Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.383
Filter
1.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 7): 154-163, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38958188

ABSTRACT

The third complementary-determining regions of the heavy-chain (CDR3H) variable regions (VH) of some cattle antibodies are highly extended, consisting of 48 or more residues. These `ultralong' CDR3Hs form ß-ribbon stalks that protrude from the surface of the antibody with a disulfide cross-linked knob region at their apex that dominates antigen interactions over the other CDR loops. The structure of the Fab fragment of a naturally paired bovine ultralong antibody (D08), identified by single B-cell sequencing, has been determined to 1.6 Šresolution. By swapping the D08 native light chain with that of an unrelated antigen-unknown ultralong antibody, it is shown that interactions between the CDR3s of the variable domains potentially affect the fine positioning of the ultralong CDR3H; however, comparison with other crystallographic structures shows that crystalline packing is also a major contributor. It is concluded that, on balance, the exact positioning of ultralong CDR3H loops is most likely to be due to the constraints of crystal packing.


Subject(s)
Complementarity Determining Regions , Immunoglobulin Fab Fragments , Immunoglobulin Heavy Chains , Immunoglobulin Light Chains , Models, Molecular , Animals , Cattle , Immunoglobulin Heavy Chains/chemistry , Crystallography, X-Ray , Immunoglobulin Light Chains/chemistry , Immunoglobulin Light Chains/genetics , Complementarity Determining Regions/chemistry , Immunoglobulin Fab Fragments/chemistry , Amino Acid Sequence , Protein Conformation
2.
Nat Commun ; 15(1): 5121, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879609

ABSTRACT

Systemic AL amyloidosis is one of the most frequently diagnosed forms of systemic amyloidosis. It arises from mutational changes in immunoglobulin light chains. To explore whether these mutations may affect the structure of the formed fibrils, we determine and compare the fibril structures from several patients with cardiac AL amyloidosis. All patients are affected by light chains that contain an IGLV3-19 gene segment, and the deposited fibrils differ by the mutations within this common germ line background. Using cryo-electron microscopy, we here find different fibril structures in each patient. These data establish that the mutations of amyloidogenic light chains contribute to defining the fibril architecture and hence the structure of the pathogenic agent.


Subject(s)
Cryoelectron Microscopy , Immunoglobulin Light Chains , Immunoglobulin Light-chain Amyloidosis , Mutation , Humans , Immunoglobulin Light-chain Amyloidosis/genetics , Immunoglobulin Light-chain Amyloidosis/pathology , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/metabolism , Immunoglobulin Light Chains/chemistry , Amyloid/metabolism , Amyloid/genetics , Amyloid/ultrastructure , Male , Female , Middle Aged
3.
Int Immunopharmacol ; 135: 112302, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38772298

ABSTRACT

In patients with light chain cast nephropathy (LCCN), abundantly produced monoclonal immunoglobulin free light chains (FLCs) play a vital role in pathogenesis. Determining the precise sequences of patient-derived FLCs is therefore highly desirable. Although immunoglobulin repertoire sequencing (5' RACE-seq) has been proven to be sensitive enough to provide full-length V(D)J region (variable, diversity and joining genes) of FLCs using bone marrow samples, an invasive and bone marrow independent method is still in demand. Here a de novo sequencing workflow based on the bottom-up proteomics for patient-derived FLCs was established. PEAKS software was used for the de novo sequencing of peptides that were further assembled into full-length FLC sequences. This de novo protein sequencing method can obtain the full-length amino acid sequences of FLCs, and had been shown to be as reliable as 5' RACE-seq. The two LCCN sequences derived from above the two methods were identical, and they possessed more hydrophobic or nonpolar amino acids compared with the corresponding germline, which may be associated with the pathogenesis.


Subject(s)
Immunoglobulin Light Chains , Humans , Immunoglobulin Light Chains/genetics , Male , Middle Aged , Female , Kidney Diseases/genetics , Kidney Diseases/immunology , Aged , Amino Acid Sequence , Proteomics/methods
4.
Int J Biol Macromol ; 270(Pt 2): 132393, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761898

ABSTRACT

Light chain amyloidosis is a conformational disease caused by the abnormal proliferation and deposition of antibody light chains as amyloid fibers in organs and tissues. The effect of Cu(II) binding to the model recombinant protein 6aJL2-R24G was previously characterized in our group, and we found an acceleration of the aggregation kinetics of the protein. In this study, in order to confirm the Cu(II) binding sites, histidine variants of 6aJL2-R24G were prepared and the effects of their interaction with Cu(II) were analyzed by circular dichroism, fluorescence spectroscopy, isothermal calorimetry titrations, and molecular dynamics simulations. Confirming our earlier work, we found that His8 and His99 are the highest affinity Cu(II) binding sites, and that Cu(II) binding to both sites is a cooperative event.


Subject(s)
Copper , Histidine , Protein Binding , Copper/metabolism , Copper/chemistry , Histidine/chemistry , Histidine/metabolism , Humans , Binding Sites , Molecular Dynamics Simulation , Immunoglobulin Light Chains/metabolism , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/chemistry , Immunoglobulin Light-chain Amyloidosis/metabolism , Immunoglobulin Light-chain Amyloidosis/genetics , Amyloidosis/metabolism , Amyloidosis/genetics , Kinetics
5.
Sci Rep ; 14(1): 12184, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806597

ABSTRACT

Catalytic antibodies possess a dual function that enables both antigen recognition and degradation. However, their time-consuming preparation is a significant drawback. This study developed a new method for quickly converting mice monoclonal antibodies into catalytic antibodies using site-directed mutagenesis. Three mice type monoclonal antibodies targeting hemagglutinin molecule of influenza A virus could be transformed into the catalytic antibodies by deleting Pro95 in CDR-3 of the light chain. No catalytic activity was observed for monoclonal antibodies and light chains. In contrast, the Pro95-deleted light chains exhibited a catalytic activity to cleave the antigenic peptide including the portion of conserved region of hemagglutinin molecule. The affinity of the Pro95-deleted light chains to the antigen increased approximately 100-fold compared to the wild-type light chains. In the mutants, three residues (Asp1, Ser92, and His93) come closer to the appropriate position to create the catalytic site and contributing to the enhancement of both catalytic function and immunoreactivity. Notably, the Pro95-deleted catalytic light chains could suppress influenza virus infection in vitro assay, whereas the parent antibody and the light chain did not. This strategy offers a rapid and efficient way to create catalytic antibodies from existing antibodies, accelerating the development for various applications in diagnostic and therapeutic applications.


Subject(s)
Antibodies, Catalytic , Antibodies, Monoclonal , Animals , Mice , Antibodies, Monoclonal/immunology , Antibodies, Catalytic/metabolism , Antibodies, Catalytic/immunology , Antibodies, Catalytic/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Mutagenesis, Site-Directed , Influenza A virus/immunology , Catalytic Domain , Humans , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/immunology , Immunoglobulin Light Chains/metabolism , Antibodies, Viral/immunology , Mice, Inbred BALB C
6.
J Immunol ; 212(10): 1579-1588, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38557795

ABSTRACT

Abs are vital to human immune responses and are composed of genetically variable H and L chains. These structures are initially expressed as BCRs. BCR diversity is shaped through somatic hypermutation and selection during immune responses. This evolutionary process produces B cell clones, cells that descend from a common ancestor but differ by mutations. Phylogenetic trees inferred from BCR sequences can reconstruct the history of mutations within a clone. Until recently, BCR sequencing technologies separated H and L chains, but advancements in single-cell sequencing now pair H and L chains from individual cells. However, it is unclear how these separate genes should be combined to infer B cell phylogenies. In this study, we investigated strategies for using paired H and L chain sequences to build phylogenetic trees. We found that incorporating L chains significantly improved tree accuracy and reproducibility across all methods tested. This improvement was greater than the difference between tree-building methods and persisted even when mixing bulk and single-cell sequencing data. However, we also found that many phylogenetic methods estimated significantly biased branch lengths when some L chains were missing, such as when mixing single-cell and bulk BCR data. This bias was eliminated using maximum likelihood methods with separate branch lengths for H and L chain gene partitions. Thus, we recommend using maximum likelihood methods with separate H and L chain partitions, especially when mixing data types. We implemented these methods in the R package Dowser: https://dowser.readthedocs.io.


Subject(s)
B-Lymphocytes , Phylogeny , Receptors, Antigen, B-Cell , Humans , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , B-Lymphocytes/immunology , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/immunology , Single-Cell Analysis/methods , Mutation
7.
Front Immunol ; 15: 1380641, 2024.
Article in English | MEDLINE | ID: mdl-38601144

ABSTRACT

Recent studies have demonstrated a role for Ten-Eleven Translocation-2 (TET2), an epigenetic modulator, in regulating germinal center formation and plasma cell differentiation in B-2 cells, yet the role of TET2 in regulating B-1 cells is largely unknown. Here, B-1 cell subset numbers, IgM production, and gene expression were analyzed in mice with global knockout of TET2 compared to wildtype (WT) controls. Results revealed that TET2-KO mice had elevated numbers of B-1a and B-1b cells in their primary niche, the peritoneal cavity, as well as in the bone marrow (B-1a) and spleen (B-1b). Consistent with this finding, circulating IgM, but not IgG, was elevated in TET2-KO mice compared to WT. Analysis of bulk RNASeq of sort purified peritoneal B-1a and B-1b cells revealed reduced expression of heavy and light chain immunoglobulin genes, predominantly in B-1a cells from TET2-KO mice compared to WT controls. As expected, the expression of IgM transcripts was the most abundant isotype in B-1 cells. Yet, only in B-1a cells there was a significant increase in the proportion of IgM transcripts in TET2-KO mice compared to WT. Analysis of the CDR3 of the BCR revealed an increased abundance of replicated CDR3 sequences in B-1 cells from TET2-KO mice, which was more clearly pronounced in B-1a compared to B-1b cells. V-D-J usage and circos plot analysis of V-J combinations showed enhanced usage of VH11 and VH12 pairings. Taken together, our study is the first to demonstrate that global loss of TET2 increases B-1 cell number and IgM production and reduces CDR3 diversity, which could impact many biological processes and disease states that are regulated by IgM.


Subject(s)
B-Lymphocyte Subsets , Mice , Animals , B-Lymphocyte Subsets/metabolism , B-Lymphocytes , Immunoglobulin Light Chains/genetics , Translocation, Genetic , Immunoglobulin M , Cell Count
8.
Protein Sci ; 33(5): e4990, 2024 May.
Article in English | MEDLINE | ID: mdl-38607241

ABSTRACT

The antigen-binding sites in conventional antibodies are formed by hypervariable complementarity-determining regions (CDRs) from both heavy chains (HCs) and light chains (LCs). A deviation from this paradigm is found in a subset of bovine antibodies that bind antigens via an ultra-long CDR. The HCs bearing ultra-long CDRs pair with a restricted set of highly conserved LCs that convey stability to the antibody. Despite the importance of these LCs, their specific features remained unknown. Here, we show that the conserved bovine LC found in antibodies with ultra-long CDRs exhibits a distinct combination of favorable physicochemical properties such as good secretion from mammalian cells, strong dimerization, high stability, and resistance to aggregation. These physicochemical traits of the LCs arise from a combination of the specific sequences in the germline CDRs and a lambda LC framework. In addition to understanding the molecular architecture of antibodies with ultra-long CDRs, our findings reveal fundamental insights into LC characteristics that can guide the design of antibodies with improved properties.


Subject(s)
Complementarity Determining Regions , Immunoglobulin Light Chains , Animals , Cattle , Immunoglobulin Light Chains/genetics , Antibodies , Dimerization , Phenotype , Mammals
9.
J Immunol ; 212(11): 1744-1753, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38629917

ABSTRACT

H chain-only Igs are naturally produced in camelids and sharks. Because these Abs lack the L chain, the Ag-binding domain is half the size of a traditional Ab, allowing this type of Ig to bind to targets in novel ways. Consequently, the H chain-only single-domain Ab (sdAb) structure has the potential to increase the repertoire and functional range of an active humoral immune system. The majority of vertebrates use the standard heterodimeric (both H and L chains) structure and do not produce sdAb format Igs. To investigate if other animals are able to support sdAb development and function, transgenic chickens (Gallus gallus) were designed to produce H chain-only Abs by omitting the L chain V region and maintaining only the LC region to serve as a chaperone for Ab secretion from the cell. These birds produced 30-50% normal B cell populations within PBMCs and readily expressed chicken sequence sdAbs. Interestingly, the H chains contained a spontaneous CH1 deletion. Although no isotype switching to IgY or IgA occurred, the IgM repertoire was diverse, and immunization with a variety of protein immunogens rapidly produced high and specific serum titers. mAbs of high affinity were efficiently recovered by single B cell screening. In in vitro functional assays, the sdAbs produced by birds immunized against SARS-CoV-2 were also able to strongly neutralize and prevent viral replication. These data suggest that the truncated L chain design successfully supported sdAb development and expression in chickens.


Subject(s)
Animals, Genetically Modified , Chickens , Immunoglobulin Heavy Chains , Single-Domain Antibodies , Animals , Chickens/immunology , Single-Domain Antibodies/immunology , Single-Domain Antibodies/genetics , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , SARS-CoV-2/immunology , SARS-CoV-2/genetics , COVID-19/immunology , Transgenes/genetics , B-Lymphocytes/immunology , Antibodies, Viral/immunology , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/immunology , Humans
10.
J Biol Chem ; 300(4): 107174, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38499153

ABSTRACT

AL amyloidosis is a life-threatening disease caused by deposition of immunoglobulin light chains. While the mechanisms underlying light chains amyloidogenesis in vivo remain unclear, several studies have highlighted the role that tissue environment and structural amyloidogenicity of individual light chains have in the disease pathogenesis. AL natural deposits contain both full-length light chains and fragments encompassing the variable domain (VL) as well as different length segments of the constant region (CL), thus highlighting the relevance that proteolysis may have in the fibrillogenesis pathway. Here, we investigate the role of major truncated species of the disease-associated AL55 light chain that were previously identified in natural deposits. Specifically, we study structure, molecular dynamics, thermal stability, and capacity to form fibrils of a fragment containing both the VL and part of the CL (133-AL55), in comparison with the full-length protein and its variable domain alone, under shear stress and physiological conditions. Whereas the full-length light chain forms exclusively amorphous aggregates, both fragments generate fibrils, although, with different kinetics, aggregate structure, and interplay with the unfragmented protein. More specifically, the VL-CL 133-AL55 fragment entirely converts into amyloid fibrils microscopically and spectroscopically similar to their ex vivo counterpart and increases the amorphous aggregation of full-length AL55. Overall, our data support the idea that light chain structure and proteolysis are both relevant for amyloidogenesis in vivo and provide a novel biocompatible model of light chain fibrillogenesis suitable for future mechanistic studies.


Subject(s)
Amyloid , Immunoglobulin Light Chains , Amyloid/metabolism , Amyloid/chemistry , Humans , Immunoglobulin Light Chains/metabolism , Immunoglobulin Light Chains/chemistry , Immunoglobulin Light Chains/genetics , Molecular Dynamics Simulation , Immunoglobulin Constant Regions/metabolism , Immunoglobulin Constant Regions/genetics , Immunoglobulin Constant Regions/chemistry , Immunoglobulin Light-chain Amyloidosis/metabolism , Immunoglobulin Light-chain Amyloidosis/pathology , Kinetics , Protein Domains
11.
Biotechnol Prog ; 40(3): e3433, 2024.
Article in English | MEDLINE | ID: mdl-38321634

ABSTRACT

The augmentation of transgene copy numbers is a prevalent approach presumed to enhance transcriptional activity and product yield. CHO cell lines engineered via targeted integration (TI) offer an advantageous platform for investigating the interplay between gene copy number, mRNA abundance, product yield, and product quality. Our investigation revealed that incrementally elevating the gene copy numbers of both IgG heavy chain (HC) and light chain (LC) concurrently resulted in the attainment of plateaus in mRNA levels and product titers, notably occurring beyond four to five gene copies integrated at the same TI site. Furthermore, maintaining a fixed gene copy number while varying the position of genes within the vector influenced the LC/HC mRNA ratio, which subsequently exerted a substantial impact on product titer. Moreover, manipulation of the LC/HC gene ratio through the introduction of surplus LC gene copies led to heightened LC mRNA expression and a reduction in the levels of high molecular weight species. It is noteworthy that the effects of excess LC on product titer were dependent on the specific molecule under consideration. The strategic utilization of PCR tags enabled precise quantification of transcription from each expression slot within the vector, facilitating the identification of highly expressive and less expressive slots. Collectively, these findings significantly enhance our understanding of stable antibody production in TI CHO cell lines.


Subject(s)
Cricetulus , Gene Dosage , RNA, Messenger , CHO Cells , Animals , RNA, Messenger/genetics , RNA, Messenger/metabolism , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Light Chains/genetics , Immunoglobulin G/genetics , Cricetinae
12.
Proteins ; 92(7): 797-807, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38314653

ABSTRACT

Antibody light chain amyloidosis is a disorder in which protein aggregates, mainly composed of immunoglobulin light chains, deposit in diverse tissues impairing the correct functioning of organs. Interestingly, due to the high susceptibility of antibodies to mutations, AL amyloidosis appears to be strongly patient-specific. Indeed, every patient will display their own mutations that will make the proteins involved prone to aggregation thus hindering the study of this disease on a wide scale. In this framework, determining the molecular mechanisms that drive the aggregation could pave the way to the development of patient-specific therapeutics. Here, we focus on a particular patient-derived light chain, which has been experimentally characterized. We investigated the early phases of the aggregation pathway through extensive full-atom molecular dynamics simulations, highlighting a structural rearrangement and the exposure of two hydrophobic regions in the aggregation-prone species. Next, we moved to consider the pathological dimerization process through docking and molecular dynamics simulations, proposing a dimeric structure as a candidate pathological first assembly. Overall, our results shed light on the first phases of the aggregation pathway for a light chain at an atomic level detail, offering new structural insights into the corresponding aggregation process.


Subject(s)
Molecular Dynamics Simulation , Protein Folding , Protein Multimerization , Humans , Immunoglobulin Light Chains/chemistry , Immunoglobulin Light Chains/metabolism , Immunoglobulin Light Chains/genetics , Hydrophobic and Hydrophilic Interactions , Protein Aggregation, Pathological/metabolism , Protein Aggregates , Mutation , Molecular Docking Simulation , Immunoglobulin Light-chain Amyloidosis/metabolism , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs
13.
Biochim Biophys Acta Proteins Proteom ; 1872(3): 140993, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38169170

ABSTRACT

Immunoglobulin light chain (AL) amyloidosis involves the deposition of insoluble monoclonal AL protein fibrils in the extracellular space of different organs leading to dysfunction and death. Development of methods to efficiently express and purify AL proteins with acceptable standards of homogeneity and structural integrity has become critical to understand the in vitro and in vivo aspects of AL protein aggregation, and thus the disease progression. In this study, we report the biophysical characterization of His-tagged and untagged versions of AL full-length (FL) κI and λ6 subgroup proteins and their mutants expressed from the Expi293F human cell line. We used an array of biophysical and biochemical methods to analyze the structure and stability of the monomers, oligomerization states, and thermodynamic characteristics of the purified FL proteins and how they compare with the bacterially expressed FL proteins. Our results demonstrate that the tagged and untagged versions of FL proteins have comparable stability to proteins expressed in bacterial cells but exhibit multiple unfolding transitions and reversibility. Non-reducing SDS-PAGE and analytical ultracentrifugation analysis showed presence of monomers and dimers, with an insignificant amount of higher-order oligomers, in the purified fraction of all proteins. Overall, the FL proteins were expressed with sufficient yields for biophysical studies and can replace bacterial expression systems.


Subject(s)
Antibodies, Monoclonal , Immunoglobulin Light Chains , Humans , Immunoglobulin Light Chains/genetics , Biophysics , Cell Line , Disease Progression
14.
Methods Mol Biol ; 2681: 47-60, 2023.
Article in English | MEDLINE | ID: mdl-37405642

ABSTRACT

Since its development in the 1980s, the Nobel Prize-awarded phage display technology has been one of the most commonly used in vitro selection technologies for the discovery of therapeutic and diagnostic antibodies. Besides the importance of selection strategy, one key component of the successful isolation of highly specific recombinant antibodies is the construction of high-quality phage display libraries. However, previous cloning protocols relied on a tedious multistep process with subsequent cloning steps for the introduction of first heavy and then light chain variable genetic antibody fragments (VH and VL). This resulted in reduced cloning efficiency, higher frequency of missing VH or VL sequences, as well as truncated antibody fragments. With the emergence of Golden Gate Cloning (GGC) for the generation of antibody libraries, the possibility of more facile library cloning has arisen. Here, we describe a streamlined one-step GGC strategy for the generation of camelid heavy chain only variable phage display libraries as well as the simultaneous introduction of heavy chain and light chain variable regions from the chicken into a scFv phage display vector.


Subject(s)
Bacteriophages , Single-Chain Antibodies , Peptide Library , Cell Surface Display Techniques/methods , Recombinant Proteins/genetics , Immunoglobulin Light Chains/genetics , Antibodies/genetics , Bacteriophages/genetics , Immunoglobulin Fragments/genetics , Single-Chain Antibodies/genetics , Cloning, Molecular
15.
Haematologica ; 108(12): 3359-3371, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37381778

ABSTRACT

Systemic light chain amyloidosis (AL) is a clonal plasma cell disorder characterized by the deposition of misfolded immunoglobulin light chains (LC) as insoluble fibrils in organs. The lack of suitable models has hindered the investigation of the disease mechanisms. Our aim was to establish AL LC-producing plasma cell lines and use them to investigate the biology of the amyloidogenic clone. We used lentiviral vectors to generate cell lines expressing LC from patients suffering from AL amyloidosis. The AL LC-producing cell lines showed a significant decrease in proliferation, cell cycle arrest, and an increase in apoptosis and autophagy as compared with the multiple myeloma LC-producing cells. According to the results of RNA sequencing the AL LC-producing lines showed higher mitochondrial oxidative stress, and decreased activity of the Myc and cholesterol pathways. The neoplastic behavior of plasma cells is altered by the constitutive expression of amyloidogenic LC causing intracellular toxicity. This observation may explain the disparity in the malignant behavior of the amyloid clone compared to the myeloma clone. These findings should enable future in vitro studies and help delineate the unique cellular pathways of AL, thus expediting the development of specific treatments for patients with this disorder.


Subject(s)
Amyloidosis , Immunoglobulin Light-chain Amyloidosis , Multiple Myeloma , Humans , Plasma Cells/pathology , Cell Survival , Amyloidosis/genetics , Amyloidosis/metabolism , Immunoglobulin Light-chain Amyloidosis/genetics , Immunoglobulin Light-chain Amyloidosis/pathology , Amyloid/metabolism , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/metabolism , Multiple Myeloma/pathology
16.
Front Immunol ; 14: 1167235, 2023.
Article in English | MEDLINE | ID: mdl-37143670

ABSTRACT

Introduction: Monoclonal antibody light chain proteins secreted by clonal plasma cells cause tissue damage due to amyloid deposition and other mechanisms. The unique protein sequence associated with each case contributes to the diversity of clinical features observed in patients. Extensive work has characterized many light chains associated with multiple myeloma, light chain amyloidosis and other disorders, which we have collected in the publicly accessible database, AL-Base. However, light chain sequence diversity makes it difficult to determine the contribution of specific amino acid changes to pathology. Sequences of light chains associated with multiple myeloma provide a useful comparison to study mechanisms of light chain aggregation, but relatively few monoclonal sequences have been determined. Therefore, we sought to identify complete light chain sequences from existing high throughput sequencing data. Methods: We developed a computational approach using the MiXCR suite of tools to extract complete rearranged IGVL-IGJL sequences from untargeted RNA sequencing data. This method was applied to whole-transcriptome RNA sequencing data from 766 newly diagnosed patients in the Multiple Myeloma Research Foundation CoMMpass study. Results: Monoclonal IGVL-IGJL sequences were defined as those where >50% of assigned IGK or IGL reads from each sample mapped to a unique sequence. Clonal light chain sequences were identified in 705/766 samples from the CoMMpass study. Of these, 685 sequences covered the complete IGVL-IGJL region. The identity of the assigned sequences is consistent with their associated clinical data and with partial sequences previously determined from the same cohort of samples. Sequences have been deposited in AL-Base. Discussion: Our method allows routine identification of clonal antibody sequences from RNA sequencing data collected for gene expression studies. The sequences identified represent, to our knowledge, the largest collection of multiple myeloma-associated light chains reported to date. This work substantially increases the number of monoclonal light chains known to be associated with non-amyloid plasma cell disorders and will facilitate studies of light chain pathology.


Subject(s)
Multiple Myeloma , Humans , RNA , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/metabolism , Sequence Analysis, RNA , Antibodies, Monoclonal/genetics
17.
Science ; 380(6640): eadc9498, 2023 04 07.
Article in English | MEDLINE | ID: mdl-37023193

ABSTRACT

Despite the vast diversity of the antibody repertoire, infected individuals often mount antibody responses to precisely the same epitopes within antigens. The immunological mechanisms underpinning this phenomenon remain unknown. By mapping 376 immunodominant "public epitopes" at high resolution and characterizing several of their cognate antibodies, we concluded that germline-encoded sequences in antibodies drive recurrent recognition. Systematic analysis of antibody-antigen structures uncovered 18 human and 21 partially overlapping mouse germline-encoded amino acid-binding (GRAB) motifs within heavy and light V gene segments that in case studies proved critical for public epitope recognition. GRAB motifs represent a fundamental component of the immune system's architecture that promotes recognition of pathogens and leads to species-specific public antibody responses that can exert selective pressure on pathogens.


Subject(s)
Amino Acid Motifs , Antibody Formation , Host-Pathogen Interactions , Immunodominant Epitopes , Immunoglobulin Heavy Chains , Immunoglobulin Light Chains , Animals , Humans , Mice , Germ Cells , Immunodominant Epitopes/chemistry , Immunodominant Epitopes/genetics , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/immunology , Epitope Mapping , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology
18.
FEBS J ; 290(17): 4256-4267, 2023 09.
Article in English | MEDLINE | ID: mdl-37097223

ABSTRACT

Light chain amyloidosis (AL) is one of the most common forms of systemic amyloidosis and is caused by the deposition of insoluble fibrils derived from misfolded and aggregated immunoglobulin light chains (LC). To uncover the causes leading to this aggregation, we compared AL LC sequences with those of patients with the related disease multiple myeloma (MM), which do not aggregate in insoluble fibrils in vivo. IGLV2-14 is one of the most common AL-associated IGLV subfamilies. Here, we analysed IGLV2-14 LC sequences of 13 AL and eight MM patients in detail. We found that AL-associated LCs presented a lower median mutation count (7.0 vs. 11.5 in MM; P = 0.045), as well as an overall composition of less charged amino acids than MM LCs. However, we did not find a mutation that was present in ≥ 50% of the AL and not in the MM sequences. Furthermore, we did not find a significant difference in the isoelectric point (pI) in general, suggesting similar stability of the LCs in AL and MM. However, the subgroup of patients without a detectable heavy chain stood out. Surprisingly, they are characterized by an increase in mutation count (median 7.0 vs. 5.5) and pI (median 7.82 vs. 6.44, P = 0.043). In conclusion, our data suggest that the amount of mutations and the introduction of charges play a crucial role in AL fibril formation, as well as the absence or presence of a potential heavy chain binding partner.


Subject(s)
Amyloidosis , Immunoglobulin Light-chain Amyloidosis , Multiple Myeloma , Humans , Immunoglobulin Light-chain Amyloidosis/genetics , Multiple Myeloma/genetics , Amyloidosis/genetics , Amyloidosis/metabolism , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/metabolism , Mutation , Amyloid/chemistry
19.
Front Immunol ; 14: 1120582, 2023.
Article in English | MEDLINE | ID: mdl-36911727

ABSTRACT

Introduction: With the flood of engineered antibodies, there is a heightened need to elucidate the structural features of antibodies that contribute to specificity, stability, and breadth. While antibody flexibility and interface angle have begun to be explored, design rules have yet to emerge, as their impact on the metrics above remains unclear. Furthermore, the purpose of framework mutations in mature antibodies is highly convoluted. Methods: To this end, a case study utilizing molecular dynamics simulations was undertaken to determine the impact framework mutations have on the VH-VL interface. We further sought to elucidate the governing mechanisms by which changes in the VH-VL interface angle impact structural elements of mature antibodies by looking at root mean squared deviations, root mean squared fluctuations, and solvent accessible surface area. Results and discussion: Overall, our results suggest framework mutations can significantly shift the distribution of VH-VL interface angles, which leads to local changes in antibody flexibility through local changes in the solvent accessible surface area. The data presented herein highlights the need to reject the dogma of static antibody crystal structures and exemplifies the dynamic nature of these proteins in solution. Findings from this work further demonstrate the importance of framework mutations on antibody structure and lay the foundation for establishing design principles to create antibodies with increased specificity, stability, and breadth.


Subject(s)
Immunoglobulin Heavy Chains , Immunoglobulin Light Chains , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Light Chains/genetics , Mutation , Antibodies/genetics , Solvents
20.
Amyloid ; 30(3): 268-278, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36779691

ABSTRACT

BACKGROUND: Cytogenetic abnormalities are common in patients with amyloid light-chain (AL) amyloidosis; some are associated with poorer outcomes. This post hoc analysis of ANDROMEDA evaluated the impact of certain cytogenetic abnormalities on outcomes in this patient population. METHODS: Patients with newly diagnosed AL amyloidosis were randomised 1:1 to daratumumab, bortezomib, cyclophosphamide, and dexamethasone (D-VCd) or VCd. Outcomes were evaluated in the intent-to-treat (ITT) population and in patients with t(11;14), amp1q21, del13q14, and del17p13. RESULTS: Overall, 321 patients had cytogenetic testing (D-VCd, n = 155; VCd, n = 166); most common abnormalities were t(11;14) and amp1q21. At a median follow-up of 20.3 months, haematologic complete response rates were higher with D-VCd vs VCd across all cytogenetic subgroups and organ response rates were numerically higher with D-VCd vs VCd across most subgroups. Point estimates for hazard ratio of major organ deterioration-PFS and -EFS favoured D-VCd over VCd for all cytogenetic subgroups. Deep haematologic responses (involved minus uninvolved free light chains [FLC] <10 mg/L or involved FLC ≤20 mg/L) were seen in more patients with D-VCd than VCd in all ITT and t(11;14) cohorts. CONCLUSIONS: These results support the use of D-VCd as standard of care in patients with newly diagnosed AL amyloidosis regardless of cytogenetic abnormalities.


Subject(s)
Immunoglobulin Light-chain Amyloidosis , Humans , Immunoglobulin Light-chain Amyloidosis/drug therapy , Immunoglobulin Light-chain Amyloidosis/genetics , Treatment Outcome , Bortezomib/therapeutic use , Chromosome Aberrations , Cyclophosphamide/therapeutic use , Immunoglobulin Light Chains/genetics , Dexamethasone/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...