Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 134
Filter
1.
Sci Rep ; 14(1): 17994, 2024 08 03.
Article in English | MEDLINE | ID: mdl-39097625

ABSTRACT

CD73 is a cell-surface ectoenzyme that hydrolyzes the conversion of extracellular adenosine monophosphate to adenosine, which in turn can promote resistance to immune checkpoint blockade therapy. Immune response may therefore be improved by targeting tumor CD73, and this possibility underlines the need to non-invasively assess tumor CD73 level. In this study, we developed a cysteine site-specific 89Zr-labeled anti-CD73 (89Zr-CD73) IgG immuno-PET technique that can image tumor CD73 expression in living bodies. Anti-CD73 IgG was reduced with tris(2-carboxyethyl)phosphine, underwent sulfohydryl moiety-specific conjugation with deferoxamine-maleimide, and was radiolabeled with 89Zr. CT26 mouse colon cancer cells, CT26/CD73 cells engineered to constitutively overexpress CD73, and 4T1.2 mouse breast cancer cells underwent cell binding assays and western blotting. Balb/c nude mice bearing tumors underwent 89Zr-CD73 IgG PET imaging and biodistribution studies. 89Zr-CD73 IgG showed 20-fold higher binding to overexpressing CT26/CD73 cells compared to low-expressing CT26 cells, and moderate expressing 4T1.2 cells showed uptake that was 38.9 ± 1.51% of CT26/CD73 cells. Uptake was dramatically suppressed by excess unlabeled antibody. CD73 content proportionately increased in CT26 and CT26/CD73 cell mixtures was associated with linear increases in 89Zr-CD73 IgG uptake. 89Zr-CD73 IgG PET/CT displayed clear accumulation in CT26/CD73 tumors with greater uptake compared to CT26 tumors (3.13 ± 1.70%ID/g vs. 1.27 ± 0.31%ID/g at 8 days; P = 0.04). Specificity was further supported by low CT26/CD73 tumor-to-blood ratio of 89Zr-isotype-IgG compared to 89Zr-CD73 IgG (0.48 ± 0.08 vs. 2.68 ± 0.52 at 4 days and 0.53 ± 0.07 vs. 4.81 ± 1.02 at 8 days; both P < 0.001). Immunoblotting and immunohistochemistry confirmed strong CD73 expression in CT26/CD73 tumors and low expression in CT26 tumors. 4T1.2 tumor mice also showed clear 89Zr-CD73 IgG accumulation at 8 days (3.75 ± 0.70%ID/g) with high tumor-to-blood ratio compared to 89Zr-isotype-IgG (4.91 ± 1.74 vs. 1.20 ± 0.28; P < 0.005). 89Zr-CD73 IgG specifically targeted CD73 on high expressing cancer cells in vitro and tumors in vivo. Thus, 89Zr-CD73 IgG immuno-PET may be useful for the non-invasive monitoring of CD73 expression in tumors of living subjects.


Subject(s)
5'-Nucleotidase , Colonic Neoplasms , Cysteine , Positron-Emission Tomography , Zirconium , Animals , 5'-Nucleotidase/metabolism , Zirconium/chemistry , Colonic Neoplasms/diagnostic imaging , Colonic Neoplasms/metabolism , Colonic Neoplasms/immunology , Colonic Neoplasms/pathology , Mice , Cell Line, Tumor , Positron-Emission Tomography/methods , Cysteine/metabolism , Humans , Radioisotopes , Female , Mice, Inbred BALB C , Tissue Distribution , Mice, Nude , GPI-Linked Proteins/metabolism , GPI-Linked Proteins/immunology , Immunoglobulin G/immunology , Immunoglobulin G/metabolism
2.
Biotechnol Bioeng ; 121(9): 2848-2867, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39138873

ABSTRACT

The fast-growing Chinese hamster lung (CHL)-YN cell line was recently developed for monoclonal antibody production. In this study, we applied a serum-free fed-batch cultivation process to immunoglobulin (Ig)G1-producing CHL-YN cells, which were then used to design a dynamic glucose supply system to stabilize the extracellular glucose concentration based on glucose consumption. Glucose consumption of the cultures rapidly oscillated following three phases of glutamine metabolism: consumption, production, and re-consumption. Use of the dynamic glucose supply prolonged the viability of the CHL-YN-IgG1 cell cultures and increased IgG1 production. Liquid chromatography with tandem mass spectrometry-based target metabolomics analysis of the extracellular metabolites during the first glutamine shift was conducted to search for depleted compounds. The results suggest that the levels of four amino acids, namely arginine, aspartate, methionine, and serine, were sharply decreased in CHL-YN cells during glutamine production. Supporting evidence from metabolic and gene expression analyses also suggest that CHL-YN cells acquired ornithine- and cystathionine-production abilities that differed from those in Chinese hamster ovary-K1 cells, potentially leading to proline and cysteine biosynthesis.


Subject(s)
Antibodies, Monoclonal , Cricetulus , Glucose , Animals , Glucose/metabolism , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/metabolism , Cricetinae , Cell Line , Culture Media, Serum-Free , Metabolomics/methods , Lung/metabolism , Lung/cytology , Metabolome , Immunoglobulin G/metabolism , CHO Cells , Batch Cell Culture Techniques/methods , Glutamine/metabolism
3.
Bioorg Med Chem ; 111: 117835, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39053075

ABSTRACT

Achieving effective intracellular delivery of therapeutic molecules such as antibodies (IgG) is a challenge in biomedical research and pharmaceutical development. Conjugation of IgG with a cell-penetrating peptide is a rational approach. Here, not only the efficacy of the conjugates in internalizing into cells, but also the physicochemical property of the conjugates allowing their solubilized states in solution without forming aggregates are critical. In this study, we have shown that the first requirement can be addressed using a cell-permeable attenuated cationic amphiphilic lytic (CP-ACAL) peptide, L17ER4. The second requirement can be addressed by ligation of IgG to L17ER4 using sortase A, where the use of a linker of appropriate chain length is also important. For evaluation, the intracellular delivery efficacy was studied using conjugate structures with different orientations and conjugation modes of L17ER4 in ligation to a model protein, green fluorescent protein fused to a nuclear localization signal (NLS-EGFP). The effect of tetraarginine positioning in the L17ER4 sequence was also investigated. Following these studies, an optimized peptide sequence containing L17ER4 was ligated to an anti-green fluorescent protein (GFP) IgG bearing a sortase A recognition sequence. Treatment of the cells with the conjugate of anti-GFP IgG and L17ER4 resulted in a high efficiency of cytosolic translocation of the conjugate and the binding to the target protein in the cell without significant aggregate formation. The feasibility of the d-form of L17ER4 as a CP-ACAL was also confirmed.


Subject(s)
Cell-Penetrating Peptides , Cysteine Endopeptidases , Immunoglobulin G , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/chemistry , Humans , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/metabolism , Cell-Penetrating Peptides/pharmacology , Aminoacyltransferases/metabolism , Aminoacyltransferases/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Cations/chemistry , Peptides/chemistry , Peptides/pharmacology , HeLa Cells , Drug Delivery Systems , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/chemistry
4.
Biomolecules ; 14(7)2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39062563

ABSTRACT

Affinity chromatography is a widely used technique for antibody isolation. This article presents the successful synthesis of a novel affinity resin with a mutant form of protein A (BsrtA) immobilized on it as a ligand. The key aspect of the described process is the biocatalytic immobilization of the ligand onto the matrix using the sortase A enzyme. Moreover, we used a matrix with primary amino groups without modification, which greatly simplifies the synthesis process. The resulting resin shows a high dynamic binding capacity (up to 50 mg IgG per 1 mL of sorbent). It also demonstrates high tolerance to 0.1 M NaOH treatment and maintains its effectiveness even after 100 binding, elution, and sanitization cycles.


Subject(s)
Bacterial Proteins , Biocatalysis , Chromatography, Affinity , Cysteine Endopeptidases , Chromatography, Affinity/methods , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Aminoacyltransferases/metabolism , Aminoacyltransferases/chemistry , Staphylococcal Protein A/chemistry , Staphylococcal Protein A/metabolism , Immunoglobulins/chemistry , Immunoglobulins/metabolism , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism
5.
Int J Mol Sci ; 25(14)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39062903

ABSTRACT

The differentiation between primary and secondary forms of membranous nephropathy (MN) is a cornerstone that is necessary for adequate decision making regarding the treatment options and behavior of each specific case. Kidney biopsy and antibody results can be controversial, and a unique biomarker has still not been found. BACKGROUND AND OBJECTIVES: We investigated the lack of mannose-binding lectin (MBL) deposition in patients with secondary MNs (sMNs) with the presence of IgG4 deposition in relation to the presence of MBL deposition in patients with primary MNs (pMNs). We also established a connection between the stage of MN and MBL deposition. MATERIALS AND METHODS: Materials from 72 renal biopsies with proven MN were used for immunohistochemistry staining (IHC) for the phospholipase A2 receptor (PLA2R), immunoglobulin subtype IgG4, and MBL. Patients were separated into one of the following three groups: primary MN (pMN), idiopathic MN (iMN), and secondary MN (sMN). Serum antibodies for PLA2R and thrombospondin type-I-domain-containing 7A (THSD7A) were also used for the precise evaluation of the type of MN, as well as for detecting positivity for PLA2R using IHC. Which stage of MN was present in relation to the deposition of MBL was evaluated. RESULTS: In total, 50 patients were positive for IgG4, 34 with pMN, 12 with iMN, and 4 with sMN. A total of 20 patients were positive for MBL, 14 with pMN and 6 with iMN; no MBL deposits were found in patients with sMN. MBL positivity was predominantly present in the first two stages of MN, with a gradual reduction in the later stages. CONCLUSIONS: The activation of the lectin-complement pathway occurs in the early stages of the disease and is associated with the deposition of IgG4; IgG4 deposition is present in sMN, but there is no MBL deposition. IgG4 cannot be used for the differentiation of primary from secondary MNs, but the lack of MBL can be used as a marker for sMN in the early stages of the disease.


Subject(s)
Glomerulonephritis, Membranous , Immunoglobulin G , Mannose-Binding Lectin , Receptors, Phospholipase A2 , Humans , Glomerulonephritis, Membranous/metabolism , Glomerulonephritis, Membranous/pathology , Glomerulonephritis, Membranous/immunology , Glomerulonephritis, Membranous/diagnosis , Male , Female , Mannose-Binding Lectin/metabolism , Middle Aged , Immunoglobulin G/metabolism , Immunoglobulin G/immunology , Adult , Receptors, Phospholipase A2/metabolism , Receptors, Phospholipase A2/immunology , Biomarkers , Aged , Thrombospondins/metabolism , Kidney/metabolism , Kidney/pathology , Biopsy
6.
Int J Mol Sci ; 25(14)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39063198

ABSTRACT

Anti-IgLON5 (IgLON5-IgG)-associated disease is a newly defined clinical entity. This literature review aims to evaluate its pathogenesis, which remains a pivotal question. Features that favour a primary neurodegenerative mechanism include the non-inflammatory tauopathy neuropathological signature and overrepresentation of microtubule-associated protein tau (MAPT) H1/H1 genotype as seen in other sporadic tauopathies. In contrast, the cell-surface localisation of IgLON5, capability of anti-IgLON5 antibodies to exert direct in vitro pathogenicity and disrupt IgLON5 interactions with its binding partners, human leukocyte antigen (HLA)-DRB1*10:01 and HLA-DQB1*05:01 allele preponderance with high affinity binding of IgLON5 peptides, and responsiveness to immunotherapy favour a primary autoimmune process. The presentation and course of anti-IgLON5-associated disease is heterogenous; hence, we hypothesise that a multitude of immune mechanisms are likely simultaneously operational in this disease cohort.


Subject(s)
Cell Adhesion Molecules, Neuronal , Immunoglobulin G , Humans , Cell Adhesion Molecules, Neuronal/immunology , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Tauopathies/immunology , Tauopathies/genetics , Tauopathies/metabolism , Animals , tau Proteins/immunology , tau Proteins/metabolism , tau Proteins/genetics , Autoantibodies/immunology
7.
Adv Exp Med Biol ; 1445: 129-135, 2024.
Article in English | MEDLINE | ID: mdl-38967755

ABSTRACT

Immunoglobulin (Ig) is traditionally believed to be produced solely by B cells. Nonetheless, mounting evidence has demonstrated that various types of Igs are extensively expressed in many cell types. Among them, IgG is found to be highly expressed in cancer cells and is thus labeled as cancer-derived IgG. Cancer-derived IgG shares identical fundamental structures with B cell-derived IgG, but displays several unique characteristics, including restricted variable region sequences and unique glycosylation modifications for those expressed by epithelial cancers. Cancer-derived IgG plays multiple crucial roles in carcinogenesis, including facilitating cancer invasion and metastasis, enhancing cancer stemness, contributing to chemoresistance, and remodeling the tumour microenvironment. Recent studies have discovered that cancer-derived sialylated IgG (SIA-IgG) is extensively expressed in pancreatic cancer cells and is predominantly located in the cytoplasm and on the cell membrane. Cancer-derived IgG expressed by pancreatic cancer presents a restrictive variable region sequence and contains a unique sialylation site of the Fab region. Functionally, cancer-derived IgG participates in pancreatic cancer progression via different mechanisms, such as promoting proliferation, facilitating migration and invasion, resisting apoptosis, inducing inflammation, and modulating the tumour microenvironment. SIA-IgG has shown potential as a clinical biomarker. The expression of SIA-IgG is associated with poor tumour differentiation, metastasis, and chemoresistance in pancreatic cancer. High expression of SIA-IgG can serve as an independent prognostic factor for pancreatic cancer. Additionally, SIA-IgG expression elevated with malignant progression for the precursor lesions of pancreatic cancer. These findings present a prospect of applying cancer-derived IgG as a novel diagnostic and therapeutic target in the management of pancreatic cancer, and aiding in overcoming the challenge in the treatment of this stubborn malignancy.


Subject(s)
Immunoglobulin G , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Tumor Microenvironment/immunology , Glycosylation , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Animals
8.
Int J Mol Sci ; 25(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39000360

ABSTRACT

Mitochondrial dysfunction has been increasingly recognized as a trigger for systemic lupus erythematosus (SLE). Recent bioinformatics studies have suggested Fam210b as a significant candidate for the classification and therapeutic targeting of SLE. To experimentally prove the role of Fam210b in SLE, we constructed Fam210b knockout (Fam210b-/-) mice using the CRISPR-Cas9 method. We found that approximately 15.68% of Fam210b-/- mice spontaneously developed lupus-like autoimmunity, which was characterized by skin ulcerations, splenomegaly, and an increase in anti-double-stranded DNA (anti-dsDNA) IgG antibodies and anti-nuclear antibodies(ANA). Single-cell sequencing showed that Fam210b was mainly expressed in erythroid cells. Critically, the knockout of Fam210b resulted in abnormal erythrocyte differentiation and development in the spleens of mice. Concurrently, the spleens exhibited an increased number of CD71+ erythroid cells, along with elevated levels of reactive oxygen species (ROS) in the erythrocytes. The co-culture of CD71+ erythroid cells and lymphocytes resulted in lymphocyte activation and promoted dsDNA and IgG production. In summary, Fam210b knockout leads to a low probability of lupus-like symptoms in mice through the overproduction of ROS in CD71+ erythroid cells. Thus, Fam210b reduction may serve as a novel key marker that triggers the development of SLE.


Subject(s)
Lupus Erythematosus, Systemic , Mice, Knockout , Animals , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/metabolism , Lupus Erythematosus, Systemic/pathology , Mice , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Reactive Oxygen Species/metabolism , Antibodies, Antinuclear , Mitochondrial Membranes/metabolism , Erythroid Cells/metabolism , Erythroid Cells/pathology , Disease Models, Animal , Immunoglobulin G/metabolism , Mice, Inbred C57BL , Spleen/metabolism , Spleen/pathology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Female
9.
Chem Commun (Camb) ; 60(65): 8545-8548, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39041238

ABSTRACT

The fusion protein of an engineered zymogen of microbial transglutaminase (EzMTG) with a protein G variant, EzMTG-pG, enabled the proximity-based, tag-free labeling of Lys65 in the heavy chain of a native IgG antibody (trastuzumab) with a Gln-donor peptidyl substrate functionalized with a fluorescent molecule.


Subject(s)
Immunoglobulin G , Lysine , Transglutaminases , Transglutaminases/chemistry , Transglutaminases/metabolism , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism , Lysine/chemistry , Humans , Fluorescent Dyes/chemistry , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism
10.
Nat Commun ; 15(1): 5815, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987616

ABSTRACT

The emergence of single nucleus RNA sequencing (snRNA-seq) offers to revolutionize the study of Alzheimer's disease (AD). Integration with complementary multiomics data such as genetics, proteomics and clinical data provides powerful opportunities to link cell subpopulations and molecular networks with a broader disease-relevant context. We report snRNA-seq profiles from superior frontal gyrus samples from 101 well characterized subjects from the Banner Brain and Body Donation Program in combination with whole genome sequences. We report findings that link common AD risk variants with CR1 expression in oligodendrocytes as well as alterations in hematological parameters. We observed an AD-associated CD83(+) microglial subtype with unique molecular networks and which is associated with immunoglobulin IgG4 production in the transverse colon. Our major observations were replicated in two additional, independent snRNA-seq data sets. These findings illustrate the power of multi-tissue molecular profiling to contextualize snRNA-seq brain transcriptomics and reveal disease biology.


Subject(s)
Alzheimer Disease , Single-Cell Analysis , Transcriptome , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Male , Female , Aged , Microglia/metabolism , Aged, 80 and over , Oligodendroglia/metabolism , Middle Aged , Immunoglobulin G/metabolism , Gene Regulatory Networks , Sequence Analysis, RNA , Brain/metabolism , Brain/pathology , Gene Expression Profiling
11.
Nanotheranostics ; 8(4): 427-441, 2024.
Article in English | MEDLINE | ID: mdl-38961889

ABSTRACT

Background: The blood-brain barrier (BBB) is a major bottleneck in delivering therapeutics to the brain. Treatment strategies to transiently open this barrier include focused ultrasound combined with intravenously injected microbubbles (FUS+MB) and targeting of molecules that regulate BBB permeability. Methods: Here, we investigated BBB opening mediated by the claudin-5 binder cCPEm (a microorganismal toxin in a truncated form) and FUS+MB at a centre frequency of 1 MHz, assessing dextran uptake, broadband emission, and endogenous immunoglobulin G (IgG) extravasation. Results: FUS+MB-induced BBB opening was detectable at a pressure ≥0.35 MPa when assessed for leakage of 10 and 70 kDa dextran, and at ≥0.2 MPa for uptake of endogenous IgG. Treating mice with 20 mg/kg cCPEm failed to open the BBB, and pre-treatment with cCPEm followed by FUS+MB at 0.2 and 0.3 MPa did not overtly increase BBB opening compared to FUS+MB alone. Using passive cavitation detection (PCD), we found that broadband emission correlated with the peak negative pressure (PNP) and dextran leakage, indicating the possibility of using broadband emission for developing a feedback controller to monitor BBB opening. Conclusions: Together, our study highlights the challenges in developing combinatorial approaches to open the BBB and presents an additional IgG-based histological detection method for BBB opening.


Subject(s)
Blood-Brain Barrier , Claudin-5 , Microbubbles , Animals , Blood-Brain Barrier/metabolism , Mice , Claudin-5/metabolism , Immunoglobulin G/metabolism , Ultrasonic Waves , Mice, Inbred C57BL , Dextrans/chemistry , Dextrans/pharmacokinetics
12.
Sci Transl Med ; 16(754): eadl3848, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959329

ABSTRACT

Autoantibodies to nuclear antigens are hallmarks of systemic lupus erythematosus (SLE) where they contribute to pathogenesis. However, there remains a gap in our knowledge regarding how different isotypes of autoantibodies contribute to this autoimmune disease, including the production of the critical type I interferon (IFN) cytokines by plasmacytoid dendritic cells (pDCs) in response to immune complexes (ICs). We focused on IgA, which is the second-most prevalent isotype in serum and, along with IgG, is deposited in glomeruli in individuals with lupus nephritis. We show that individuals with SLE have serum IgA autoantibodies against most nuclear antigens, correlating with IgG against the same antigen. We investigated whether IgA autoantibodies against a major SLE autoantigen, Smith ribonucleoprotein (Sm/RNP), played a role in IC activation of pDCs. We found that pDCs expressed the IgA-specific Fc receptor, FcαR, and IgA1 autoantibodies synergized with IgG in RNA-containing ICs to generate robust primary blood pDC IFN-α responses in vitro. pDC responses to these ICs required both FcαR and FcγRIIa, showing synergy between these Fc receptors. Sm/RNP IC binding to and internalization by pDCs were greater when ICs contained both IgA1 and IgG. Circulating pDCs from individuals with SLE had higher binding of IgA1-containing ICs and higher expression of FcαR than pDCs from healthy control individuals. Although pDC FcαR expression correlated with the blood IFN-stimulated gene signature in SLE, Toll-like receptor 7 agonists, but not IFN-α, up-regulated pDC FcαR expression in vitro. Together, we show a mechanism by which IgA1 autoantibodies contribute to SLE pathogenesis.


Subject(s)
Antigen-Antibody Complex , Autoantibodies , Dendritic Cells , Immunoglobulin A , Immunoglobulin G , Lupus Erythematosus, Systemic , Humans , Dendritic Cells/immunology , Dendritic Cells/metabolism , Immunoglobulin A/immunology , Immunoglobulin A/metabolism , Immunoglobulin A/blood , Autoantibodies/immunology , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Antigen-Antibody Complex/immunology , Antigen-Antibody Complex/metabolism , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/blood , RNA/metabolism , Female , Interferon-alpha/metabolism , Adult , Receptors, Fc/metabolism , Receptors, Fc/immunology , Toll-Like Receptor 7/metabolism , Male , Receptors, IgG/metabolism
13.
Mol Imaging ; 23: 15353508241261473, 2024.
Article in English | MEDLINE | ID: mdl-38952401

ABSTRACT

Background: Labeled antibodies are excellent imaging agents in oncology to non-invasively visualize cancer-related antigens expression levels. However, tumor tracer uptake (TTU) of specific antibodies in-vivo may be inferior to non-specific IgG in some cases. Objectives: To explore factors affecting labeled antibody visualization by PD-L1 specific and non-specific imaging of nude mouse tumors. Methods: TTU was observed in RKO model on Cerenkov luminescence (CL) and near-infrared fluorescence (NIRF) imaging of radionuclide 131I or NIRF dyes labeled Atezolizumab and IgG. A mixture of NIRF dyes labeled Atezolizumab and 131I-labeled IgG was injected, and TTU was observed in the RKO and HCT8 model by NIRF/CL dual-modality in-situ imaging. TTU were observed by 131I-labeled Atezolizumab and IgG in-vitro distribution. Results: Labeled IgG concentrated more in tumors than Atezolizumab. NIRF/CL imaging in 24 to 168 h showed that TTU gradually decreased over time, which decreased more slowly on CL imaging compared to NIRF imaging. The distribution data in-vitro showed that TTU of 131I-labeled IgG was higher than that of 131I-labeled Atezolizumab at any time point. Conclusion: Non-specific IgG may not be suitable as a control for Atezolizumab in comparing tumor PD-L1 expression in nude mice via labeled antibody optical imaging under certain circumstances.


Subject(s)
B7-H1 Antigen , Mice, Nude , Animals , B7-H1 Antigen/metabolism , Humans , Mice , Cell Line, Tumor , Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Monoclonal, Humanized/pharmacokinetics , Optical Imaging/methods , Iodine Radioisotopes/chemistry , Neoplasms/diagnostic imaging , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism , Female , Luminescence
14.
Sci Rep ; 14(1): 16970, 2024 07 23.
Article in English | MEDLINE | ID: mdl-39043800

ABSTRACT

B cells and the antibodies they produce are critical in host defense against pathogens and contribute to various immune-mediated diseases. B cells responding to activating signals in vitro release extracellular vesicles (EV) that carry surface antibodies, yet B cell production of EVs that express antibodies and their function in vivo is incompletely understood. Using transgenic mice expressing the Cre recombinase in B cells switching to IgG1 to induce expression of fusion proteins between emerald green fluorescent protein (emGFP) and the EV tetraspanin CD63 as a model, we identify emGFP expression in B cells responding to foreign antigen in vivo and characterize the emGFP+ EVs they release. Our data suggests that emGFP+ germinal center B cells undergoing immunoglobulin class switching to express IgG and their progeny memory B cells and plasma cells, also emGFP+, are sources of circulating antigen-specific IgG+ EVs. Furthermore, using a mouse model of influenza virus infection, we find that IgG+ EVs specific for the influenza hemagglutinin antigen protect against virus infection. In addition, crossing the B cell Cre driver EV reporter mice onto the Nba2 lupus-prone strain revealed increased circulating emGFP+ EVs that expressed surface IgG against nuclear antigens linked to autoimmunity. These data identify EVs loaded with antibodies as a novel route for antibody secretion in B cells that contribute to adaptive immune responses, with important implications for different functions of IgG+ EVs in infection and autoimmunity.


Subject(s)
B-Lymphocytes , Extracellular Vesicles , Immunoglobulin G , Mice, Transgenic , Animals , Extracellular Vesicles/immunology , Extracellular Vesicles/metabolism , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Mice , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Orthomyxoviridae Infections/immunology , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Antigens/immunology , Immunoglobulin Class Switching , Mice, Inbred C57BL , Germinal Center/immunology , Germinal Center/metabolism
15.
Adv Exp Med Biol ; 1445: 157-168, 2024.
Article in English | MEDLINE | ID: mdl-38967758

ABSTRACT

As the locus for air exchange, lung tissue is perpetually exposed to a significant quantity of foreign pathogens. Consequently, lung has developed a refined and intricate immune system. Beyond their physical and chemical barrier roles, lung epithelial cells can contribute to immune defence through the expression of Toll-like receptors (TLRs) and other pattern recognition receptors, along with the secretion of cytokines. Emerging evidence demonstrates that lung epithelial cells can generate and secrete immunoglobulins (Igs), including IgM, IgA, or IgG, thus performing antibody function. Moreover, malignantly transformed lung epithelial cells have been discovered to produce high levels of Ig, predominantly IgG, which do not fulfill the role of antibodies, but instead carries out tumour-promoting activity. Structural analysis has indicated that the biological activity of IgG produced by lung cancer cells differs from that of Igs produced by normal lung epithelial cells due to the unique glycosylation modification. Specifically, the sialylated IgG (SIA-IgG), characterised by a non-traditional N-glycosylation modification at the Asn162 site of Igγ CH1, is highly expressed in tumour stem cells. It has been demonstrated that SIA-IgG relies on this unique sialylation modification to promote tumorigenesis, metastasis, and immune evasion. Current results have proven that the Ig produced by lung epithelial cells has multifaceted biological activities, including immune defence functions under physiological conditions, while acquiring tumour-promoting activity during malignant transformation. These insights possess potential for the diagnosis and treatment of lung cancer as novel biomarkers and targets.


Subject(s)
Lung Neoplasms , Humans , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Animals , Epithelial Cells/metabolism , Epithelial Cells/immunology , Epithelial Cells/pathology , Glycosylation , Lung/immunology , Lung/pathology , Lung/metabolism , Immunoglobulins/metabolism , Immunoglobulins/immunology , Immunoglobulin G/immunology , Immunoglobulin G/metabolism
16.
Adv Exp Med Biol ; 1445: 169-177, 2024.
Article in English | MEDLINE | ID: mdl-38967759

ABSTRACT

Over the past 20 years, increasing evidence has demonstrated that immunoglobulins (Igs) can be widely generated from non B cells, including normal and malignant mammary epithelial cells. In normal breast tissue, the expression of IgG and IgA has been identified in epithelial cells of mammary glands during pregnancy and lactation, which can be secreted into milk, and might participate in neonatal immunity. On the other hand, non B-IgG is highly expressed in breast cancer cells, correlating with the poor prognosis of patients with breast cancer. Importantly, a specific group of IgG, bearing a unique N-linked glycan on the Asn162 site and aberrant sialylation modification at the end of the novel glycan (referred to as sialylated IgG (SIA-IgG)), has been found in breast cancer stem/progenitor-like cells. SIA-IgG can significantly promote the capacity of migration, invasiveness, and metastasis, as well as enhance self-renewal and tumorigenicity in vitro and in vivo. These findings suggest that breast epithelial cells can produce Igs with different biological activities under physiological and pathological conditions. During lactation, these Igs could be the main source of milk Igs to protect newborns from pathogenic infections, while under pathological conditions, they display oncogenic activity and promote the occurrence and progression of breast cancer.


Subject(s)
Breast Neoplasms , Epithelial Cells , Mammary Glands, Human , Humans , Female , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/immunology , Epithelial Cells/metabolism , Animals , Mammary Glands, Human/metabolism , Mammary Glands, Human/pathology , Lactation/metabolism , Pregnancy , Immunoglobulin G/metabolism , Immunoglobulin G/immunology , Immunoglobulins/metabolism
17.
Adv Exp Med Biol ; 1445: 151-156, 2024.
Article in English | MEDLINE | ID: mdl-38967757

ABSTRACT

Skin is the most prominent tissue and organ, as well as the first line of defence, of the body. Because it is situated on the body's surface, it is constantly exposed to microbial, chemical, and physical factors such as mechanical stimulation. Therefore, skin has evolved substantial immune defences, regenerative ability, and anti-injury capacity. Epidermal cells produce antibacterial peptides that play a role in immune defence under physiological conditions. Additionally, IgG or IgA in the skin also participates in local anti-infective immunity. However, based on the classical theory of immunology, Ig can only be produced by B cells which should be derived from local B cells. This year, thanks to the discovery of Ig derived from non B cells (non B-Ig), Ig has also been found to be expressed in epidermal cells and contributes to immune defence. Epidermal cell-derived IgG and IgA have been demonstrated to have potential antibody activity by binding to pathogens. However, these epidermal cell-derived Igs show different microbial binding characteristics. For instance, IgG binds to Staphylococcus aureus and IgA binds to Staphylococcus epidermidis. Epidermal cells producing IgG and IgA may serve as an effective defense mechanism alongside B cells, providing a novel insight into skin immunity.


Subject(s)
Immunoglobulin A , Skin , Humans , Immunoglobulin A/immunology , Immunoglobulin A/metabolism , Skin/immunology , Animals , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , B-Lymphocytes/immunology , Immunoglobulins/immunology , Immunoglobulins/metabolism , Staphylococcus aureus/immunology , Staphylococcus epidermidis/immunology , Epidermis/immunology , Epidermis/metabolism , Epidermal Cells/immunology , Epidermal Cells/metabolism
18.
Nat Commun ; 15(1): 5878, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-38997292

ABSTRACT

The bat immune system features multiple unique properties such as dampened inflammatory responses and increased tissue protection, explaining their long lifespan and tolerance to viral infections. Here, we demonstrated that body temperature fluctuations corresponding to different physiological states in bats exert a large impact on their antibody repertoires. At elevated temperatures typical for flight, IgG from the bat species Myotis myotis and Nyctalus noctula show elevated antigen binding strength and diversity, recognizing both pathogen-derived antigens and autoantigens. The opposite is observed at temperatures reflecting inactive physiological states. IgG antibodies of human and other mammals, or antibodies of birds do not appear to behave in a similar way. Importantly, diversification of bat antibody specificities results in preferential recognition of damaged endothelial and epithelial cells, indicating an anti-inflammatory function. The temperature-sensitivity of bat antibodies is mediated by the variable regions of immunoglobulin molecules. Additionally, we uncover specific molecular features of bat IgG, such as low thermodynamic stability and implication of hydrophobic interactions in antigen binding as well as high prevalence of polyreactivity. Overall, our results extend the understanding of bat tolerance to disease and inflammation and highlight the link between metabolism and immunity.


Subject(s)
Chiroptera , Immunoglobulin G , Chiroptera/immunology , Animals , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Humans , Temperature , Antibody Specificity/immunology , Antigens/immunology , Autoantigens/immunology , Autoantigens/metabolism
19.
Nat Commun ; 15(1): 6405, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080282

ABSTRACT

Machine learning (ML) has transformed protein engineering by constructing models of the underlying sequence-function landscape to accelerate the discovery of new biomolecules. ML-guided protein design requires models, trained on local sequence-function information, to accurately predict distant fitness peaks. In this work, we evaluate neural networks' capacity to extrapolate beyond their training data. We perform model-guided design using a panel of neural network architectures trained on protein G (GB1)-Immunoglobulin G (IgG) binding data and experimentally test thousands of GB1 designs to systematically evaluate the models' extrapolation. We find each model architecture infers markedly different landscapes from the same data, which give rise to unique design preferences. We find simpler models excel in local extrapolation to design high fitness proteins, while more sophisticated convolutional models can venture deep into sequence space to design proteins that fold but are no longer functional. We also find that implementing a simple ensemble of convolutional neural networks enables robust design of high-performing variants in the local landscape. Our findings highlight how each architecture's inductive biases prime them to learn different aspects of the protein fitness landscape and how a simple ensembling approach makes protein engineering more robust.


Subject(s)
Immunoglobulin G , Neural Networks, Computer , Protein Engineering , Protein Engineering/methods , Immunoglobulin G/metabolism , Immunoglobulin G/chemistry , Machine Learning , Protein Binding , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Models, Molecular
20.
Front Immunol ; 15: 1402000, 2024.
Article in English | MEDLINE | ID: mdl-38827747

ABSTRACT

Sialic acids as terminal sugar residues on cell surface or secreted proteins have many functional roles. In particular, the presence or absence of α2,6-linked sialic acid residues at the immunoglobulin G (IgG) Fc fragment can switch IgG effector functions from pro- to anti-inflammatory activity. IgG glycosylation is considered to take place inside the plasma blast/plasma cell while the molecule travels through the endoplasmic reticulum and Golgi apparatus before being secreted. However, more recent studies have suggested that IgG sialylation may occur predominantly post-antibody secretion. To what extent this extracellular IgG sialylation process contributes to overall IgG sialylation remains unclear, however. By generating bone marrow chimeric mice with a B cell-specific deletion of ST6Gal1, the key enzyme required for IgG sialylation, we now show that sialylation of the IgG Fc fragment exclusively occurs within B cells pre-IgG secretion. We further demonstrate that B cells expressing ST6Gal1 have a developmental advantage over B cells lacking ST6Gal1 expression and thus dominate the plasma cell pool and the resulting serum IgG population in mouse models in which both ST6Gal1-sufficient and -deficient B cells are present.


Subject(s)
B-Lymphocytes , Immunoglobulin G , Sialyltransferases , Animals , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Mice , Sialyltransferases/metabolism , Sialyltransferases/genetics , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Mice, Knockout , Glycosylation , Mice, Inbred C57BL , Immunoglobulin Fc Fragments/immunology , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin Fc Fragments/genetics , beta-D-Galactoside alpha 2-6-Sialyltransferase , Plasma Cells/immunology , Plasma Cells/metabolism , Antibody Formation
SELECTION OF CITATIONS
SEARCH DETAIL