Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.297
Filter
1.
Nat Commun ; 15(1): 6673, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107302

ABSTRACT

Allosteric regulation of inosine 5'-monophosphate dehydrogenase (IMPDH), an essential enzyme of purine metabolism, contributes to the homeostasis of adenine and guanine nucleotides. However, the precise molecular mechanism of IMPDH regulation in bacteria remains unclear. Using biochemical and cryo-EM approaches, we reveal the intricate molecular mechanism of the IMPDH allosteric regulation in mycobacteria. The enzyme is inhibited by both GTP and (p)ppGpp, which bind to the regulatory CBS domains and, via interactions with basic residues in hinge regions, lock the catalytic core domains in a compressed conformation. This results in occlusion of inosine monophosphate (IMP) substrate binding to the active site and, ultimately, inhibition of the enzyme. The GTP and (p)ppGpp allosteric effectors bind to their dedicated sites but stabilize the compressed octamer by a common mechanism. Inhibition is relieved by the competitive displacement of GTP or (p)ppGpp by ATP allowing IMP-induced enzyme expansion. The structural knowledge and mechanistic understanding presented here open up new possibilities for the development of allosteric inhibitors with antibacterial potential.


Subject(s)
Guanosine Triphosphate , IMP Dehydrogenase , IMP Dehydrogenase/metabolism , IMP Dehydrogenase/chemistry , IMP Dehydrogenase/antagonists & inhibitors , Allosteric Regulation , Guanosine Triphosphate/metabolism , Cryoelectron Microscopy , Catalytic Domain , Models, Molecular , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Guanosine Pentaphosphate/metabolism , Inosine Monophosphate/metabolism , Inosine Monophosphate/chemistry , Protein Binding , Adenosine Triphosphate/metabolism , Mycobacterium smegmatis/enzymology , Mycobacterium smegmatis/metabolism
2.
Phytomedicine ; 132: 155833, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39008915

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is the second most common cause of cancer-related mortality and is characterised by extensive invasive and metastatic potential. Previous studies have shown that vitexicarpin extracted from the fruits of Vitex rotundifolia can impede tumour progression. However, the molecular mechanisms involved in CRC treatment are still not fully established. PURPOSE: Our study aimed to investigate the anticancer activity, targets, and molecular mechanisms of vitexicarpin in CRC hoping to provide novel therapies for patients with CRC. STUDY DESIGN/METHODS: The impact of vitexicarpin on CRC was assessed through various experiments including MTT, clone formation, EDU, cell cycle, and apoptosis assays, as well as a tumour xenograft model. CETSA, label-free quantitative proteomics, and Biacore were used to identify the vitexicarpin targets. WB, Co-IP, Ubiquitination assay, IF, molecular docking, MST, and cell transfection were used to investigate the mechanism of action of vitexicarpin in CRC cells. Furthermore, we analysed the expression patterns and correlation of target proteins in TCGA and GEPIA datasets and clinical samples. Finally, wound healing, Transwell, tail vein injection model, and tissue section staining were used to demonstrate the antimetastatic effect of vitexicarpin on CRC in vitro and in vivo. RESULTS: Our findings demonstrated that vitexicarpin exhibits anticancer activity by directly binding to inosine monophosphate dehydrogenase 2 (IMPDH2) and that it promotes c-Myc ubiquitination by disrupting the interaction between IMPDH2 and c-Myc, leading to epithelial-mesenchymal transition (EMT) inhibition. Vitexicarpin hinders the migration and invasion of CRC cells by reversing EMT both in vitro and in vivo. Additionally, these results were validated by the overexpression and knockdown of IMPDH2 in CRC cells. CONCLUSION: These results demonstrated that vitexicarpin regulates the interaction between IMPDH2 and c-Myc to inhibit CRC proliferation and metastasis both in vitro and in vivo. These discoveries introduce potential molecular targets for CRC treatment and shed light on new mechanisms for c-Myc regulation in tumours.


Subject(s)
Colorectal Neoplasms , Flavonoids , Ubiquitination , Vitex , Animals , Humans , Male , Mice , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Epithelial-Mesenchymal Transition/drug effects , IMP Dehydrogenase/metabolism , IMP Dehydrogenase/antagonists & inhibitors , Mice, Inbred BALB C , Mice, Nude , Molecular Docking Simulation , Proto-Oncogene Proteins c-myc/metabolism , Ubiquitination/drug effects , Vitex/chemistry , Xenograft Model Antitumor Assays , Flavonoids/pharmacology
3.
Biochem Biophys Res Commun ; 727: 150317, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38959733

ABSTRACT

Abnormalities in osteoclastic generation or activity disrupt bone homeostasis and are highly involved in many pathologic bone-related diseases, including rheumatoid arthritis, osteopetrosis, and osteoporosis. Control of osteoclast-mediated bone resorption is crucial for treating these bone diseases. However, the mechanisms of control of osteoclastogenesis are incompletely understood. In this study, we identified that inosine 5'-monophosphate dehydrogenase type II (Impdh2) positively regulates bone resorption. By histomorphometric analysis, Impdh2 deletion in mouse myeloid lineage cells (Impdh2LysM-/- mice) showed a high bone mass due to the reduced osteoclast number. qPCR and western blotting results demonstrated that the expression of osteoclast marker genes, including Nfatc1, Ctsk, Calcr, Acp5, Dcstamp, and Atp6v0d2, was significantly decreased in the Impdh2LysM-/- mice. Furthermore, the Impdh inhibitor MPA treatment inhibited osteoclast differentiation and induced Impdh2-cytoophidia formation. The ability of osteoclast differentiation was recovered after MPA deprivation. Interestingly, genome-wide analysis revealed that the osteoclastic mitochondrial biogenesis and functions, such as oxidative phosphorylation, were impaired in the Impdh2LysM-/- mice. Moreover, the deletion of Impdh2 alleviated ovariectomy-induced bone loss. In conclusion, our findings revealed a previously unrecognized function of Impdh2, suggesting that Impdh2-mediated mechanisms represent therapeutic targets for osteolytic diseases.


Subject(s)
IMP Dehydrogenase , Mitochondria , Osteoclasts , Osteogenesis , Osteoporosis , Ovariectomy , Oxidative Phosphorylation , Animals , Female , Mice , Bone Resorption/metabolism , Bone Resorption/genetics , Bone Resorption/pathology , Bone Resorption/etiology , Cell Differentiation , IMP Dehydrogenase/metabolism , IMP Dehydrogenase/genetics , IMP Dehydrogenase/deficiency , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Mitochondria/pathology , Osteoclasts/metabolism , Osteoclasts/pathology , Osteoporosis/metabolism , Osteoporosis/etiology , Osteoporosis/genetics , Osteoporosis/pathology
4.
EMBO Rep ; 25(9): 3990-4012, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39075237

ABSTRACT

Metabolic dysregulation is one of the most common causes of pediatric neurodegenerative disorders. However, how the disruption of ubiquitous and essential metabolic pathways predominantly affect neural tissue remains unclear. Here we use mouse models of a childhood neurodegenerative disorder caused by AMPD2 deficiency to study cellular and molecular mechanisms that lead to selective neuronal vulnerability to purine metabolism imbalance. We show that mouse models of AMPD2 deficiency exhibit predominant degeneration of the hippocampal dentate gyrus, despite a general reduction of brain GTP levels. Neurodegeneration-resistant regions accumulate micron-sized filaments of IMPDH2, the rate limiting enzyme in GTP synthesis, while these filaments are barely detectable in the hippocampal dentate gyrus. Furthermore, we show that IMPDH2 filament disassembly reduces GTP levels and impairs growth of neural progenitor cells derived from individuals with human AMPD2 deficiency. Together, our findings suggest that IMPDH2 polymerization prevents detrimental GTP deprivation, opening the possibility of exploring the induction of IMPDH2 assembly as a therapy for neurodegeneration.


Subject(s)
Guanosine Triphosphate , IMP Dehydrogenase , Neurodegenerative Diseases , Animals , Mice , Humans , Guanosine Triphosphate/metabolism , IMP Dehydrogenase/metabolism , IMP Dehydrogenase/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/etiology , Disease Models, Animal , Neural Stem Cells/metabolism , Mice, Knockout , Sphingomyelin Phosphodiesterase
5.
J Cancer Res Clin Oncol ; 150(8): 377, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39085725

ABSTRACT

BACKGROUND: Hepatoblastoma (HB) is the most common pediatric liver tumor, presenting significant therapeutic challenges due to its high rates of recurrence and metastasis. While Inosine Monophosphate Dehydrogenase 2(IMPDH2) has been associated with cancer progression, its specific role and clinical implications in HB have not been fully elucidated. METHODS: This study utilized Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) and Tissue Microarray (TMA) for validation. Following this, IMPDH2 was suppressed, and a series of in vitro assays were conducted. Flow cytometry was employed to assess apoptosis and cell cycle arrest. Additionally, the study explored the synergistic therapeutic effects of mycophenolate mofetil (MMF) and doxorubicin (DOX) on HB cell lines. RESULTS: The study identified a marked overexpression of IMPDH2 in HB tissues, which was strongly correlated with reduced Overall Survival (OS) and Event-Free Survival (EFS). IMPDH2 upregulation was also found to be associated with key clinical-pathological features, including pre-chemotherapy alpha-fetoprotein (AFP) levels, presence of preoperative metastasis, and the pre-treatment extent of tumor (PRETEXT) staging system. Knockdown of IMPDH2 significantly inhibited HB cell proliferation and tumorigenicity, inducing cell cycle arrest at the G0/G1 phase. Notably, the combination of MMF, identified as a specific IMPDH2 inhibitor, with DOX, substantially enhanced the therapeutic response. CONCLUSION: The overexpression of IMPDH2 was closely linked to adverse outcomes in HB patients and appeared to accelerate cell cycle progression. These findings suggest that IMPDH2 may serve as a valuable prognostic indicator and a potential therapeutic target for HB. IMPACT: The present study unveiled a significant overexpression of inosine monophosphate dehydrogenase 2 (IMPDH2) in hepatoblastoma (HB) tissues, particularly in association with metastasis and recurrence of the disease. The pronounced upregulation of IMPDH2 was found to be intimately correlated with adverse outcomes in HB patients. This overexpression appears to accelerate the progression of the cell cycle, suggesting that IMPDH2 may serve as a promising candidate for both a prognostic marker and a therapeutic target in the context of HB.


Subject(s)
Apoptosis , Cell Cycle Checkpoints , Cell Proliferation , Hepatoblastoma , IMP Dehydrogenase , Liver Neoplasms , Humans , Hepatoblastoma/pathology , Hepatoblastoma/drug therapy , Hepatoblastoma/metabolism , Hepatoblastoma/genetics , IMP Dehydrogenase/metabolism , IMP Dehydrogenase/genetics , IMP Dehydrogenase/antagonists & inhibitors , Liver Neoplasms/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Cell Proliferation/drug effects , Apoptosis/drug effects , Female , Male , Cell Cycle Checkpoints/drug effects , Child, Preschool , Doxorubicin/pharmacology , Child , Mice , Animals , Cell Line, Tumor , Infant , Prognosis , Mice, Nude
6.
Bioessays ; 46(8): e2400063, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38975656

ABSTRACT

A host of metabolic enzymes reversibly self-assemble to form membrane-less, intracellular filaments under normal physiological conditions and in response to stress. Often, these enzymes reside at metabolic control points, suggesting that filament formation affords an additional regulatory mechanism. Examples include cytidine-5'-triphosphate (CTP) synthase (CTPS), which catalyzes the rate-limiting step for the de novo biosynthesis of CTP; inosine-5'-monophosphate dehydrogenase (IMPDH), which controls biosynthetic access to guanosine-5'-triphosphate (GTP); and ∆1-pyrroline-5-carboxylate (P5C) synthase (P5CS) that catalyzes the formation of P5C, which links the Krebs cycle, urea cycle, and proline metabolism. Intriguingly, CTPS can exist in co-assemblies with IMPDH or P5CS. Since GTP is an allosteric activator of CTPS, the association of CTPS and IMPDH filaments accords with the need to coordinate pyrimidine and purine biosynthesis. Herein, a hypothesis is presented furnishing a biochemical connection underlying co-assembly of CTPS and P5CS filaments - potent inhibition of CTPS by glutamate γ-semialdehyde, the open-chain form of P5C.


Subject(s)
Carbon-Nitrogen Ligases , IMP Dehydrogenase , Animals , Humans , Carbon-Nitrogen Ligases/metabolism , Carbon-Nitrogen Ligases/genetics , Cytidine Triphosphate/metabolism , Guanosine Triphosphate/metabolism , IMP Dehydrogenase/metabolism
7.
Cancer Gene Ther ; 31(7): 1081-1089, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38871858

ABSTRACT

Gliomas are the most common primary tumors of the central nervous system, with approximately half of patients presenting with the most aggressive form of glioblastoma. Although several molecular markers for glioma have been identified, they are not sufficient to predict the prognosis due to the extensive genetic heterogeneity within glioma. Our study reveals that the ratio of IMPDH1 to IMPDH2 expression levels serves as a molecular indicator for glioma treatment prognosis. Patients with a higher IMPDH1/IMPDH2 ratio exhibit a worse prognosis, while those with a lower ratio display a more favorable prognosis. We further demonstrate that IMPDH1 plays a crucial role in maintaining cellular GTP/GDP levels following DNA damage compared to IMPDH2. In the absence of IMPDH1, cells experience an imbalance in the GTP/GDP ratio, impairing DNA damage repair capabilities and rendering them more sensitive to TMZ. This study not only introduces a novel prognostic indicator for glioma clinical diagnosis but also offers innovative insights for precise and stratified glioma treatment.


Subject(s)
Glioma , IMP Dehydrogenase , Temozolomide , Humans , Glioma/drug therapy , Glioma/genetics , Glioma/pathology , Glioma/mortality , IMP Dehydrogenase/genetics , IMP Dehydrogenase/metabolism , Temozolomide/therapeutic use , Temozolomide/pharmacology , Prognosis , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , DNA Damage/drug effects , Female , Male , Guanosine Triphosphate/metabolism
8.
mBio ; 15(8): e0102124, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-38940616

ABSTRACT

The purine nucleotides ATP and GTP are made from the common precursor inosine monophosphate (IMP). Maintaining the correct balance of these nucleotides for optimal cell growth is controlled in part by the enzyme IMP dehydrogenase (IMPDH), which catalyzes the first dedicated step of GTP biosynthesis. The regulation of IMPDH mRNA and protein levels in the yeast S. cerevisiae grown in liquid culture has been studied in some detail, but regulation of IMPDH protein under conditions of cellular crowding on a solid substrate has not been examined. Here, we report real-time, live-cell analysis of the accumulation of the Imd2 isoform of IMPDH in yeast cells forming a monolayer colony in a microfluidic device over a 50-hour time course. We observe two distinct phases of increased Imd2 accumulation: a guanine-insensitive phase early in outgrowth and a guanine-sensitive phase later, when cells become crowded. We show that the IMPDH inhibitor mycophenolic acid enhances both phases of increase. Deletion of a transcription attenuator upstream of the mRNA start site that decreases Imd2 mRNA synthesis in the presence of high GTP increases the baseline level of Imd2 protein 10-fold and abolishes guanine-sensitive but not guanine-insensitive induction. Our results suggest that at least two mechanisms of yeast Imd2 regulation exist, the known GTP-dependent attenuation of RNA polymerase II elongation and a GTP concentration-independent pathway that may be controlled by cell growth state. Live-cell analysis of IMPDH protein levels in a growing yeast colony confirms a known mechanism of regulation and provides evidence for an additional mode of regulation. IMPORTANCE: This study used live-cell microscopy to track changes in the level of a key enzyme in GTP nucleotide biosynthesis, inosine monophosphate dehydrogenase (IMPDH), during growth of a brewers yeast colony over 2 days in a microfluidic device. The results show that feedback regulation via transcription attenuation allows cells to adapt to nutrient limitation in the crowded environs of a yeast colony. They also identify a novel mode of regulation of IMPDH level that is not driven by guanine nucleotide availability.


Subject(s)
Gene Expression Regulation, Fungal , Guanosine Triphosphate , IMP Dehydrogenase , Saccharomyces cerevisiae , IMP Dehydrogenase/metabolism , IMP Dehydrogenase/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/growth & development , Guanosine Triphosphate/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Mycophenolic Acid/pharmacology
9.
Pharmacogenomics ; 25(5-6): 259-288, 2024.
Article in English | MEDLINE | ID: mdl-38884938

ABSTRACT

This scoping review explores the impact of genetic polymorphisms on the pharmacokinetics and treatment responses of mycophenolic acid (MPA), an immunosuppressant. The study includes 83 articles from 1226 original studies, focusing on transplantation (n = 80) and autoimmune disorders (n = 3). Genetic variants in uridine 5'-diphospho-glucuronosyltransferase (UGT1A9, UGT1A8 and UGT2B7) and transmembrane transporters (ABCC2, SLCO1B1, SLCO1B3 and ABCB1) significantly affected MPA's pharmacokinetics and susceptibility to its adverse effect. Whereas variants in several genes including UGT1A9, UGT2B7, IMPDH1 and IMPDH2 have been associated with a higher risk of transplant rejection. However, there is a lack of studies on MPA's impact on autoimmune disorders and limited research on the Asian population. The findings underscore the need for further research on MPA's impact across different populations and diseases, particularly among other Asian ethnic groups, to advance personalized medicine in MPA therapy.


[Box: see text].


Subject(s)
Glucuronosyltransferase , Immunosuppressive Agents , Multidrug Resistance-Associated Protein 2 , Mycophenolic Acid , Humans , Mycophenolic Acid/therapeutic use , Mycophenolic Acid/pharmacokinetics , Immunosuppressive Agents/pharmacokinetics , Immunosuppressive Agents/therapeutic use , Glucuronosyltransferase/genetics , Polymorphism, Genetic/genetics , Graft Rejection/genetics , Graft Rejection/prevention & control , Graft Rejection/drug therapy , Autoimmune Diseases/drug therapy , Autoimmune Diseases/genetics , IMP Dehydrogenase/genetics , UDP-Glucuronosyltransferase 1A9
10.
J Mol Graph Model ; 131: 108807, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38908255

ABSTRACT

The human inosine monophosphate dehydrogenase (hIMPDH) is a metabolic enzyme that possesses a unique ability to self-assemble into higher-order structures, forming cytoophidia. The hIMPDH II isoform is more active in chronic myeloid leukemia (CML) cancer cells, making it a promising target for anti-leukemic therapy. However, the structural details and molecular mechanisms of the dynamics of hIMPDHcytoophidia assembly in vitro need to be better understood, and it is crucial to reconstitute the computational nucleoplasm model with cytophilic-like polymers in vitro to characterize their structure and function. Finally, a computational model and its dynamics of the nucleoplasm for CML cells have been proposed in this short review. This research on nucleoplasm aims to aid the scientific community's understanding of how metabolic enzymes like hIMPDH function in cancer and normal cells. However, validating and justifying the computational results from modeling and simulation with experimental data is essential. The new insights gained from this research could explain the structure/topology, geometrical, and electronic consequences of hIMPDH inhibitors on leukemic and normal cells. They could lead to further advancements in the knowledge of nucleoplasmic chemical reaction dynamics.


Subject(s)
Antineoplastic Agents , IMP Dehydrogenase , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , IMP Dehydrogenase/antagonists & inhibitors , IMP Dehydrogenase/chemistry , IMP Dehydrogenase/metabolism , Cell Nucleus/metabolism , Leukemia/drug therapy , Molecular Dynamics Simulation , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Drug Design , Models, Molecular
11.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892179

ABSTRACT

IMP dehydrogenase (IMPDH) inhibition has emerged as a new target therapy for glioblastoma multiforme (GBM), which remains one of the most refractory tumors to date. TCGA analyses revealed distinct expression profiles of IMPDH isoenzymes in various subtypes of GBM and low-grade glioma (LGG). To dissect the mechanism(s) underlying the anti-tumor effect of IMPDH inhibition in adult GBM, we investigated how mycophenolic acid (MPA, an IMPDH inhibitor) treatment affected key oncogenic drivers in glioblastoma cells. Our results showed that MPA decreased the expression of telomerase reverse transcriptase (TERT) in both U87 and U251 cells, and the expression of O6-methylguanine-DNA methyltransferase (MGMT) in U251 cells. In support, MPA treatment reduced the amount of telomere repeats in U87 and U251 cells. TERT downregulation by MPA was associated with a significant decrease in c-Myc (a TERT transcription activator) in U87 but not U251 cells, and a dose-dependent increase in p53 and CCCTC-binding factor (CTCF) (TERT repressors) in both U87 and U251 cells. In U251 cells, MPA displayed strong cytotoxic synergy with BCNU and moderate synergy with irinotecan, oxaliplatin, paclitaxel, or temozolomide (TMZ). In U87 cells, MPA displayed strong cytotoxic synergy with all except TMZ, acting primarily through the apoptotic pathway. Our work expands the mechanistic potential of IMPDH inhibition to TERT/telomere regulation and reveals a synthetic lethality between MPA and anti-GBM drugs.


Subject(s)
Glioblastoma , IMP Dehydrogenase , Telomerase , Humans , Telomerase/metabolism , Telomerase/antagonists & inhibitors , Telomerase/genetics , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/genetics , Glioblastoma/pathology , Cell Line, Tumor , IMP Dehydrogenase/antagonists & inhibitors , IMP Dehydrogenase/metabolism , IMP Dehydrogenase/genetics , Drug Synergism , Gene Expression Regulation, Neoplastic/drug effects , Antineoplastic Agents/pharmacology , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Apoptosis/drug effects
12.
ACS Chem Biol ; 19(6): 1339-1350, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38829020

ABSTRACT

N-Pyridinylthiophene carboxamide (compound 21) displays activity against peripheral nerve sheath cancer cells and mouse xenografts by an unknown mechanism. Through medicinal chemistry, we identified a more active derivative, compound 9, and found that only analogues with structures similar to nicotinamide retained activity. Genetic screens using compound 9 found that both NAMPT and NMNAT1, enzymes in the NAD salvage pathway, are necessary for activity. Compound 9 is metabolized by NAMPT and NMNAT1 into an adenine dinucleotide (AD) derivative in a cell-free system, cultured cells, and mice, and inhibition of this metabolism blocked compound activity. AD analogues derived from compound 9 inhibit IMPDH in vitro and cause cell death by inhibiting IMPDH in cells. These findings nominate these compounds as preclinical candidates for the development of tumor-activated IMPDH inhibitors to treat neuronal cancers.


Subject(s)
NAD , Niacinamide , Thiophenes , Animals , NAD/metabolism , Humans , Mice , Niacinamide/analogs & derivatives , Niacinamide/metabolism , Niacinamide/pharmacology , Niacinamide/chemistry , Thiophenes/pharmacology , Thiophenes/chemistry , Thiophenes/metabolism , Cell Line, Tumor , IMP Dehydrogenase/antagonists & inhibitors , IMP Dehydrogenase/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Nicotinamide Phosphoribosyltransferase/metabolism , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Nerve Sheath Neoplasms/drug therapy , Nerve Sheath Neoplasms/metabolism , Nerve Sheath Neoplasms/pathology , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Nicotinamide-Nucleotide Adenylyltransferase/metabolism , Nicotinamide-Nucleotide Adenylyltransferase/antagonists & inhibitors
13.
Biochem Biophys Res Commun ; 716: 149998, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38692012

ABSTRACT

The equilibrium between the hypertrophic growth of existing adipocytes and adipogenesis is vital in managing metabolic stability in white adipocytes when faced with overnutrition. Adipogenesis has been established as a key player in combating metabolic irregularities caused by various factors. However, the benefits of increasing adipogenesis-mediated white adipose tissue (WAT) expansion for metabolic health regulation remain uncertain. Our findings reveal an increase in Impdh2 expression during the adipogenesis phase, both in vivo and in vitro. Xmp enhances adipogenic potential by fostering mitotic clonal expansion (MCE). The conditional knockout of Impdh2 in adipocyte progenitor cells(APCs) in adult and aged mice effectively curbs white adipose tissue expansion, ameliorates glucose tolerance, and augments energy expenditure under high-fat diet (HFD). However, no significant difference is observed under normal chow diet (NCD). Concurrently, the knockout of Impdh2 in APCs significantly reduces the count of new adipocytes induced by HFD, without affecting adipocyte size. Mechanistically, Impdh2 regulates the proliferation of APCs during the MCE phase via Xmp. Exogenous Xmp can significantly offset the reduction in adipogenic abilities of APCs due to Impdh2 deficiency. In summary, we discovered that adipogenesis-mediated WAT expansion, induced by overnutrition, also contributes to metabolic abnormalities. Moreover, the pivotal role of Impdh2 in regulating adipogenesis in APCs offers a novel therapeutic approach to combat obesity.


Subject(s)
Adipocytes , Adipogenesis , Adipose Tissue, White , Diet, High-Fat , IMP Dehydrogenase , Overnutrition , Animals , Male , Mice , Adipocytes/metabolism , Adipogenesis/genetics , Adipose Tissue, White/metabolism , Cell Proliferation , Energy Metabolism/genetics , Gene Deletion , Mice, Inbred C57BL , Mice, Knockout , Overnutrition/metabolism , Overnutrition/genetics , Stem Cells/metabolism , Stem Cells/cytology , Stem Cells/pathology , IMP Dehydrogenase/genetics , IMP Dehydrogenase/metabolism
14.
Protein J ; 43(3): 592-602, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733555

ABSTRACT

The main structural difference between the mutation-susceptible retinal isoforms of inosine 5´-monophosphate dehydrogenase-1 (IMPDH-1) with the canonical form resides in the C- and N-terminal peptide extensions with unknown structural/functional impacts. In this report, we aimed to experimentally evaluate the functional impact of these extensions on the specific/non-specific single-stranded DNA (ssDNA)-binding activities relative to those of the canonical form. Our in silico findings indicated the possible contribution of the C-terminal segment to the reduced flexibility of the Bateman domain of the enzyme. In addition, the in silico data indicated that the N-terminal tail acts by altering the distance between the tetramers in the concave octamer complex (the native form) of the enzyme. The overall impact of these predicted structural variations became evident, first, through higher Km values with respect to either of the substrates relative to the canonical isoform, as reported previously (Andashti et al. in Mol Cell Biochem 465(1):155-164, 2020). Secondary, the binding of the recombinant mouse retinal isoform IMPDH1 (603) to its specific Rhodopsin target gene was significantly augmented while its binding to non-specific ssDNA was lower than that of the canonical isoform. The DNA-binding activity of the other mouse retinal isoform, IMPDH1(546), to specific and non-specific ssDNA was lower than that of the canonical form most probably due to the in silico predicted rigidity created in the Bateman domain by the C-terminal peptide extension. Furthermore, the DNA binding to the Rhodopsin target gene by each of the IMPDH isoforms influenced in the presence of GTP (Guanosine triphosphate) and ATP (Adenosine triphosphate).


Subject(s)
IMP Dehydrogenase , IMP Dehydrogenase/metabolism , IMP Dehydrogenase/chemistry , IMP Dehydrogenase/genetics , Animals , Mice , Isoenzymes/metabolism , Isoenzymes/chemistry , Isoenzymes/genetics , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/genetics , Retina/metabolism , Retina/enzymology , Protein Binding , Humans
15.
Cell Mol Life Sci ; 81(1): 210, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717553

ABSTRACT

The cytoophidium is an evolutionarily conserved subcellular structure formed by filamentous polymers of metabolic enzymes. In vertebrates, inosine monophosphate dehydrogenase (IMPDH), which catalyses the rate-limiting step in guanosine triphosphate (GTP) biosynthesis, is one of the best-known cytoophidium-forming enzymes. Formation of the cytoophidium has been proposed to alleviate the inhibition of IMPDH, thereby facilitating GTP production to support the rapid proliferation of certain cell types such as lymphocytes, cancer cells and pluripotent stem cells (PSCs). However, past studies lacked appropriate models to elucidate the significance of IMPDH cytoophidium under normal physiological conditions. In this study, we demonstrate that the presence of IMPDH cytoophidium in mouse PSCs correlates with their metabolic status rather than pluripotency. By introducing IMPDH2 Y12C point mutation through genome editing, we established mouse embryonic stem cell (ESC) lines incapable of forming IMPDH polymers and the cytoophidium. Our data indicate an important role of IMPDH cytoophidium in sustaining a positive feedback loop that couples nucleotide biosynthesis with upstream metabolic pathways. Additionally, we find that IMPDH2 Y12C mutation leads to decreased cell proliferation and increased DNA damage in teratomas, as well as impaired embryo development following blastocoel injection. Further analysis shows that IMPDH cytoophidium assembly in mouse embryonic development begins after implantation and gradually increases throughout fetal development. These findings provide insights into the regulation of IMPDH polymerisation in embryogenesis and its significance in coordinating cell metabolism and development.


Subject(s)
Cell Proliferation , IMP Dehydrogenase , Animals , Female , Mice , DNA Damage , Fetal Development/genetics , Guanosine Triphosphate/metabolism , IMP Dehydrogenase/metabolism , IMP Dehydrogenase/genetics , Mice, Inbred C57BL , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Cellular Structures/metabolism
16.
Pharmacogenomics J ; 24(3): 15, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769303

ABSTRACT

Variant allele at the inosine monophosphate dehydrogenase type 2 polymorphism IMPDH2 3757T>C has been associated with increased enzyme activity and reduced susceptibility to mycophenolic acid (MPA) in vitro. It has been suggested associated with an increased risk of acute rejection in renal transplant recipients on MPA-based immunosuppression, but not unambiguously. We assessed one-year evolution of the estimated glomerular filtration rate (eGFR) in transplanted variant allele carriers and wild-type subjects, while controlling for a number of demographic, pharmacogenetic, (co)morbidity, and treatment baseline and time-varying covariates. The eGFR slopes to day 28 (GMR = 1.01, 95% CI 0.93-1.09), and between days 28 and 365 (GMR = 1.01, 95% CI 0.99-1.02) were practically identical in 52 variant carriers and 202 wild-type controls. The estimates (95%CIs) remained within the limits of ±20% difference even after adjustment for a strong hypothetical effect of unmeasured confounders. Polymorphism IMPDH2 3757T>C does not affect the renal graft function over the 1st year after transplantation.


Subject(s)
Glomerular Filtration Rate , Graft Rejection , IMP Dehydrogenase , Immunosuppressive Agents , Kidney Transplantation , Mycophenolic Acid , Polymorphism, Single Nucleotide , Humans , Kidney Transplantation/adverse effects , IMP Dehydrogenase/genetics , Mycophenolic Acid/therapeutic use , Mycophenolic Acid/adverse effects , Male , Female , Middle Aged , Immunosuppressive Agents/therapeutic use , Immunosuppressive Agents/adverse effects , Glomerular Filtration Rate/drug effects , Adult , Graft Rejection/genetics , Graft Rejection/prevention & control , Graft Rejection/immunology , Polymorphism, Single Nucleotide/genetics , Aged , Immunosuppression Therapy/methods , Immunosuppression Therapy/adverse effects
17.
ACS Infect Dis ; 10(6): 2262-2275, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38787329

ABSTRACT

The prevalence of Helicobacter pylori infection has been increasing rapidly due to the genetic heterogeneity and antibacterial resistance shown by the bacteria, affecting over 50% of the world population and over 80% of the Indian population, in particular. In this regard, novel drug targets are currently being explored, one of which is the crucial metabolic enzyme inosine-5'-monophosphate dehydrogenase (IMPDH) involved in the de novo nucleotide biosynthesis pathway, in order to combat the infection and devise efficient therapeutic strategies. The present study reports the development of methylpyrazole-substituted benzimidazoles as small molecule inhibitors of H. pylori IMPDH with a nanomolar range of enzyme inhibition. A set of 19 small molecules have been designed, synthesized, and further evaluated for their inhibitory potential against H. pylori IMPDH using in silico, in vitro, biochemical, and biophysical techniques. Compound 7j was found to inhibit H. pylori IMPDH with an IC50 value of 0.095 ± 0.023 µM, which is close to 1.5-fold increase in the inhibitory activity, in comparison to the previously reported benzimidazole-based hit C91. Moreover, kinetic characterization has provided significant insights into the uncompetitive inhibition shown by these small molecules on H. pylori IMPDH, thus providing details about the enzyme inhibition mechanism. In conclusion, methylpyrazole-based small molecules indicate a promising path to develop cheap and bioavailable drugs to efficiently treat H. pylori infection in the coming years, in comparison to the currently available therapy.


Subject(s)
Anti-Bacterial Agents , Benzimidazoles , Helicobacter Infections , Helicobacter pylori , IMP Dehydrogenase , Pyrazoles , Helicobacter pylori/drug effects , Helicobacter pylori/enzymology , Benzimidazoles/pharmacology , Benzimidazoles/chemistry , Helicobacter Infections/drug therapy , Helicobacter Infections/microbiology , Pyrazoles/pharmacology , Pyrazoles/chemistry , IMP Dehydrogenase/antagonists & inhibitors , IMP Dehydrogenase/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Structure-Activity Relationship , Humans , Microbial Sensitivity Tests , Molecular Docking Simulation , Kinetics
18.
Curr Eye Res ; 49(8): 853-861, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38604988

ABSTRACT

PURPOSE: Heterozygous variants of IMPDH1 are associated with autosomal dominant retinitis pigmentosa (adRP). The current study aims to investigate the characteristics of the adRP-associated variants. METHODS: IMPDH1 variants from our exome sequencing dataset were retrieved and systemically evaluated through multiple online prediction tools, comparative genomics (in-house dataset, HGMD, and gnomAD), and phenotypic association. Potential pathogenic variants (PPVs) were further confirmed by Sanger sequencing and segregation analysis. RESULTS: In total, seven heterozygous PPVs (six missenses and one inframe) were identified in 10 families with RP, in which six of the seven might be classified as pathogenic or likely pathogenic while one others as variants of uncertain significance. IMPDH1 variants contributed to 0.7% (10/1519) of RP families in our cohort, ranking the top four genes implicated in adRP. These adRP-associated variants were located in exons 8-10, a region within or downstream of the CBS domain. All these variants were predicted to be damaged by at least three of the six online prediction tools. Two truncation variants were considered non-pathogenic. Hitherto, 41 heterozygous variants of IMPDH1 were detected in 110 families in published literature, including 33 missenses, two inframes, and six truncations (including a synonymous variant affecting splicing). Of the 35 missense and inframe variants, most were clustered in exons 8-10 (77.1%, 27/35), including 18 (51.4%, 18/35) in exon 10 accounting for 70.9% (78/110) of the families. However, truncation variants were enriched in the general population with a pLI value of 0 (tolerated), and the reported variants in patients with RP did not cluster in specific region. CONCLUSIONS: Our data together with comprehensive analysis of existing datasets suggest that causative variants of IMPDH1 are usually missense and mostly clustered in exons 8-10. Conversely, most missense variants outside this region and truncation variants should be interpreted with great care in clinical gene test.


Subject(s)
Heterozygote , IMP Dehydrogenase , Mutation, Missense , Pedigree , Retinitis Pigmentosa , Humans , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/metabolism , Female , Male , IMP Dehydrogenase/genetics , Adult , Middle Aged , Exome Sequencing , DNA Mutational Analysis , Genes, Dominant , DNA/genetics , Exons/genetics
19.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(4): 456-460, 2024 Apr 10.
Article in Chinese | MEDLINE | ID: mdl-38565512

ABSTRACT

OBJECTIVE: To explore the genetic basis for a patient with autosomal dominant retinitis pigmentosa (RP). METHODS: A male patient with RP treated at Gansu Provincial Maternal and Child Health Care Hospital in September 2019 was selected as the study subject. Clinical data was collected. Peripheral blood samples of the patient and his parents were subjected to whole exome sequencing (WES). Candidate variant was validated by Sanger sequencing and bioinformatic analysis. RESULTS: The patient, a 29-year-old male, developed night blindness, amblyopia, visual field defects and optic disc abnormalities since childhood. Gene sequencing revealed that he has harbored a heterozygous c.942G>C (p.Lys314Asn) variant of the IMPDH1 gene, which was inherited from his mother, whilst his father was of the wild type. Based on the guidelines from the American College of Medical Genetics and Genomics, the c.942G>C variant was predicted as likely pathogenic (PM1+PM2_Supporting+PP3+PP1). CONCLUSION: The c.942G>C (p.Lys314Asn) variant in the IMPDH1 gene probably underlay the RP in this patient.


Subject(s)
Retinitis Pigmentosa , Adult , Female , Humans , Male , Computational Biology , Genomics , Heterozygote , IMP Dehydrogenase , Mothers , Mutation , Retinitis Pigmentosa/genetics
20.
J Transl Med ; 22(1): 133, 2024 02 03.
Article in English | MEDLINE | ID: mdl-38310229

ABSTRACT

BACKGROUND: Oxaliplatin resistance usually leads to therapeutic failure and poor prognosis in colorectal cancer (CRC), while the underlying mechanisms are not yet fully understood. Metabolic reprogramming is strongly linked to drug resistance, however, the role and mechanism of metabolic reprogramming in oxaliplatin resistance remain unclear. Here, we aim to explore the functions and mechanisms of purine metabolism on the oxaliplatin-induced apoptosis of CRC. METHODS: An oxaliplatin-resistant CRC cell line was generated, and untargeted metabolomics analysis was conducted. The inosine 5'-monophosphate dehydrogenase type II (IMPDH2) expression in CRC cell lines was determined by quantitative real-time polymerase chain reaction (qPCR) and western blotting analysis. The effects of IMPDH2 overexpression, knockdown and pharmacological inhibition on oxaliplatin resistance in CRC were assessed by flow cytometry analysis of cell apoptosis in vivo and in vitro. RESULTS: Metabolic analysis revealed that the levels of purine metabolites, especially guanosine monophosphate (GMP), were markedly elevated in oxaliplatin-resistant CRC cells. The accumulation of purine metabolites mainly arose from the upregulation of IMPDH2 expression. Gene set enrichment analysis (GSEA) indicated high IMPDH2 expression in CRC correlates with PURINE_METABOLISM and MULTIPLE-DRUG-RESISTANCE pathways. CRC cells with higher IMPDH2 expression were more resistant to oxaliplatin-induced apoptosis. Overexpression of IMPDH2 in CRC cells resulted in reduced cell death upon treatment with oxaliplatin, whereas knockdown of IMPDH2 led to increased sensitivity to oxaliplatin through influencing the activation of the Caspase 7/8/9 and PARP1 proteins on cell apoptosis. Targeted inhibition of IMPDH2 by mycophenolic acid (MPA) or mycophenolate mofetil (MMF) enhanced cell apoptosis in vitro and decreased in vivo tumour burden when combined with oxaliplatin treatment. Mechanistically, the Wnt/ß-catenin signalling was hyperactivated in oxaliplatin-resistant CRC cells, and a reciprocal positive regulatory mechanism existed between Wnt/ß-catenin and IMPDH2. Blocking the Wnt/ß-catenin pathway could resensitize resistant cells to oxaliplatin, which could be restored by the addition of GMP. CONCLUSIONS: IMPDH2 is a predictive biomarker and therapeutic target for oxaliplatin resistance in CRC.


Subject(s)
Colorectal Neoplasms , beta Catenin , Humans , Apoptosis , beta Catenin/metabolism , Cell Line, Tumor , Cell Proliferation , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , IMP Dehydrogenase/genetics , IMP Dehydrogenase/metabolism , Oxaliplatin/pharmacology , Oxaliplatin/therapeutic use , Oxidoreductases/genetics , Oxidoreductases/metabolism , Wnt Signaling Pathway
SELECTION OF CITATIONS
SEARCH DETAIL