Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.520
Filter
1.
Front Immunol ; 15: 1411141, 2024.
Article in English | MEDLINE | ID: mdl-39040098

ABSTRACT

Warts, Hypogammaglobulinemia, Infections, Myelokathexis (WHIM) syndrome is a rare, combined immunodeficiency disease predominantly caused by gain-of-function variants in the CXCR4 gene that typically results in truncation of the carboxyl terminus of C-X-C chemokine receptor type 4 (CXCR4) leading to impaired leukocyte egress from bone marrow to peripheral blood. Diagnosis of WHIM syndrome continues to be challenging and is often made through clinical observations and/or genetic testing. Detection of a pathogenic CXCR4 variant in an affected individual supports the diagnosis of WHIM syndrome but relies on an appropriate annotation of disease-causing variants. Understanding the genotypic-phenotypic associations in WHIM syndrome has the potential to improve time to diagnosis and guide appropriate clinical management, resulting in a true example of precision medicine. This article provides an overview of the spectrum of CXCR4 variants in WHIM syndrome and summarizes the various lines of clinical and functional evidence that can support interpretation of newly identified variants.


Subject(s)
Primary Immunodeficiency Diseases , Receptors, CXCR4 , Warts , Receptors, CXCR4/genetics , Humans , Warts/genetics , Warts/diagnosis , Primary Immunodeficiency Diseases/genetics , Primary Immunodeficiency Diseases/diagnosis , Mutation , Genetic Association Studies , Genetic Predisposition to Disease , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/diagnosis
2.
Front Immunol ; 15: 1419748, 2024.
Article in English | MEDLINE | ID: mdl-39040103

ABSTRACT

Immunodeficiency, Centromeric instability and Facial anomalies (ICF) syndrome is a rare genetic disorder characterized by variable immunodeficiency. More than half of the affected individuals show mild to severe intellectual disability at early onset. This disorder is genetically heterogeneous and ZBTB24 is the causative gene of the subtype 2, accounting for about 30% of the ICF cases. ZBTB24 is a multifaceted transcription factor belonging to the Zinc-finger and BTB domain-containing protein family, which are key regulators of developmental processes. Aberrant DNA methylation is the main molecular hallmark of ICF syndrome. The functional link between ZBTB24 deficiency and DNA methylation errors is still elusive. Here, we generated a novel ICF2 disease model by deriving induced pluripotent stem cells (iPSCs) from peripheral CD34+-blood cells of a patient homozygous for the p.Cys408Gly mutation, the most frequent missense mutation in ICF2 patients and which is associated with a broad clinical spectrum. The mutation affects a conserved cysteine of the ZBTB24 zinc-finger domain, perturbing its function as transcriptional activator. ICF2-iPSCs recapitulate the methylation defects associated with ZBTB24 deficiency, including centromeric hypomethylation. We validated that the mutated ZBTB24 protein loses its ability to directly activate expression of CDCA7 and other target genes in the patient-derived iPSCs. Upon hematopoietic differentiation, ICF2-iPSCs showed decreased vitality and a lower percentage of CD34+/CD43+/CD45+ progenitors. Overall, the ICF2-iPSC model is highly relevant to explore the role of ZBTB24 in DNA methylation homeostasis and provides a tool to investigate the early molecular events linking ZBTB24 deficiency to the ICF2 clinical phenotype.


Subject(s)
Induced Pluripotent Stem Cells , Phenotype , Primary Immunodeficiency Diseases , Repressor Proteins , Humans , Induced Pluripotent Stem Cells/metabolism , Primary Immunodeficiency Diseases/genetics , Repressor Proteins/genetics , Repressor Proteins/deficiency , DNA Methylation , Immunologic Deficiency Syndromes/genetics , Male , Mutation , Female , Face/abnormalities , Nuclear Proteins
4.
J Clin Immunol ; 44(7): 157, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954121

ABSTRACT

Molecular diagnosis of inborn errors of immunity (IEI) plays a critical role in determining patients' long-term prognosis, treatment options, and genetic counseling. Over the past decade, the broader utilization of next-generation sequencing (NGS) techniques in both research and clinical settings has facilitated the evaluation of a significant proportion of patients for gene variants associated with IEI. In addition to its role in diagnosing known gene defects, the application of high-throughput techniques such as targeted, exome, and genome sequencing has led to the identification of novel disease-causing genes. However, the results obtained from these different methods can vary depending on disease phenotypes or patient characteristics. In this study, we conducted whole-exome sequencing (WES) in a sizable cohort of IEI patients, consisting of 303 individuals from 21 different clinical immunology centers in Türkiye. Our analysis resulted in likely genetic diagnoses for 41.1% of the patients (122 out of 297), revealing 52 novel variants and uncovering potential new IEI genes in six patients. The significance of understanding outcomes across various IEI cohorts cannot be overstated, and we believe that our findings will make a valuable contribution to the existing literature and foster collaborative research between clinicians and basic science researchers.


Subject(s)
Exome Sequencing , High-Throughput Nucleotide Sequencing , Humans , Male , Female , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/diagnosis , Immunologic Deficiency Syndromes/immunology , Genetic Predisposition to Disease , Child , Child, Preschool , Mutation/genetics , Genetic Testing/methods , Infant , Exome/genetics , Adolescent
6.
Front Immunol ; 15: 1402139, 2024.
Article in English | MEDLINE | ID: mdl-39026677

ABSTRACT

Inborn errors of immunity (IEI) are a group of diseases in humans that typically present as increased susceptibility to infections, autoimmunity, hyperinflammation, allergy, and in some cases malignancy. Among newly identified genes linked to IEIs include 3 independent reports of 9 individuals from 7 independent kindreds with severe primary immunodeficiency disease (PID) and autoimmunity due to loss-of-function mutations in the NCKAP1L gene encoding Hematopoietic protein 1 (HEM1). HEM1 is a hematopoietic cell specific component of the WASp family verprolin homologous (WAVE) regulatory complex (WRC), which acts downstream of multiple immune receptors to stimulate actin nucleation and polymerization of filamentous actin (F-actin). The polymerization and branching of F-actin is critical for creating force-generating cytoskeletal structures which drive most active cellular processes including migration, adhesion, immune synapse formation, and phagocytosis. Branched actin networks at the cell cortex have also been implicated in acting as a barrier to regulate inappropriate vesicle (e.g. cytokine) secretion and spontaneous antigen receptor crosslinking. Given the importance of the actin cytoskeleton in most or all hematopoietic cells, it is not surprising that HEM1 deficient children present with a complex clinical picture that involves overlapping features of immunodeficiency and autoimmunity. In this review, we will provide an overview of what is known about the molecular and cellular functions of HEM1 and the WRC in immune and other cells. We will describe the common clinicopathological features and immunophenotypes of HEM1 deficiency in humans and provide detailed comparative descriptions of what has been learned about Hem1 disruption using constitutive and immune cell-specific mouse knockout models. Finally, we discuss future perspectives and important areas for investigation regarding HEM1 and the WRC.


Subject(s)
Immunologic Deficiency Syndromes , Humans , Animals , Mice , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/immunology
7.
Front Immunol ; 15: 1402038, 2024.
Article in English | MEDLINE | ID: mdl-39072316

ABSTRACT

Purpose: In this study, we retrospectively reviewed the use of flow cytometry (FCM) in the diagnosis of inborn errors of immunity (IEIs) at a single center in Algeria. Sharing insights into our practical experience, we present FCM based diagnostic approaches adapted to different clinical scenarios. Methods: Between May 2017 and February 2024, pediatric and adult patients presenting with clinical features suggestive of immunodeficiency were subjected to FCM evaluation, including lymphocyte subset analysis, detection of specific surface or intracellular proteins, and functional analysis of immune cells. Results: Over a nearly seven-year period, our laboratory diagnosed a total of 670 patients (372 (55.5%) males and 298 (44.5%) females), distributed into 70 different IEIs belonging to 9 different categories of the International Union of Immunological Societies classification. FCM was used to diagnose and categorize IEI in 514 patients (76.7%). It provided direct diagnostic insights for IEIs such as severe combined immunodeficiency, Omenn syndrome, MHC class II deficiency, familial hemophagocytic lymphohistiocytosis, and CD55 deficiency. For certain IEIs, including hyper-IgE syndrome, STAT1-gain of function, autoimmune lymphoproliferative syndrome, and activated PI3K delta syndrome, FCM offered suggestive evidence, necessitating subsequent genetic testing for confirmation. Protein expression and functional assays played a crucial role in establishing definitive diagnoses for various disorders. To setup such diagnostic assays at high and reproducible quality, high level of expertise is required; in house reference values need to be determined and the parallel testing of healthy controls is highly recommended. Conclusion: Flow cytometry has emerged as a highly valuable and cost-effective tool for diagnosing and studying most IEIs, particularly in low-income countries where access to genetic testing can be limited. FCM analysis could provide direct diagnostic insights for most common IEIs, offer clues to the underlying genetic defects, and/or aid in narrowing the list of putative genes to be analyzed.


Subject(s)
Flow Cytometry , Humans , Flow Cytometry/methods , Male , Female , Algeria , Child , Child, Preschool , Infant , Adolescent , Adult , Retrospective Studies , Immunophenotyping , Young Adult , Infant, Newborn , Immunologic Deficiency Syndromes/diagnosis , Immunologic Deficiency Syndromes/immunology , Immunologic Deficiency Syndromes/genetics
8.
J Clin Immunol ; 44(7): 154, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896123

ABSTRACT

Patients with chromosome 18q deletion syndrome generally experience hypogammaglobulinemia. Herein, we describe two patients with chromosome 18q deletion syndrome who presented with late-onset combined immune deficiency (LOCID), which has not been previously reported. Patient 1 was a 29-year-old male with 18q deletion syndrome, who was being managed for severe motor and intellectual disabilities at the Yamabiko Medical Welfare Center for 26 years. Although the patient had few infections, he developed Pneumocystis pneumonia at the age of 28. Patient 2, a 48-year-old female with intellectual disability and congenital malformations, was referred to Tokyo Medical and Dental University Hospital with abnormal bilateral lung shadows detected on her chest radiography. Computed tomography showed multiple lymphadenopathies and pneumonia. A lymph node biopsy of the inguinal region revealed granulomatous lymphadenitis, and a chromosomal examination revealed 18q deletion. Array-based genomic hybridization analysis revealed deletion at 18q21.32-q22.3 for patient 1 and at 18q21.33-qter for patient 2. Immune status work-up of the two patients revealed panhypogammaglobulinemia, decreased number of memory B cells and naïve CD4+ and/or CD8+ cells, reduced response on the carboxyfluorescein diacetate succinimidyl ester T-cell division test, and low levels of T-cell receptor recombination excision circles and Ig κ-deleting recombination excision circles. Consequently, both patients were diagnosed with LOCID. Although patients with 18q deletion syndrome generally experience humoral immunodeficiency, the disease can be further complicated by cell-mediated immunodeficiency, causing combined immunodeficiency. Therefore, patients with 18q deletion syndrome should be regularly tested for cellular/humoral immunocompetence.


Subject(s)
Chromosome Deletion , Chromosome Disorders , Chromosomes, Human, Pair 18 , Humans , Male , Female , Chromosomes, Human, Pair 18/genetics , Chromosome Disorders/diagnosis , Chromosome Disorders/genetics , Adult , Middle Aged , Age of Onset , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/diagnosis , Severe Combined Immunodeficiency/complications , Intellectual Disability/genetics , Intellectual Disability/diagnosis , Intellectual Disability/etiology , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/diagnosis , Immunologic Deficiency Syndromes/complications
10.
Clin Immunol ; 265: 110268, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38838930

ABSTRACT

PURPOSE: To report a case of a five-month-old Chinese infant who died of interleukin-1 receptor-associated kinase-4 (IRAK-4) deficiency presenting with rapid and progressive Pseudomonas aeruginosa sepsis. METHODS: The genetic etiology of IRAK-4 deficiency was confirmed through trio-whole exome sequencing and Sanger sequencing. Functional consequences were invested using an in vitro minigene splicing assay. RESULTS: Trio-whole exome sequencing of genomic DNA identified two novel compound heterozygous mutations, IRAK-4 (NM_016123.3): c.942-1G > A and c.644_651+ 6delTTGCAGCAGTAAGT in the proband, which originated from his symptom-free parents. These mutations were predicted to cause frameshifts and generate three truncated proteins without enzyme activity. CONCLUSIONS: Our findings expand the range of IRAK-4 mutations and provide functional support for the pathogenic effects of splice-site mutations. Additionally, this case highlights the importance of considering the underlying genetic defects of immunity when dealing with unusually overwhelming infections in previously healthy children and emphasizes the necessity for timely treatment with wide-spectrum antimicrobials.


Subject(s)
Interleukin-1 Receptor-Associated Kinases , Pseudomonas Infections , Pseudomonas aeruginosa , Sepsis , Humans , Interleukin-1 Receptor-Associated Kinases/genetics , Interleukin-1 Receptor-Associated Kinases/deficiency , Pseudomonas aeruginosa/genetics , Pseudomonas Infections/genetics , Male , Infant , Sepsis/genetics , Sepsis/microbiology , Primary Immunodeficiency Diseases/genetics , Loss of Function Mutation , Heterozygote , Exome Sequencing , Immunologic Deficiency Syndromes/genetics
11.
J Clin Immunol ; 44(7): 152, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896258

ABSTRACT

A boy with primary immunodeficiency, caused by a tyrosine kinase 2 (TYK2) mutation, presented with immune defects and a lifelong history of severe infections. Our aim was to determine whether allogeneic hematopoietic stem cell transplantation (HSCT) could restore the patient's immune defenses and reduce susceptibility to infection. In the absence of a suitable HLA-matched blood relative to act as a donor, the patient received an allogeneic HSCT from unrelated donors. The patient's clinical data were analyzed in the Children's Hospital of Chongqing Medical University (Chongqing, China) before transplantation and during the 4-year follow-up period using a combination of western blotting (e.g., TYK2 and STAT levels), qRT-PCR (e.g., T cell receptor rearrangement excision circles, kappa deletion element recombination circles, and TYK2 transcript levels), and flow cytometry (e.g., lymphocyte subpopulations and CD107α secretion). We found that HSCT significantly reduced the incidence of severe infections, restored normal TKY2 levels, and reversed defects such as impaired JAK/STAT signaling in response to interferon-α or interleukin-10 treatment. Although the patient did not develop acute graft-versus-host disease (GVHD) after transplantation, he did experience chronic GVHD symptoms in a number of organs, which were effectively managed. Our findings suggest that HSCT is a feasible strategy for reconstituting the immune system in TYK2-deficient patients; however, the factors associated with GVHD and autoimmune thyroiditis development in TYK2-deficient patients undergoing HSCT warrant further investigation.


Subject(s)
Hematopoietic Stem Cell Transplantation , TYK2 Kinase , Transplantation, Homologous , Unrelated Donors , Humans , Male , Graft vs Host Disease/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Immune Reconstitution , Immunologic Deficiency Syndromes/therapy , Immunologic Deficiency Syndromes/etiology , Immunologic Deficiency Syndromes/genetics , Mutation , TYK2 Kinase/genetics , TYK2 Kinase/deficiency , Infant
12.
J Clin Immunol ; 44(7): 155, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922539

ABSTRACT

PURPOSE: Moesin (MSN) deficiency is a recently reported combined immunodeficiency, and few cases have been reported to date. We describe a Chinese patient with a novel mutation causing MSN deficiency and a novel phenotype. METHODS: Clinical and immunological data were collected. Whole-exome sequencing was performed to identify gene mutations. MSN protein expression and T cell proliferation and activation were determined by flow cytometry. Cell migration was confirmed with a Transwell assay. Autoantibody levels were analyzed using antigen microarrays. RESULTS: The patient was a 10-year-old boy who presented with recurrent fever, oral ulcers and dermatomyositis-like symptoms, such as periorbital edema, facial swelling, elevated creatine kinase levels, and abnormal electromyography and muscle biopsy results. Epstein-Barr virus (EBV) DNA was detected in the serum, cells and tissues of this patient. He further developed nasal-type NK/T-cell lymphoma. A novel hemizygous mutation (c.68 A > G, p.N23S) in the MSN gene was found. The immunological phenotype of this patient included persistent decreases in T and B lymphocyte counts but normal immunoglobulin IgG levels. The patient had attenuated MSN protein expression and impaired T-cell proliferation and migration. The proportions of Tfh cells and CD21low B cells in the patient were higher than those in the controls. Moreover, 82 IgG and 102 IgM autoantibodies were more abundant in the patient than in the healthy controls. CONCLUSIONS: The novel mutation N23S is pathogenic and leads to a severe clinical phenotype. EBV infection, tumor, and dermatomyositis-like autoimmune symptoms may be associated with MSN deficiency, further expanding the understanding of the disease.


Subject(s)
Dermatomyositis , Epstein-Barr Virus Infections , Microfilament Proteins , Mutation , Humans , Male , Epstein-Barr Virus Infections/diagnosis , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/immunology , Dermatomyositis/genetics , Dermatomyositis/diagnosis , Dermatomyositis/immunology , Child , Microfilament Proteins/genetics , Mutation/genetics , Herpesvirus 4, Human , Exome Sequencing , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/diagnosis , Autoantibodies/blood , Autoantibodies/immunology , Phenotype , T-Lymphocytes/immunology
14.
J Clin Immunol ; 44(6): 129, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38773012

ABSTRACT

Mutations in genes of the DNA polymerase complex have been linked to impaired immunological function next to distinct syndromic features. Biallelic mutations in PRIM1 are associated with a primordial dwarfism syndrome with variable hypogammaglobulinemia. The disease is mostly lethal in infancy due to pulmonary infections as well as hepatic cirrhosis. We studied 3 novel patients with PRIM1-deficiency with a focus on immunological consequences. All three shared dysmorphic features including a prominent forehead, triangular face and bilateral cryptorchidism. P1 carried the novel homozygous PRIM1 splice variant c.103+2T>G, allowing residual protein expression and associated with a mild clinical phenotype. P2 and P3 carried the known homozygous variant c.638+36C>G and died in infancy. Paradoxically, B cell lymphopenia was most pronounced in P1. No other significant lymphocyte abnormalities were detected. Interestingly, all 3 patients showed variable, but intermittently excessive Type I interferon signatures. In summary, the B-cell deficiency in PRIM1-deficiency is markedly variable and the severity of syndromic manifestations is not predictive of the immunological phenotype. We highlight a potential contribution of pathological type I interferon activation to disease pathogenesis which warrants further investigations.


Subject(s)
Alleles , B-Lymphocytes , Mutation , Child, Preschool , Female , Humans , Infant , Male , B-Lymphocytes/immunology , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/diagnosis , Interferon Type I/metabolism , Mutation/genetics , Phenotype
15.
Sci Rep ; 14(1): 10678, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724551

ABSTRACT

Mutations in LRBA, a BEACH domain protein, cause severe immune deficiency in humans. LRBA is expressed in many tissues and organs according to biochemical analysis, but little is known about its cellular and subcellular localization, and its deficiency phenotype outside the immune system. By LacZ histochemistry of Lrba gene-trap mice, we performed a comprehensive survey of LRBA expression in numerous tissues, detecting it in many if not all epithelia, in exocrine and endocrine cells, and in subpopulations of neurons. Immunofluorescence microscopy of the exocrine and endocrine pancreas, salivary glands, and intestinal segments, confirmed these patterns of cellular expression and provided information on the subcellular localizations of the LRBA protein. Immuno-electron microscopy demonstrated that in neurons and endocrine cells, which co-express LRBA and its closest relative, neurobeachin, both proteins display partial association with endomembranes in complementary, rather than overlapping, subcellular distributions. Prominent manifestations of human LRBA deficiency, such as inflammatory bowel disease or endocrinopathies, are believed to be primarily due to immune dysregulation. However, as essentially all affected tissues also express LRBA, it is possible that LRBA deficiency enhances their vulnerability and contributes to the pathogenesis.


Subject(s)
Endocrine Glands , Epithelium , Exocrine Glands , Immunologic Deficiency Syndromes , Neurons , Animals , Humans , Mice , Endocrine Glands/metabolism , Epithelium/metabolism , Exocrine Glands/metabolism , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/metabolism , Immunologic Deficiency Syndromes/pathology , Mutation , Neurons/metabolism
16.
Front Immunol ; 15: 1405022, 2024.
Article in English | MEDLINE | ID: mdl-38799442

ABSTRACT

Immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome, a rare autosomal recessive disorder, manifests with hypoglobulinemia and chromosomal instability accompanied by DNA hypomethylation. Pathological variants in the DNMT3B, ZBTB24, CDCA7, or HELLS genes underlie its etiology. Activated lymphocytes from patients often display distinctive multiradial chromosomes fused via pericentromeric regions. Recent studies have provided deeper insights into how pathological variants in ICF-related proteins cause DNA hypomethylation and chromosome instability. However, the understanding of the molecular pathogenesis underlying immunodeficiency is still in its nascent stages. In the past half-decade, the roles of CDCA7, HELLS, and ZBTB24 in classical non-homologous end joining during double-strand DNA break repair and immunoglobulin class-switch recombination (CSR) have been unveiled. Nevertheless, given the decreased all classes of immunoglobulins in most patients, CSR deficiency alone cannot fully account for the immunodeficiency. The latest finding showing dysregulation of immunoglobulin signaling may provide a clue to understanding the immunodeficiency mechanism. While less common, a subgroup of patients exhibits T-cell abnormalities alongside B-cell anomalies, including reduced regulatory T-cells and increased effector memory T- and follicular helper T-cells. The dysregulation of immunoglobulin signaling in B-cells, the imbalance in T-cell subsets, and/or satellite RNA-mediated activation of innate immune response potentially explain autoimmune manifestations in a subset of patients. These findings emphasize the pivotal roles of ICF-related proteins in both B- and T-cell functions. ICF syndrome studies have illuminated many fundamental mechanisms. Further investigations will certainly continue to unveil additional mechanisms and their interplay.


Subject(s)
DNA Repair , Epigenesis, Genetic , Immunologic Deficiency Syndromes , Humans , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/immunology , DNA Methylation , Animals , Immunoglobulin Class Switching/genetics , Primary Immunodeficiency Diseases/genetics , Primary Immunodeficiency Diseases/immunology , Primary Immunodeficiency Diseases/diagnosis
18.
Nat Immunol ; 25(5): 764-777, 2024 May.
Article in English | MEDLINE | ID: mdl-38609546

ABSTRACT

The linear ubiquitin assembly complex (LUBAC) consists of HOIP, HOIL-1 and SHARPIN and is essential for proper immune responses. Individuals with HOIP and HOIL-1 deficiencies present with severe immunodeficiency, autoinflammation and glycogen storage disease. In mice, the loss of Sharpin leads to severe dermatitis due to excessive keratinocyte cell death. Here, we report two individuals with SHARPIN deficiency who manifest autoinflammatory symptoms but unexpectedly no dermatological problems. Fibroblasts and B cells from these individuals showed attenuated canonical NF-κB responses and a propensity for cell death mediated by TNF superfamily members. Both SHARPIN-deficient and HOIP-deficient individuals showed a substantial reduction of secondary lymphoid germinal center B cell development. Treatment of one SHARPIN-deficient individual with anti-TNF therapies led to complete clinical and transcriptomic resolution of autoinflammation. These findings underscore the critical function of the LUBAC as a gatekeeper for cell death-mediated immune dysregulation in humans.


Subject(s)
Immunologic Deficiency Syndromes , Nerve Tissue Proteins , Ubiquitins , Humans , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/immunology , Female , Male , NF-kappa B/metabolism , Ubiquitin-Protein Ligases/genetics , Inflammation/immunology , Inflammation/genetics , B-Lymphocytes/immunology , Loss of Function Mutation , Fibroblasts/metabolism , Fibroblasts/immunology , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Animals , Mice , Alleles
19.
Stem Cell Res ; 77: 103385, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38507881

ABSTRACT

Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit delta (PIK3CD) gene (OMIM#602839) encodes the p110δ catalytic subunit, mainly expressed in immune cells, and is associated with autosomal dominant immunodeficiency-14A with lymphoproliferation (IMD14A, #615513). We generated a human iPS cell line from a 50-month-old boy with IMD14A carrying a heterozygous mutation (c.3061G>A, p.E1021K) in PIK3CD gene. This cell line retains the original mutation site and shows differentiation potential towards three germ layers in vitro, which can be used as a disease model for research.


Subject(s)
Class I Phosphatidylinositol 3-Kinases , Heterozygote , Induced Pluripotent Stem Cells , Child, Preschool , Humans , Male , Cell Differentiation , Cell Line , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/metabolism , Immunologic Deficiency Syndromes/genetics , Induced Pluripotent Stem Cells/metabolism , Mutation
20.
Life Sci Alliance ; 7(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38519141

ABSTRACT

Chemokine receptors are members of the G protein-coupled receptor superfamily. The C-X-C chemokine receptor type 4 (CXCR4), one of the most studied chemokine receptors, is widely expressed in hematopoietic and immune cell populations. It is involved in leukocyte trafficking in lymphoid organs and inflammatory sites through its interaction with its natural ligand CXCL12. CXCR4 assumes a pivotal role in B-cell development, ranging from early progenitors to the differentiation of antibody-secreting cells. This review emphasizes the significance of CXCR4 across the various stages of B-cell development, including central tolerance, and delves into the association between CXCR4 and B cell-mediated disorders, from immunodeficiencies such as WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome to autoimmune diseases such as systemic lupus erythematosus. The potential of CXCR4 as a therapeutic target is discussed, especially through the identification of novel molecules capable of modulating specific pockets of the CXCR4 molecule. These insights provide a basis for innovative therapeutic approaches in the field.


Subject(s)
Agammaglobulinemia , Immunologic Deficiency Syndromes , Warts , Humans , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/therapy , Warts/therapy , B-Lymphocytes , Receptors, CXCR4
SELECTION OF CITATIONS
SEARCH DETAIL