal System , Oxytocin , Pituitary-Adrenal System , Animals , Female , Humans , Pregnancy , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiology , Oxytocin/metabolism , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiology , Stress, Physiological/physiology , Stress, Psychological/metabolism , Yin-Yang
12.
Lab Anim (NY) ; 53(6): 148-159, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38806681

ABSTRACT

Researchers have advocated elevating mouse housing temperatures from the conventional ~22 °C to the mouse thermoneutral point of 30 °C to enhance translational research. However, the impact of environmental temperature on mouse gastrointestinal physiology remains largely unexplored. Here we show that mice raised at 22 °C exhibit whole gut transit speed nearly twice as fast as those raised at 30 °C, primarily driven by a threefold increase in colon transit speed. Furthermore, gut microbiota composition differs between the two temperatures but does not dictate temperature-dependent differences in gut motility. Notably, increased stress signals from the hypothalamic-pituitary-adrenal axis at 22 °C have a pivotal role in mediating temperature-dependent differences in gut motility. Pharmacological and genetic depletion of the stress hormone corticotropin-releasing hormone slows gut motility in stressed 22 °C mice but has no comparable effect in relatively unstressed 30 °C mice. In conclusion, our findings highlight that colder mouse facility temperatures significantly increase gut motility through hormonal stress pathways.


Subject(s)
Gastrointestinal Motility , Mice, Inbred C57BL , Stress, Physiological , Animals , Mice , Male , Temperature , Hypothalamo-Hypophyseal System/physiology , Gastrointestinal Microbiome , Pituitary-Adrenal System/physiology , Corticotropin-Releasing Hormone/metabolism
13.
Endocrinol Metab Clin North Am ; 53(2): 183-194, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677861

ABSTRACT

Puberty is characterized by gonadarche and adrenarche. Gonadarche represents the reactivation of the hypothalamic-pituitary-gonadal axis with increased gonadotropin-releasing hormone, luteinizing hormone, and follicle-stimulating hormone secretion following the quiescence during childhood. Pubarche is the development of pubic hair, axillary hair, apocrine odor reflecting the onset of pubertal adrenal maturation known as adrenarche. A detailed understanding of these pubertal processes will help clarify relationships between the timing of the onset of puberty and cardiovascular, metabolic, and reproductive outcomes in adulthood. The onset of gonadarche is influenced by neuroendocrine signals, genetic variants, metabolic factors, and environmental elements.


Subject(s)
Puberty , Humans , Puberty/physiology , Female , Adrenarche/physiology , Male , Child , Adolescent , Hypothalamo-Hypophyseal System/physiology , Hypothalamo-Hypophyseal System/metabolism
14.
J Therm Biol ; 121: 103850, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38608548

ABSTRACT

Assessing the physiological stress responses of wild animals opens a window for understanding how organisms cope with environmental challenges. Since stress response is associated with changes in body temperature, the use of body surface temperature through thermal imaging could help to measure acute and chronic stress responses non-invasively. We used thermal imaging, acute handling-stress protocol and an experimental manipulation of corticosterone (the main glucocorticoid hormone in birds) levels in breeding king penguins (Aptenodytes patagonicus), to assess: 1. The potential contribution of the Hypothalamo-Pituitary-Adrenal (HPA) axis in mediating chronic and acute stress-induced changes in adult surface temperature, 2. The influence of HPA axis manipulation on parental investment through thermal imaging of eggs and brooded chicks, and 3. The impact of parental treatment on offspring thermal's response to acute handling. Maximum eye temperature (Teye) increased and minimum beak temperature (Tbeak) decreased in response to handling stress in adults, but neither basal nor stress-induced surface temperatures were significantly affected by corticosterone implant. While egg temperature was not significantly influenced by parental treatment, we found a surprising pattern for chicks: chicks brooded by the (non-implanted) partner of corticosterone-implanted individuals exhibited higher surface temperature (both Teye and Tbeak) than those brooded by glucocorticoid-implanted or control parents. Chick's response to handling in terms of surface temperature was characterized by a drop in both Teye and Tbeak independently of parental treatment. We conclude that the HPA axis seems unlikely to play a major role in determining chronic or acute changes in surface temperature in king penguins. Changes in surface temperature may primarily be mediated by the Sympathetic-Adrenal-Medullary (SAM) axis in response to stressful situations. Our experiment did not reveal a direct impact of parental HPA axis manipulation on parental investment (egg or chick temperature), but a potential influence on the partner's brooding behaviour.


Subject(s)
Corticosterone , Hypothalamo-Hypophyseal System , Spheniscidae , Stress, Physiological , Animals , Spheniscidae/physiology , Spheniscidae/blood , Corticosterone/blood , Hypothalamo-Hypophyseal System/physiology , Hypothalamo-Hypophyseal System/metabolism , Female , Male , Pituitary-Adrenal System/physiology , Pituitary-Adrenal System/metabolism , Body Temperature
15.
Psychoneuroendocrinology ; 165: 107048, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38657341

ABSTRACT

INTRODUCTION: The dynamic capacity of the hypothalamic-pituitary-adrenal (HPA) axis supports healthy adaptions to stress and play a key role in maintaining mental health. Perinatal adaptations in the HPA-axis dynamics in terms of the Cortisol Awakening Response (CAR), may be involved in dysregulation of perinatal mental health. We aimed to determine if CAR and absolute evening cortisol early postpartum differed from non-perinatal women and evaluate the association between the CAR and maternal mental well-being. METHODS: The CAR was computed as the area under the curve with respect to increase from baseline from serial home-sampling of saliva across 0-60 minutes from awakening. We evaluated differences in CAR and absolute evening cortisol between postpartum women (N=50, mean postpartum days: 38, SD: ±11) and non-perinatal women (N=91) in a multiple linear regression model. We also evaluated the association between CAR and maternal mental well-being in a multiple linear regression model. RESULTS: We found that healthy postpartum women had a blunted CAR (p<0.001) corresponding to 84% reduction and 80% lower absolute evening cortisol (p<0.001) relative to non-perinatal healthy women. In the postpartum group, there was a trend-level association between lower CAR and higher scores on the WHO Well-Being Index (WHO-5) (p=0.048) and lower Edinburgh Postnatal Depression Scale (EPDS) scores (p=0.04). CONCLUSION: Our data emphasize the unique hormonal landscape during the postpartum period in terms of blunted CAR and lower absolute evening cortisol in healthy women early postpartum compared to non-perinatal. Our findings show a potential association between a reduced CAR and improved mental well-being during early motherhood, which suggests that reduced CAR might reflect healthy adjustment to early motherhood.


Subject(s)
Circadian Rhythm , Hydrocortisone , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Postpartum Period , Saliva , Wakefulness , Humans , Female , Hydrocortisone/metabolism , Hydrocortisone/analysis , Postpartum Period/metabolism , Postpartum Period/physiology , Adult , Saliva/chemistry , Saliva/metabolism , Circadian Rhythm/physiology , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiology , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiology , Wakefulness/physiology , Pregnancy , Mental Health , Stress, Psychological/metabolism , Stress, Psychological/physiopathology
16.
Sci Rep ; 14(1): 6837, 2024 03 21.
Article in English | MEDLINE | ID: mdl-38514744

ABSTRACT

Early-life adversity (ELA) is related to profound dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, reflected in both, blunted or exaggerated cortisol stress responses in adulthood. Emotion regulation strategies such as cognitive reappraisal might contribute to this inconsistent finding. Here, we investigate an interaction of early-life maternal care (MC), where low MC represents a form of ELA, and instructed emotion regulation on cortisol responses to acute stress. Ninety-three healthy young women were assigned to a low (n = 33) or high (n = 60) MC group, based on self-reported early-life MC. In the laboratory, participants received regulation instructions, asking to cognitively reappraise (reappraisal group, n = 45) or to focus on senses (control group, n = 48) during subsequent stress exposure, induced by the Trier Social Stress Test. Salivary cortisol and subjective stress levels were measured repeatedly throughout the experiment. Multilevel model analyses confirmed a MC by emotion regulation interaction effect on cortisol trajectories, while controlling for hormonal status. Individuals with low MC in the control compared with the reappraisal group showed increased cortisol responses; individuals with high MC did not differ. These results highlight the significance of emotion regulation for HPA axis stress regulation following ELA exposure. They provide methodological and health implications, indicating emotion regulation as a promising target of treatment interventions for individuals with a history of ELA.


Subject(s)
Hypothalamo-Hypophyseal System , Stress, Psychological , Humans , Female , Hypothalamo-Hypophyseal System/physiology , Stress, Psychological/psychology , Hydrocortisone/analysis , Pituitary-Adrenal System/physiology , Cognition/physiology , Saliva/chemistry
17.
Horm Behav ; 162: 105508, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38513527

ABSTRACT

Social environments modulate endocrine function, yet it is unclear whether individuals can become like their social partners in how they physiologically respond to stressors. This social transmission of hypothalamic-pituitary-adrenal (HPA) axis reactivity could have long-term consequences for health and lifespan of individuals if their social partners react to stressors with an exaggerated HPA axis response. We tested whether glucocorticoid levels in response to stress of breeding partners changes after breeding depending on whether partners had similar or dissimilar postnatal conditions. We manipulated postnatal conditions by mimicking early life stress in zebra finch chicks (Taeniopygia guttata) via postnatal corticosterone exposure. When they reached adulthood, we created breeding pairs where the female and male had experienced either the same or different early life hormonal treatment (corticosterone or control). Before and after breeding, we obtained blood samples within 3 min and after 10 min or 30 min of restraint stress (baseline, cort10, cort30). We found that corticosterone levels of individuals in response to restraint were affected by their own and their partner's early life conditions, but did not change after breeding. However, across all pairs, partners became more similar in cort30 levels after breeding, although differences between partners in cort10 remained greater in pairs with a corticosterone-treated female. Thus, we show that HPA axis response to stressors in adulthood can be modulated by reproductive partners and that similarity between partners is reduced when females are postnatally exposed to elevated glucocorticoids.


Subject(s)
Corticosterone , Finches , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Stress, Psychological , Animals , Hypothalamo-Hypophyseal System/physiology , Hypothalamo-Hypophyseal System/metabolism , Female , Pituitary-Adrenal System/physiology , Pituitary-Adrenal System/metabolism , Male , Corticosterone/blood , Stress, Psychological/metabolism , Stress, Psychological/blood , Finches/physiology , Reproduction/physiology , Restraint, Physical/physiology
18.
J Occup Environ Med ; 66(6): 475-480, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38471807

ABSTRACT

OBJECTIVE: This study assessed firefighters' physiological stress response to a live fire training evolution (LFTE). METHODS: Seventy-six ( n = 76) firefighters completed an LFTE. Salivary samples were collected pre-, immediately post, and 30-min post-LFTE and analyzed for α-amylase (AA), cortisol (CORT), and secretory immunoglobulin-A (SIgA). RESULTS: Concentrations of AA, CORT, and SIgA were elevated immediately post LFTE versus pre (P<0.001) and 30-min post (P<0.001). Cohen's d effect size comparing pre and immediately-post means were 0.83, 0.77, and 0.61 for AA, CORT, and SIgA and were 0.54, 0.44, and 0.69 for AA, CORT, and SIgA, comparing immediately-post and 30-min post, respectively. CONCLUSIONS: These data demonstrate the stress response and activation of the hypothalamic-pituitary-adrenal/sympathetic-adreno-medullar axis and immune system immediately after real-world firefighting operations. Future work is needed to understand the impact of elevated stress biomarkers on firefighter performance and disease risk.


Subject(s)
Firefighters , Hydrocortisone , Saliva , alpha-Amylases , Humans , Male , Hydrocortisone/analysis , Hydrocortisone/metabolism , Adult , Saliva/chemistry , Female , alpha-Amylases/analysis , alpha-Amylases/metabolism , Stress, Physiological/physiology , Immunoglobulin A, Secretory/analysis , Immunoglobulin A, Secretory/metabolism , Middle Aged , Occupational Stress , Hypothalamo-Hypophyseal System/physiology , Pituitary-Adrenal System/physiology
19.
Philos Trans R Soc Lond B Biol Sci ; 379(1898): 20220512, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38310934

ABSTRACT

Hypothalamic-pituitary-adrenal axis (HPA) flexibility is an emerging concept recognizing that individuals that will cope best with stressors will probably be those using their hormones in the most adaptive way. The HPA flexibility concept considers glucocorticoids as molecules that convey information about the environment from the brain to the body so that the organismal phenotype comes to complement prevailing conditions. In this context, FKBP5 protein appears to set the extent to which circulating glucocorticoid concentrations can vary within and across stressors. Thus, FKBP5 expression, and the HPA flexibility it causes, seem to represent an individual's ability to regulate its hormones to orchestrate organismal responses to stressors. As FKBP5 expression can also be easily measured in blood, it could be a worthy target of conservation-oriented research attention. We first review the known and likely roles of HPA flexibility and FKBP5 in wildlife. We then describe putative genetic, environmental and epigenetic causes of variation in HPA flexibility and FKBP5 expression among and within individuals. Finally, we hypothesize how HPA flexibility and FKBP5 expression should affect organismal fitness and hence population viability in response to human-induced rapid environmental changes, particularly urbanization. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.


Subject(s)
Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Tacrolimus Binding Proteins , Humans , Brain/physiology , Glucocorticoids/metabolism , Hypothalamo-Hypophyseal System/physiology , Pituitary-Adrenal System/physiology , Tacrolimus Binding Proteins/physiology
20.
Psychoneuroendocrinology ; 163: 106976, 2024 May.
Article in English | MEDLINE | ID: mdl-38308964

ABSTRACT

Researchers commonly assess the functioning of the hypothalamic-pituitary-adrenal (HPA) axis by measuring natural fluctuations of its end product cortisol throughout the day or in response to a standardized stressor. Although it is conceivable that an individual releasing relatively more cortisol when confronted with a laboratory stressor does the same in everyday life, inconsistencies remain in the literature regarding associations between diurnal cortisol parameters and cortisol stress responses. Hence, the current meta-analysis aggregated findings of 12 studies to examine overall associations of diurnal cortisol parameters (including total output, diurnal slope, and cortisol awakening response [CAR]) with cortisol stress reactivity and recovery in the Trier Social Stress Test (TSST). There were no significant overall associations of total output, slope, or CAR with stress reactivity. Lower total diurnal cortisol output was significantly related to better stress recovery, whereas diurnal slope and CAR were unrelated to stress recovery. Moderation analyses revealed that associations between diurnal cortisol and cortisol stress responses were dependent on the computation method of cortisol parameters, questioning the convergence and validity of commonly employed measures of stress reactivity and recovery. Overall, it seems that we cannot predict characteristics of the diurnal cortisol rhythm from a one-time measure of stress reactivity in a standardized psychosocial laboratory paradigm.


Subject(s)
Hydrocortisone , Stress, Psychological , Circadian Rhythm/physiology , Hypothalamo-Hypophyseal System/physiology , Pituitary-Adrenal System/physiology , Saliva , Stress, Psychological/psychology
SELECTION OF CITATIONS
SEARCH DETAIL