Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 16.670
1.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 233-237, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38836656

Nur77 is a member of the NR4A subfamily of orphan nuclear receptors that is expressed and has a function within the immune system. This study aimed to investigate the role of Nur77 in hypoxic pulmonary hypertension. SPF male SD rats were exposed in hypobaric chamber simulating 5000 m high altitude for 0, 3, 7, 14, 21 or 28 days. Rat pulmonary artery smooth muscle cells (RPASMCs) were cultured under normoxic conditions (5% CO2-95% ambient air) or hypoxic conditions (5% O2 for 6 h, 12 h, 24 h, 48 h). Hypoxic rats developed pulmonary arterial remodeling and right ventricular hypertrophy with significantly increased pulmonary arterial pressure. The levels of Nur77, HIF-1α and PNCA were upregulated in pulmonary arterial smooth muscle from hypoxic rats. Silencing of either Nur77 or HIF-1α attenuated hypoxia-induced proliferation. Silencing of HIF-1α down-regulated Nur77 protein level, but Nur77 silence did not reduce HIF-1α. Nur77 was not con-immunoprecipitated with HIF-1α. This study demonstrated that Nur77 acted as a downstream regulator of HIF-1α under hypoxia, and plays a critical role in the hypoxia-induced pulmonary vascular remodeling, which is regulated by HIF-1α. Nur77 maybe a novel target of HPH therapy.


Hypertension, Pulmonary , Hypoxia-Inducible Factor 1, alpha Subunit , Hypoxia , Nuclear Receptor Subfamily 4, Group A, Member 1 , Pulmonary Artery , Rats, Sprague-Dawley , Vascular Remodeling , Animals , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Vascular Remodeling/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Male , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/genetics , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Hypoxia/metabolism , Cell Proliferation , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Rats , Hypertrophy, Right Ventricular/metabolism , Hypertrophy, Right Ventricular/pathology , Hypertrophy, Right Ventricular/physiopathology , Hypertrophy, Right Ventricular/genetics , Cells, Cultured
2.
Sci Rep ; 14(1): 12716, 2024 06 03.
Article En | MEDLINE | ID: mdl-38830933

To explore the molecular pathogenesis of pulmonary arterial hypertension (PAH) and identify potential therapeutic targets, we performed transcriptome sequencing of lung tissue from mice with hypoxia-induced pulmonary hypertension. Our Gene Ontology analysis revealed that "extracellular matrix organization" ranked high in the biological process category, and matrix metallopeptidases (MMPs) and other proteases also played important roles in it. Moreover, compared with those in the normoxia group, we confirmed that MMPs expression was upregulated in the hypoxia group, while the hub gene Timp1 was downregulated. Crocin, a natural MMP inhibitor, was found to reduce inflammation, decrease MMPs levels, increase Timp1 expression levels, and attenuate hypoxia-induced pulmonary hypertension in mice. In addition, analysis of the cell distribution of MMPs and Timp1 in the human lung cell atlas using single-cell RNAseq datasets revealed that MMPs and Timp1 are mainly expressed in a population of fibroblasts. Moreover, in vitro experiments revealed that crocin significantly inhibited myofibroblast proliferation, migration, and extracellular matrix deposition. Furthermore, we demonstrated that crocin inhibited TGF-ß1-induced fibroblast activation and regulated the pulmonary arterial fibroblast MMP2/TIMP1 balance by inhibiting the TGF-ß1/Smad3 signaling pathway. In summary, our results indicate that crocin attenuates hypoxia-induced pulmonary hypertension in mice by inhibiting TGF-ß1-induced myofibroblast activation.


Carotenoids , Hypertension, Pulmonary , Hypoxia , Matrix Metalloproteinase 2 , Tissue Inhibitor of Metalloproteinase-1 , Animals , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics , Mice , Hypoxia/metabolism , Hypoxia/complications , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/metabolism , Carotenoids/pharmacology , Humans , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Male , Signal Transduction/drug effects , Transforming Growth Factor beta1/metabolism , Disease Models, Animal , Cell Proliferation/drug effects , Mice, Inbred C57BL , Smad3 Protein/metabolism , Cell Movement/drug effects , Lung/pathology , Lung/metabolism , Lung/drug effects
3.
Alzheimers Res Ther ; 16(1): 121, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38831312

BACKGROUND: Beta-amyloid (Aß) deposition in the brain parenchyma is a crucial initiating step in the amyloid cascade hypothesis of Alzheimer's disease (AD) pathology. Furthermore, dysfunction of plaque-associated microglia, also known as disease-associated microglia (DAM) has been reported to accelerate Aß deposition and cognitive impairment. Our previous research demonstrated that intermittent hypoxia training (IHT) improved AD pathology by upregulating autophagy in DAM, thereby enhancing oligomeric Aß (oAß) clearance. Considering that oAß internalization is the initial stage of oAß clearance, this study focused on the IHT mechanism involved in upregulating Aß uptake by DAM. METHODS: IHT was administered to 8-month-old APP/PS1 mice or 6-month-old microglial vacuolar protein sorting 35 (VPS35) knockout mice in APP/PS1 background (MG VPS35 KO: APP/PS1) for 28 days. After the IHT, the spatial learning-memory capacity of the mice was assessed. Additionally, AD pathology was determined by estimating the nerve fiber and synapse density, Aß plaque deposition, and Aß load in the brain. A model of Aß-exposed microglia was constructed and treated with IHT to explore the related mechanism. Finally, triggering receptor expressed on myeloid cells 2 (TREM2) intracellular recycling and Aß internalization were measured using a fluorescence tracing technique. RESULTS: Our results showed that IHT ameliorated cognitive function and Aß pathology. In particular, IHT enhanced Aß endocytosis by augmenting the intracellular transport function of microglial TREM2, thereby contributing to Aß clearance. Furthermore, IHT specifically upregulated VPS35 in DAM, the primary cause for the enhanced intracellular recycling of TREM2. IHT lost ameliorative effect on Aß pathology in MG VPS35 KO: APP/PS1 mice brain. Lastly, the IHT mechanism of VPS35 upregulation in DAM was mediated by the transcriptional regulation of VPS35 by transcription factor EB (TFEB). CONCLUSION: IHT enhances Aß endocytosis in DAM by upregulating VPS35-dependent TREM2 recycling, thereby facilitating oAß clearance and mitigation of Aß pathology. Moreover, the transcriptional regulation of VPS35 by TFEB demonstrates a close link between endocytosis and autophagy in microglia. Our study further elucidates the IHT mechanism in improving AD pathology and provides evidence supporting the potential application of IHT as a complementary therapy for AD.


Alzheimer Disease , Amyloid beta-Peptides , Endocytosis , Membrane Glycoproteins , Microglia , Plaque, Amyloid , Receptors, Immunologic , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Microglia/metabolism , Mice , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Amyloid beta-Peptides/metabolism , Endocytosis/physiology , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics , Mice, Transgenic , Hypoxia/metabolism , Mice, Knockout , Disease Models, Animal , Male , Brain/metabolism , Brain/pathology , Mice, Inbred C57BL
4.
Front Immunol ; 15: 1372959, 2024.
Article En | MEDLINE | ID: mdl-38690277

Introduction: Hypoxia is a common pathological driver contributing to various forms of pulmonary vascular diseases leading to pulmonary hypertension (PH). Pulmonary interstitial macrophages (IMs) play pivotal roles in immune and vascular dysfunction, leading to inflammation, abnormal remodeling, and fibrosis in PH. However, IMs' response to hypoxia and their role in PH progression remain largely unknown. We utilized a murine model of hypoxia-induced PH to investigate the repertoire and functional profiles of IMs in response to acute and prolonged hypoxia, aiming to elucidate their contributions to PH development. Methods: We conducted single-cell transcriptomic analyses to characterize the repertoire and functional profiles of murine pulmonary IMs following exposure to hypobaric hypoxia for varying durations (0, 1, 3, 7, and 21 days). Hallmark pathways from the mouse Molecular Signatures Database were utilized to characterize the molecular function of the IM subpopulation in response to hypoxia. Results: Our analysis revealed an early acute inflammatory phase during acute hypoxia exposure (Days 1-3), which was resolved by Day 7, followed by a pro-remodeling phase during prolonged hypoxia (Days 7-21). These phases were marked by distinct subpopulations of IMs: MHCIIhiCCR2+EAR2+ cells characterized the acute inflammatory phase, while TLF+VCAM1hi cells dominated the pro-remodeling phase. The acute inflammatory phase exhibited enrichment in interferon-gamma, IL-2, and IL-6 pathways, while the pro-remodeling phase showed dysregulated chemokine production, hemoglobin clearance, and tissue repair profiles, along with activation of distinct complement pathways. Discussion: Our findings demonstrate the existence of distinct populations of pulmonary interstitial macrophages corresponding to acute and prolonged hypoxia exposure, pivotal in regulating the inflammatory and remodeling phases of PH pathogenesis. This understanding offers potential avenues for targeted interventions, tailored to specific populations and distinct phases of the disease. Moreover, further identification of triggers for pro-remodeling IMs holds promise in unveiling novel therapeutic strategies for pulmonary hypertension.


Gene Expression Profiling , Hypertension, Pulmonary , Hypoxia , Single-Cell Analysis , Transcriptome , Animals , Mice , Hypoxia/metabolism , Hypoxia/immunology , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/immunology , Hypertension, Pulmonary/genetics , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Male , Lung/immunology , Lung/pathology , Lung/metabolism
5.
Nihon Yakurigaku Zasshi ; 159(3): 160-164, 2024.
Article Ja | MEDLINE | ID: mdl-38692880

The 2019 Nobel Prize in Physiology or Medicine was awarded to Dr. William G. Kaelin Jr, Dr. Peter J. Ratcliffe, and Dr. Gregg L. Semenza for their elucidation of new physiological mechanisms "How cells sense and adapt to oxygen availability". Moreover, two different drugs, HIF-PH inhibitors and HIF-2 inhibitors were also developed based on the discovery. Interestingly, those three doctors have different backgrounds as a medical oncologist, a nephrologist, and a pediatrician, respectively. They have started the research based on their own unique perspectives and eventually merged as "the elucidation of the response mechanism of living organisms to hypoxic environments". In this review, we will explain how the translational research that has begun to solve unmet clinical needs successfully contributed to the development of innovative therapeutic drugs.


Hypoxia , Humans , Hypoxia/drug therapy , Hypoxia/metabolism , Animals , Drug Development , Molecular Targeted Therapy , Basic Helix-Loop-Helix Transcription Factors/metabolism
6.
Nihon Yakurigaku Zasshi ; 159(3): 165-168, 2024.
Article Ja | MEDLINE | ID: mdl-38692881

Molecular oxygen suffices the ATP production required for the survival of us aerobic organisms. But it is also true that oxygen acts as a source of reactive oxygen species that elicit a spectrum of damages in living organisms. To cope with such intrinsic ambiguity of biological activity oxygen exerts, aerobic mechanisms are equipped with an exquisite adaptive system, which sensitively detects partial pressure of oxygen within the body and controls appropriate oxygen supply to the tissues. Physiological responses to hypoxia are comprised of the acute and chronic phases, in the former of which the oxygen-sensing remains controversial particularly from mechanistic points of view. Recently, we have revealed that the prominently redox-sensitive cation channel TRPA1 plays key roles in oxygen-sensing mechanisms identified in the peripheral tissues and the central nervous system. In this review, we summarize recent development of researches on oxygen-sensing mechanisms including that in the carotid body, which has been recognized as the oxygen receptor organ central to acute oxygen-sensing. We also discuss how ubiquitously the TRPA1 contributes to the mechanisms underlying the acute phase of adaptation to hypoxia.


Oxygen , TRPA1 Cation Channel , Transient Receptor Potential Channels , TRPA1 Cation Channel/metabolism , Humans , Oxygen/metabolism , Animals , Transient Receptor Potential Channels/metabolism , Hypoxia/metabolism , Calcium Channels/metabolism , Nerve Tissue Proteins/metabolism , Reactive Oxygen Species/metabolism , Carotid Body/metabolism
7.
Bull Exp Biol Med ; 176(5): 680-686, 2024 Mar.
Article En | MEDLINE | ID: mdl-38733478

Morphological, molecular, and biological features of the systemic inflammatory response induced by LPS administration were assessed in adult and old male Wistar rats with high and low resistance to hypoxia. In 6 h after LPS administration, mRNA expression levels of Hif1a, Vegf, Nfkb, and level of IL-1ß protein in old rats were higher than in adult rats regardless of hypoxia tolerance. The morphometric study showed that the number of neutrophils in the interalveolar septa of the lungs was significantly higher in low-resistant adult and old rats 6 h after LPS administration. Thus, in old male Wistar rats, systemic inflammatory response is more pronounced than in adult rats and depends on the initial tolerance to hypoxia, which should be considered when developing new approaches to the therapy of systemic inflammatory response in individuals of different ages.


Hypoxia-Inducible Factor 1, alpha Subunit , Hypoxia , Interleukin-1beta , Rats, Wistar , Animals , Male , Rats , Hypoxia/metabolism , Hypoxia/genetics , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Lipopolysaccharides/pharmacology , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , NF-kappa B/metabolism , NF-kappa B/genetics , Lung/pathology , Lung/metabolism , Lung/drug effects , Lung/immunology , Neutrophils/metabolism , Neutrophils/immunology , Inflammation/metabolism , Inflammation/pathology , Age Factors , RNA, Messenger/genetics , RNA, Messenger/metabolism
8.
FASEB J ; 38(10): e23671, 2024 May 31.
Article En | MEDLINE | ID: mdl-38752538

NLRP3 inflammasome activation has emerged as a critical initiator of inflammatory response in ischemic retinopathy. Here, we identified the effect of a potent, selective NLRP3 inhibitor, MCC950, on autophagy and apoptosis under hypoxia. Neonatal mice were exposed to hyperoxia for 5 days to establish oxygen-induced retinopathy (OIR) model. Intravitreal injection of MCC950 was given, and then autophagy and apoptosis markers were assessed. Retinal autophagy, apoptosis, and related pathways were evaluated by western blot, immunofluorescent labeling, transmission electron microscopy, and TUNEL assay. Autophagic activity in Müller glia after NLRP3 inflammasome inhibition, together with its influence on photoreceptor death, was studied using western blot, immunofluorescence staining, mRFP-GFP-LC3 adenovirus transfection, cell viability, proliferation, and apoptosis assays. Results showed that activation of NLRP3 inflammasome in Müller glia was detected in OIR model. MCC950 could improve impaired retinal autophagic flux and attenuate retinal apoptosis while it regulated the retinal AMPK/mTOR/ULK-1 pathway. Suppressed autophagy and depressed proliferation capacity resulting from hypoxia was promoted after MCC950 treatment in Müller glia. Inhibition of AMPK and ULK-1 pathway significantly interfered with the MCC950-induced autophagy activity, indicating MCC950 positively modulated autophagy through AMPK/mTOR/ULK-1 pathway in Müller cells. Furthermore, blockage of autophagy in Müller glia significantly induced apoptosis in the cocultured 661W photoreceptor cells, whereas MCC950 markedly preserved the density of photoreceptor cells. These findings substantiated the therapeutic potential of MCC950 against impaired autophagy and subsequent apoptosis under hypoxia. Such protective effect might involve the modulation of AMPK/mTOR/ULK-1 pathway. Targeting NLRP3 inflammasome in Müller glia could be beneficial for photoreceptor survival under hypoxic conditions.


Apoptosis , Autophagy , Ependymoglial Cells , Furans , Indenes , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Sulfonamides , Animals , Autophagy/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mice , Apoptosis/drug effects , Sulfonamides/pharmacology , Inflammasomes/metabolism , Furans/pharmacology , Ependymoglial Cells/metabolism , Ependymoglial Cells/drug effects , Indenes/pharmacology , Mice, Inbred C57BL , Hypoxia/metabolism , Cyclic S-Oxides/pharmacology , Sulfones/pharmacology , Photoreceptor Cells, Vertebrate/metabolism , Photoreceptor Cells, Vertebrate/drug effects , Photoreceptor Cells, Vertebrate/pathology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Photoreceptor Cells/metabolism , Photoreceptor Cells/drug effects , Signal Transduction/drug effects
9.
Cancer J ; 30(3): 159-169, 2024.
Article En | MEDLINE | ID: mdl-38753750

ABSTRACT: Imaging glucose metabolism with [18F]fluorodeoxyglucose positron emission tomography has transformed the diagnostic and treatment algorithms of numerous malignancies in clinical practice. The cancer phenotype, though, extends beyond dysregulation of this single pathway. Reprogramming of other pathways of metabolism, as well as altered perfusion and hypoxia, also typifies malignancy. These features provide other opportunities for imaging that have been developed and advanced into humans. In this review, we discuss imaging metabolism, perfusion, and hypoxia in cancer, focusing on the underlying biology to provide context. We conclude by highlighting the ability to image multiple facets of biology to better characterize cancer and guide targeted treatment.


Fluorodeoxyglucose F18 , Neoplasms , Positron-Emission Tomography , Humans , Fluorodeoxyglucose F18/metabolism , Neoplasms/diagnostic imaging , Neoplasms/metabolism , Neoplasms/diagnosis , Positron-Emission Tomography/methods , Radiopharmaceuticals/metabolism , Hypoxia/metabolism , Hypoxia/diagnostic imaging
10.
Sci Adv ; 10(20): eadj3301, 2024 May 17.
Article En | MEDLINE | ID: mdl-38758780

Myeloid cells are highly prevalent in glioblastoma (GBM), existing in a spectrum of phenotypic and activation states. We now have limited knowledge of the tumor microenvironment (TME) determinants that influence the localization and the functions of the diverse myeloid cell populations in GBM. Here, we have utilized orthogonal imaging mass cytometry with single-cell and spatial transcriptomic approaches to identify and map the various myeloid populations in the human GBM tumor microenvironment (TME). Our results show that different myeloid populations have distinct and reproducible compartmentalization patterns in the GBM TME that is driven by tissue hypoxia, regional chemokine signaling, and varied homotypic and heterotypic cellular interactions. We subsequently identified specific tumor subregions in GBM, based on composition of identified myeloid cell populations, that were linked to patient survival. Our results provide insight into the spatial organization of myeloid cell subpopulations in GBM, and how this is predictive of clinical outcome.


Glioblastoma , Myeloid Cells , Tumor Microenvironment , Glioblastoma/pathology , Glioblastoma/metabolism , Humans , Myeloid Cells/metabolism , Myeloid Cells/pathology , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Cell Line, Tumor , Single-Cell Analysis , Hypoxia/metabolism , Gene Expression Profiling
11.
Biomolecules ; 14(5)2024 May 10.
Article En | MEDLINE | ID: mdl-38785974

Diabetic retinopathy (DR) affects over 140 million people globally. The mechanisms that lead to blindness are still enigmatic but there is evidence that sustained inflammation and hypoxia contribute to vascular damage. Despite efforts to understand the role of inflammation and microglia in DR's pathology, the contribution of astrocytes to hypoxic responses is less clear. To investigate the role of astrocytes in hypoxia-induced retinopathy, we utilized a 7-day systemic hypoxia model using the GFAP-CreERT2:Rosa26iDTR transgenic mouse line. This allows for the induction of inflammatory reactive astrogliosis following tamoxifen and diphtheria toxin administration. We hypothesize that DTx-induced astrogliosis is neuroprotective during hypoxia-induced retinopathy. Glial, neuronal, and vascular responses were quantified using immunostaining, with antibodies against GFAP, vimentin, IBA-1, NeuN, fibrinogen, and CD31. Cytokine responses were measured in both the brain and serum. We report that while both DTx and hypoxia induced a phenotype of reduced microglia morphological activation, DTx, but not hypoxia, induced an increase in the Müller glia marker vimentin. We did not observe that the combination of DTx and hypoxic treatments exacerbated the signs of reactive glial cells, nor did we observe a significant change in the expression immunomodulatory mediators IL-1ß, IL2, IL-4, IL-5, IL-6, IL-10, IL-18, CCL17, TGF-ß1, GM-CSF, TNF-α, and IFN-γ. Overall, our results suggest that, in this hypoxia model, reactive astrogliosis does not alter the inflammatory responses or cause vascular damage in the retina.


Disease Models, Animal , Ependymoglial Cells , Gliosis , Mice, Transgenic , Microglia , Animals , Gliosis/pathology , Gliosis/metabolism , Gliosis/chemically induced , Mice , Microglia/metabolism , Microglia/pathology , Microglia/drug effects , Ependymoglial Cells/metabolism , Ependymoglial Cells/pathology , Ependymoglial Cells/drug effects , Retina/metabolism , Retina/pathology , Retina/drug effects , Hypoxia/metabolism , Hypoxia/pathology , Astrocytes/metabolism , Astrocytes/pathology , Astrocytes/drug effects , Glial Fibrillary Acidic Protein/metabolism , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/pathology , Cytokines/metabolism , Vimentin/metabolism , Vimentin/genetics , Diphtheria Toxin
12.
Clinics (Sao Paulo) ; 79: 100368, 2024.
Article En | MEDLINE | ID: mdl-38703717

OBJECTIVE: The purpose of this study is to develop an animal model of Chronic Intermittent Hypoxia (CIH) and investigate the role of the TRPC5 channel in cardiac damage in OSAHS rats. METHODS: Twelve male Sprague Dawley rats were randomly divided into the CIH group and the Normoxic Control (NC) group. Changes in structure, function, and pathology of heart tissue were observed through echocardiography, transmission electron microscopy, HE-staining, and TUNEL staining. RESULTS: The Interventricular Septum thickness at diastole (IVSd) and End-Diastolic Volume (EDV) of rats in the CIH group significantly increased, whereas the LV ejection fraction and LV fraction shortening significantly decreased. TEM showed that the myofilaments in the CIH group were loosely arranged, the sarcomere length varied, the cell matrix dissolved, the mitochondrial cristae were partly flocculent, the mitochondrial outer membrane dissolved and disappeared, and some mitochondria were swollen and vacuolated. The histopathological examination showed that the cardiomyocytes in the CIH group were swollen with granular degeneration, some of the myocardial fibers were broken and disorganized, and most of the nuclei were vacuolar and hypochromic. CONCLUSION: CIH promoted oxidative stress, the influx of Ca2+, and the activation of the CaN/NFATc signaling pathway, which led to pathological changes in the morphology and ultrastructure of cardiomyocytes, the increase of myocardial apoptosis, and the decrease of myocardial contractility. These changes may be associated with the upregulation of TRPC5.


Disease Models, Animal , Hypoxia , Rats, Sprague-Dawley , TRPC Cation Channels , Animals , Male , Hypoxia/physiopathology , Hypoxia/metabolism , TRPC Cation Channels/metabolism , Myocardium/metabolism , Myocardium/pathology , Myocardium/ultrastructure , Oxidative Stress/physiology , Random Allocation , Apoptosis/physiology , Myocytes, Cardiac/ultrastructure , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Rats , Chronic Disease , Echocardiography , Microscopy, Electron, Transmission , In Situ Nick-End Labeling
13.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 327-332, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38710517

Objective To investigate the liver injury induced by chronic intermittent hypoxia (CIH) activation of NOD-like receptor pyrin domain containing protein 1 (NLRP1) inflammasome. Methods C57BL/6 male mice were randomly divided into control group and CIH group. Mice in CIH group were put into CIH chamber for molding (8 hours a day for 4 weeks). After 4 weeks of molding, liver tissue cells was observed by HE staining, and the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum of mice were detected by kit. The levels of reactive oxygen species (ROS) in liver tissue were detected by dihydroethidine (DHE). The expression and localization of NLRP1, apoptosis speck-like protein containing a caspase activation and recruiting domain (ASC) and caspase-1 were detected by immunohistochemical staining. The protein expressions of NLRP1, ASC, caspase-1, interleukin 1ß (IL-1ß) and tumor necrosis factor α (TNF-α) were detected by Western blot analysis. The serum levels of IL-1ß and TNF-α were detected by ELISA. Results Compared with the control group, the CIH group exhibited significant pathological changes in hepatocytes. Hepatocytes showed signs of rupture and necrosis, accompanied by inflammatory cell aggregation. Furthermore, the levels of ALT, AST, ROS, IL-1ß and TNF-α were elevated, along with increased protein expressions of NLRP1, ASC, caspase-1, IL-1ß and TNF-α. Conclusion CIH causes liver injury by activating NLRP1 inflammasome.


Caspase 1 , Hypoxia , Inflammasomes , Interleukin-1beta , Liver , Mice, Inbred C57BL , Reactive Oxygen Species , Animals , Male , Inflammasomes/metabolism , Hypoxia/metabolism , Hypoxia/complications , Reactive Oxygen Species/metabolism , Liver/metabolism , Liver/pathology , Caspase 1/metabolism , Interleukin-1beta/metabolism , Mice , Adaptor Proteins, Signal Transducing/metabolism , Tumor Necrosis Factor-alpha/metabolism , Apoptosis Regulatory Proteins/metabolism , Alanine Transaminase/blood , CARD Signaling Adaptor Proteins/metabolism , Aspartate Aminotransferases/blood , Liver Diseases/etiology , Liver Diseases/metabolism , Liver Diseases/pathology
14.
Eur J Med Res ; 29(1): 298, 2024 May 27.
Article En | MEDLINE | ID: mdl-38802976

Joint contracture is one of the common diseases clinically, and joint capsule fibrosis is considered to be one of the most important pathological changes of joint contracture. However, the underlying mechanism of joint capsule fibrosis is still controversial. The present study aims to establish an animal model of knee extending joint contracture in rats, and to investigate the role of hypoxia-mediated pyroptosis in the progression of joint contracture using this animal model. 36 male SD rats were selected, 6 of which were not immobilized and were used as control group, while 30 rats were divided into I-1 group (immobilized for 1 week following 7 weeks of free movement), I-2 group (immobilized for 2 weeks following 6 weeks of free movement), I-4 group (immobilized for 4 weeks following 4 weeks of free movement), I-6 group (immobilized for 6 weeks following 2 weeks of free movement) and I-8 group (immobilized for 8 weeks) according to different immobilizing time. The progression of joint contracture was assessed by the measurement of knee joint range of motion, collagen deposition in joint capsule was examined with Masson staining, protein expression levels of HIF-1α, NLRP3, Caspase-1, GSDMD-N, TGF-ß1, α-SMA and p-Smad3 in joint capsule were assessed using western blotting, and the morphological changes of fibroblasts were observed by transmission electron microscopy. The degree of total and arthrogenic contracture progressed from the first week and lasted until the first eight weeks after immobilization. The degree of total and arthrogenic contracture progressed rapidly in the first four weeks after immobilization and then progressed slowly. Masson staining indicated that collagen deposition in joint capsule gradually increased in the first 8 weeks following immobilization. Western blotting analysis showed that the protein levels of HIF-1α continued to increase during the first 8 weeks of immobilization, and the protein levels of pyroptosis-related proteins NLRP3, Caspase-1, GSDMD-N continued to increase in the first 4 weeks after immobilization and then decreased. The protein levels of fibrosis-related proteins TGF-ß1, p-Smad3 and α-SMA continued to increase in the first 8 weeks after immobilization. Transmission electron microscopy showed that 4 weeks of immobilization induced cell membrane rupture and cell contents overflow, which further indicated the activation of pyroptosis. Knee extending joint contracture animal model can be established by external immobilization orthosis in rats, and the activation of hypoxia-mediated pyroptosis may play a stimulating role in the process of joint capsule fibrosis and joint contracture.


Contracture , Hypoxia-Inducible Factor 1, alpha Subunit , Knee Joint , Pyroptosis , Rats, Sprague-Dawley , Animals , Contracture/metabolism , Contracture/physiopathology , Contracture/pathology , Pyroptosis/physiology , Rats , Male , Knee Joint/pathology , Knee Joint/metabolism , Knee Joint/physiopathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Hypoxia/metabolism , Hypoxia/physiopathology , Disease Models, Animal , Transforming Growth Factor beta1/metabolism , Joint Capsule/metabolism , Joint Capsule/pathology , Joint Capsule/physiopathology , Range of Motion, Articular , Smad3 Protein/metabolism
15.
Sci Rep ; 14(1): 12402, 2024 05 30.
Article En | MEDLINE | ID: mdl-38811610

Evaluating the quality of isolated human islets before transplantation is crucial for predicting the success in treating Type 1 diabetes. The current gold standard involves time-intensive in vivo transplantation into diabetic immunodeficient mice. Given the susceptibility of isolated islets to hypoxia, we hypothesized that hypoxia present in islets before transplantation could indicate compromised islet quality, potentially leading to unfavorable outcomes. To test this hypothesis, we analyzed expression of 39 hypoxia-related genes in human islets from 85 deceased donors. We correlated gene expression profiles with transplantation outcomes in 327 diabetic mice, each receiving 1200 islet equivalents grafted into the kidney capsule. Transplantation outcome was post-transplant glycemic control based on area under the curve of blood glucose over 4 weeks. In linear regression analysis, DDIT4 (R = 0.4971, P < 0.0001), SLC2A8 (R = 0.3531, P = 0.0009) and HK1 (R = 0.3444, P = 0.0012) had the highest correlation with transplantation outcome. A multiple regression model of 11 genes increased the correlation (R = 0.6117, P < 0.0001). We conclude that assessing pre-transplant hypoxia in human islets via gene expression analysis is a rapid, viable alternative to conventional in vivo assessments. This approach also underscores the importance of mitigating pre-transplant hypoxia in isolated islets to improve the success rate of islet transplantation.


Diabetes Mellitus, Experimental , Islets of Langerhans Transplantation , Islets of Langerhans , Humans , Animals , Islets of Langerhans Transplantation/methods , Mice , Islets of Langerhans/metabolism , Diabetes Mellitus, Experimental/therapy , Male , Diabetes Mellitus, Type 1/metabolism , Hypoxia/metabolism , Female , Cell Hypoxia , Middle Aged , Blood Glucose/metabolism
16.
Int J Mol Sci ; 25(10)2024 May 10.
Article En | MEDLINE | ID: mdl-38791263

Stroke and Alzheimer's disease (AD) are prevalent age-related diseases; however, the relationship between these two diseases remains unclear. In this study, we aimed to investigate the ability of melatonin, a hormone produced by the pineal gland, to alleviate the effects of ischemic stroke leading to AD by observing the pathogenesis of AD hallmarks. We utilized SH-SY5Y cells under the conditions of oxygen-glucose deprivation (OGD) and oxygen-glucose deprivation and reoxygenation (OGD/R) to establish ischemic stroke conditions. We detected that hypoxia-inducible factor-1α (HIF-1α), an indicator of ischemic stroke, was highly upregulated at both the protein and mRNA levels under OGD conditions. Melatonin significantly downregulated both HIF-1α mRNA and protein expression under OGD/R conditions. We detected the upregulation of ß-site APP-cleaving enzyme 1 (BACE1) mRNA and protein expression under both OGD and OGD/R conditions, while 10 µM of melatonin attenuated these effects and inhibited beta amyloid (Aß) production. Furthermore, we demonstrated that OGD/R conditions were able to activate the BACE1 promoter, while melatonin inhibited this effect. The present results indicate that melatonin has a significant impact on preventing the aberrant development of ischemic stroke, which can lead to the development of AD, providing new insight into the prevention of AD and potential stroke treatments.


Alzheimer Disease , Amyloid Precursor Protein Secretases , Melatonin , Neuroblastoma , Melatonin/pharmacology , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/etiology , Alzheimer Disease/pathology , Neuroblastoma/metabolism , Neuroblastoma/pathology , Cell Line, Tumor , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Aspartic Acid Endopeptidases/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Glucose/metabolism , Amyloid beta-Peptides/metabolism , Oxygen/metabolism , Cell Hypoxia/drug effects , Hypoxia/metabolism
17.
Sci Rep ; 14(1): 12262, 2024 05 28.
Article En | MEDLINE | ID: mdl-38806563

Exercise elicits physiological adaptations, including hyperpnea. However, the mechanisms underlying exercise-induced hyperpnea remain unresolved. Skeletal muscle acts as a secretory organ, releasing irisin (IR) during exercise. Irisin can cross the blood-brain barrier, influencing muscle and tissue metabolism, as well as signaling in the central nervous system (CNS). We evaluated the effect of intracerebroventricular or intraperitoneal injection of IR in adult male rats on the cardiorespiratory and metabolic function during sleep-wake cycle under room air, hypercapnia and hypoxia. Central IR injection caused an inhibition on ventilation (VE) during wakefulness under normoxia, while peripheral IR reduced VE during sleep. Additionally, central IR exacerbates hypercapnic hyperventilation by increasing VE and reducing oxygen consumption. As to cardiovascular regulation, central IR caused an increase in heart rate (HR) across all conditions, while no change was observed following peripheral administration. Finally, central IR attenuated the hypoxia-induced regulated hypothermia and increase sleep episodes, while peripheral IR augmented CO2-induced hypothermia, during wakefulness. Overall, our results suggest that IR act mostly on CNS exerting an inhibitory effect on breathing under resting conditions, while stimulating the hypercapnic ventilatory response and increasing HR. Therefore, IR seems not to be responsible for the exercise-induced hyperpnea, but contributes to the increase in HR.


Fibronectins , Physical Conditioning, Animal , Animals , Male , Rats , Fibronectins/metabolism , Hypercapnia/metabolism , Hypercapnia/physiopathology , Hypoxia/metabolism , Hypoxia/physiopathology , Heart Rate , Sleep/physiology , Wakefulness/physiology , Oxygen Consumption , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Respiration , Myokines
18.
Exp Cell Res ; 438(2): 114061, 2024 May 15.
Article En | MEDLINE | ID: mdl-38692345

Acute myocardial infarction (AMI) is a prevalent cardiovascular disease with high morbidity and mortality rates worldwide. Pyroptosis is an inflammatory form of programmed cell death that has been linked to various pathological conditions. However, its exact contribution to the onset and progression of heart injury in AMI has not yet fully elucidated. Herein, we established mouse AMI model by ligating the left anterior descending artery and performed transcriptome analysis during the early phase of AMI. Mouse HL-1 and human AC-16 cardiomyocytes were subjected to hypoxia to simulate ischemic injury in vitro. Our results revealed a significant activation of the inflammatory response at 3 h post-ligation, as confirmed by RNA sequencing. We identified the occurrence of NLRP3 inflammasome-mediated pyroptosis in the cardiac tissues of human cases with AMI, as well as in mouse models of AMI and hypoxia-induced cardiomyocytes, using immunohistochemistry staining and Western blotting assays. Concurrently, pharmacological inhibition of NLRP3 inflammasome-mediated pyroptosis with MCC950 and VX-765 effectively decreased hypoxia-induced cardiomyocytes injury, while mitigating myocardial oxidative stress, apoptosis and inflammation caused by hypoxia. Moreover, the circulating levels of gasdermin D (GSDMD), the pyroptosis executor, were remarkably elevated in the plasma of mice with early AMI and in the supernatant of hypoxia-exposed cardiomyocytes in a time-dependent manner using ELISA and Western blotting. Furthermore, the change in circulating GSDMD positively correlated with Creatine Kinase-MB (CK-MB) in the plasma of early-stage AMI mouse. In summary, these findings indicated a critical role for NLRP3 inflammasome-mediated pyroptosis in the progression of AMI, the administration of MCC950 and VX-765 may be attractive candidate therapeutic approaches for cardiac injury caused by acute hypoxia or even AMI. Additionally, the circulating GSDMD exhibits potential as a newly diagnostic biomarker for AMI.


Apoptosis , Furans , Inflammation , Mice, Inbred C57BL , Myocardial Infarction , Myocytes, Cardiac , Oxidative Stress , Pyroptosis , Sulfonamides , Pyroptosis/drug effects , Animals , Mice , Apoptosis/drug effects , Oxidative Stress/drug effects , Sulfonamides/pharmacology , Humans , Inflammation/metabolism , Inflammation/pathology , Inflammation/drug therapy , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Male , Furans/pharmacology , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/drug therapy , Indenes/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , para-Aminobenzoates/pharmacology , Inflammasomes/metabolism , Inflammasomes/drug effects , Disease Models, Animal , Myocardium/metabolism , Myocardium/pathology , Hypoxia/metabolism , Hypoxia/complications , Dipeptides
19.
Nat Commun ; 15(1): 3970, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730227

High-altitude hypoxia acclimatization requires whole-body physiological regulation in highland immigrants, but the underlying genetic mechanism has not been clarified. Here we use sheep as an animal model for low-to-high altitude translocation. We generate multi-omics data including whole-genome sequences, time-resolved bulk RNA-Seq, ATAC-Seq and single-cell RNA-Seq from multiple tissues as well as phenotypic data from 20 bio-indicators. We characterize transcriptional changes of all genes in each tissue, and examine multi-tissue temporal dynamics and transcriptional interactions among genes. Particularly, we identify critical functional genes regulating the short response to hypoxia in each tissue (e.g., PARG in the cerebellum and HMOX1 in the colon). We further identify TAD-constrained cis-regulatory elements, which suppress the transcriptional activity of most genes under hypoxia. Phenotypic and transcriptional evidence indicate that antenatal hypoxia could improve hypoxia tolerance in offspring. Furthermore, we provide time-series expression data of candidate genes associated with human mountain sickness (e.g., BMPR2) and high-altitude adaptation (e.g., HIF1A). Our study provides valuable resources and insights for future hypoxia-related studies in mammals.


Altitude Sickness , Altitude , Gene Expression Regulation , Hypoxia , Animals , Altitude Sickness/genetics , Altitude Sickness/metabolism , Sheep , Hypoxia/genetics , Hypoxia/metabolism , Humans , Acclimatization/genetics , Transcription, Genetic , Single-Cell Analysis , Female , Multiomics
20.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38731800

Understanding the molecular underpinnings of neurodegeneration processes is a pressing challenge for medicine and neurobiology. Alzheimer's disease (AD) and Parkinson's disease (PD) represent the most prevalent forms of neurodegeneration. To date, a substantial body of experimental evidence has strongly implicated hypoxia in the pathogenesis of numerous neurological disorders, including AD, PD, and other age-related neurodegenerative conditions. Hypoxia-inducible factor (HIF) is a transcription factor that triggers a cell survival program in conditions of oxygen deprivation. The involvement of HIF-1α in neurodegenerative processes presents a complex and sometimes contradictory picture. This review aims to elucidate the current understanding of the interplay between hypoxia and the development of AD and PD, assess the involvement of HIF-1 in their pathogenesis, and summarize promising therapeutic approaches centered on modulating the activity of the HIF-1 complex.


Homeostasis , Hypoxia-Inducible Factor 1, alpha Subunit , Neurodegenerative Diseases , Oxygen , Parkinson Disease , Humans , Oxygen/metabolism , Animals , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/etiology , Hypoxia-Inducible Factor 1/metabolism , Hypoxia/metabolism
...