Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.194
Filter
1.
Nat Commun ; 15(1): 6599, 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39097606

ABSTRACT

Native core microbiomes represent a unique opportunity to support food provision and plant-based industries. Yet, these microbiomes are often neglected when developing synthetic communities (SynComs) to support plant health and growth. Here, we study the contribution of native core, native non-core and non-native microorganisms to support plant production. We construct four alternative SynComs based on the excellent growth promoting ability of individual stain and paired non-antagonistic action. One of microbiome based SynCom (SC2) shows a high niche breadth and low average variation degree in-vitro interaction. The promoting-growth effect of SC2 can be transferred to non-sterile environment, attributing to the colonization of native core microorganisms and the improvement of rhizosphere promoting-growth function including nitrogen fixation, IAA production, and dissolved phosphorus. Further, microbial fertilizer based on SC2 and composite carrier (rapeseed cake fertilizer + rice husk carbon) increase the net biomass of plant by 129%. Our results highlight the fundamental importance of native core microorganisms to boost plant production.


Subject(s)
Fertilizers , Microbiota , Plant Development , Rhizosphere , Soil Microbiology , Biomass , Soil/chemistry , Nitrogen Fixation , Phosphorus/metabolism , Plant Roots/microbiology , Plant Roots/growth & development , Indoleacetic Acids/metabolism
2.
Sci Rep ; 14(1): 17810, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090163

ABSTRACT

Elymus nutans Griseb. (E. nutans), a pioneer plant for the restoration of high quality pasture and vegetation, is widely used to establish artificial grasslands and ecologically restore arid and salinized soils. To investigate the effects of drought stress and salt stress on the physiology and endogenous hormones of E. nutans seedlings, this experiment configured the same environmental water potential (0 (CK), - 0.04, - 0.14, - 0.29, - 0.49, - 0.73, and - 1.02 MPa) of PEG-6000 and NaCl stress to investigate the effects of drought stress and salt stress, respectively, on E. nutans seedlings under the same environmental water potential. The results showed that although the physiological indices and endogenous hormones of the E. nutans seedlings responded differently to drought stress and salt stress under the same environmental water potential, the physiological indices of E. nutans shoots and roots were comprehensively evaluated using the genus function method, and the physiological indices of the E. nutans seedlings under the same environmental water potential exhibited better salt tolerance than drought tolerance. The changes in endogenous hormones of the E. nutans seedlings under drought stress were analyzed to find that treatment with gibberellic acid (GA3), gibberellin A7 (GA7), 6-benzyladenine (6-BA), 6-(y,y-dimethylallylaminopurine) (2.IP), trans-zeatin (TZ), kinetin (KT), dihydrozeatin (DHZ), indole acetic acid (IAA), and 2,6-dichloroisonicotininc acid (INA) was more effective than those under drought stress. By analyzing the amplitude of changes in the endogenous hormones in E. nutans seedlings, the amplitude of changes in the contents of GA3, GA7, 6-BA, 2.IP, TZ, KT, DHZ, IAA, isopentenyl adenosine (IPA), indole-3-butyric acid (IBA), naphthalene acetic acid (NAA), and abscisic acid was larger in drought stress compared with salt stress, which could be because the endogenous hormones are important for the drought tolerance of E. nutans itself. The amplitude of the changes in the contents of DHZ, TZR, salicylic acid, and jasmonic acid was larger in salt stress compared with drought stress. Changes in the content of melatonin were larger in salt stress compared with drought stress, which could indicate that endogenous hormones and substances are important for the salt tolerance of E. nutans itself.


Subject(s)
Droughts , Plant Growth Regulators , Salt Stress , Seedlings , Seedlings/physiology , Seedlings/drug effects , Seedlings/metabolism , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Stress, Physiological , Plant Roots/physiology , Plant Roots/drug effects , Plant Roots/metabolism , Salt Tolerance , Indoleacetic Acids/metabolism , Poaceae/physiology , Poaceae/drug effects , Poaceae/metabolism
3.
J Agric Food Chem ; 72(29): 16347-16358, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38982686

ABSTRACT

This study is to investigate the protective effects of Eurotium cristatum intracellular polysaccharides (ECIP) on dextran sodium sulfate (DSS)-induced ulcerative colitis (UC). The oral administration of ECIP could downregulate the disease activity index (DAI) and ameliorate the colonic shortening, immune stress, and damage caused by DSS. In addition, ECIP treatment increased the colonic contents of SCFAs including acetic, propionic, and butyric acids in UC mice. Targeted and untargeted metabolic analysis suggested that ECIP dramatically altered the tryptophan metabolism in the feces of UC mice and promoted the conversion of tryptophan into indole metabolites including indolepyruvate and indole-3-acetic acid (IAA) and indolealdehyde (IAId). Moreover, ECIP observably increased the content of colonic IL-22 and stimulated the relative concentration and relative expression of tight junction molecules in mRNA and proteins levels. Conclusively, consumption of ECIP can improve colon damage and its related effects of UC by promoting the production of IAA and IAId to reinforce intestinal barriers.


Subject(s)
Colitis, Ulcerative , Colon , Mice, Inbred C57BL , Polysaccharides , Tryptophan , Animals , Mice , Tryptophan/metabolism , Male , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/drug therapy , Humans , Colon/metabolism , Colon/drug effects , Polysaccharides/pharmacology , Polysaccharides/metabolism , Polysaccharides/chemistry , Polysaccharides/administration & dosage , Dextran Sulfate/adverse effects , Indoleacetic Acids/metabolism , Interleukin-22 , Gastrointestinal Microbiome/drug effects
4.
PLoS One ; 19(7): e0307750, 2024.
Article in English | MEDLINE | ID: mdl-39052598

ABSTRACT

Increased production of Prostaglandin D2 (PGD2) is linked to development and progression of asthma and allergy. PGD2 is rapidly degraded to its metabolites, which initiate type 2 innate lymphoid cells (ILC2) migration and IL-5/IL-13 cytokine secretion in a PGD2 receptor 2 (DP2)-dependent manner. Blockade of DP2 has shown therapeutic benefit in subsets of asthma patients. Cellular mechanisms of ILC2 activity in response to PGD2 and its metabolites are still unclear. We hypothesized that ILC2 respond non-uniformly to PGD2 metabolites. ILC2s were isolated from peripheral blood of patients with atopic asthma. ILC2s were stimulated with PGD2 and four PGD2 metabolites (Δ12-PGJ2, Δ12-PGD2, 15-deoxyΔ12,14-PGD2, 9α,11ß-PGF2) with or without the selective DP2 antagonist fevipiprant. Total RNA was sequenced, and differentially expressed genes (DEG) were identified by DeSeq2. Differential gene expression analysis revealed an upregulation of pro-inflammatory DEGs in ILC2s stimulated with PGD2 (14 DEGs), Δ12-PGD2 (27 DEGs), 15-deoxyΔ12,14-PGD2 (56 DEGs) and Δ12-PGJ2 (136 DEGs), but not with 9α,11ß-PGF2. Common upregulated DEGs were i.e. ARG2, SLC43A2, LAYN, IGFLR1, or EPHX2. Inhibition of DP2 via fevipiprant mainly resulted in downregulation of pro-inflammatory genes such as DUSP4, SPRED2, DUSP6, ETV1, ASB2, CD38, ADGRG1, DDIT4, TRPM2, or CD69. DEGs were related to migration and various immune response-relevant pathways such as "chemokine (C-C motif) ligand 4 production", "cell migration", "interleukin-13 production", "regulation of receptor signaling pathway via JAK-STAT", or "lymphocyte apoptotic process", underlining the pro-inflammatory effects of PGD2 metabolite-induced immune responses in ILC2s as well as the anti-inflammatory effects of DP2 inhibition via fevipiprant. Furthermore, PGD2 and metabolites showed distinct profiles in ILC2 activation. Overall, these results expand our understanding of DP2 initiated ILC2 activity.


Subject(s)
Asthma , Immunity, Innate , Lymphocytes , Prostaglandin D2 , Receptors, Immunologic , Receptors, Prostaglandin , Signal Transduction , Humans , Asthma/immunology , Asthma/metabolism , Receptors, Prostaglandin/metabolism , Receptors, Prostaglandin/antagonists & inhibitors , Prostaglandin D2/metabolism , Receptors, Immunologic/metabolism , Lymphocytes/metabolism , Lymphocytes/immunology , Lymphocytes/drug effects , Female , Male , Adult , Indoleacetic Acids , Pyridines
5.
BMC Plant Biol ; 24(1): 704, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054427

ABSTRACT

As crucial stages in the plant ontogeny, germination and seedling establishment under adverse conditions greatly determine staple crop growth and productivity. In the context of green technologies aiming to improve crop yield, seed priming is emerging as an effective approach to enhance seed vigor and germination performance under salt stress. In this study, we assess the efficiency of seed priming with indole-3-acetic acid (IAA) in mitigating the adverse effects of salt stress on maize (Zea mays L.) seedlings during germination and early seedling stages. In unprimed seeds, salt stress reduced germination indices, and seedling (both radicle and coleoptile) growth, together with decreased tissue hydration. However, seed priming using IAA significantly improved maize salt response, as reflected by the increased seed germination dynamics, early seedling establishment, and water status. Besides, seedlings from IAA-primed seeds showed a higher activity of α-amylase, resulting in increased sugar contents in roots and coleoptiles of salt-stressed plants. Further, IAA-seed priming stimulated the accumulation of endogenous IAA in salt-stressed seedlings, in concomitance with a significant effect on reactive oxygen species detoxification and lipid peroxidation prevention. Indeed, our data revealed increased antioxidant enzyme activities, differentially regulated in roots and coleoptiles, leading to increased activities of the antioxidant enzymes (SOD, CAT and GPX). In summary, data gained from this study further highlight the potential of IAA in modulating early interactions between multiple signaling pathways in the seed, endowing maize seedlings with enhanced potential and sustained tolerance to subsequent salt stress.


Subject(s)
Carbohydrate Metabolism , Germination , Indoleacetic Acids , Reactive Oxygen Species , Salt Stress , Seedlings , Seeds , Zea mays , Zea mays/drug effects , Zea mays/physiology , Zea mays/growth & development , Zea mays/metabolism , Germination/drug effects , Seedlings/drug effects , Seedlings/growth & development , Seedlings/physiology , Indoleacetic Acids/metabolism , Reactive Oxygen Species/metabolism , Seeds/drug effects , Seeds/growth & development , Seeds/physiology , Carbohydrate Metabolism/drug effects , Plant Growth Regulators/metabolism
6.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000509

ABSTRACT

Dwarfing rootstocks enhance planting density, lower tree height, and reduce both labor in peach production. Cerasus humilis is distinguished by its dwarf stature, rapid growth, and robust fruiting capabilities, presenting substantial potential for further development. In this study, Ruipan 4 was used as the scion and grafted onto Amygdalus persica and Cerasus humilis, respectively. The results indicate that compared to grafting combination R/M (Ruipan 4/Amygdalus persica), grafting combination R/O (Ruipan 4/Cerasus humilis) plants show a significant reduction in height and a significant increase in flower buds. RNA-seq indicates that genes related to gibberellin (GA) and auxin metabolism are involved in the dwarfing process of scions mediated by C. humilis. The expression levels of the GA metabolism-related gene PpGA2ox7 significantly increased in R/O and are strongly correlated with plant height, branch length, and internode length. Furthermore, GA levels were significantly reduced in R/O. The transcription factor PpGATA21 was identified through yeast one-hybrid screening of the PpGA2ox7 promoter. Yeast one-hybrid (Y1H) and dual-luciferase reporter (DLR) demonstrate that PpGATA21 can bind to the promoter of PpGA2ox7 and activate its expression. Overall, PpGATA21 activates the expression of the GA-related gene PpGA2ox7, resulting in reduced GA levels and consequent dwarfing of plants mediated by C. humilis. This study provides new insights into the mechanisms of C. humilis and offers a scientific foundation for the dwarfing and high-density cultivation of peach trees.


Subject(s)
Gene Expression Regulation, Plant , Gibberellins , Plant Proteins , Prunus persica , Prunus persica/genetics , Prunus persica/growth & development , Prunus persica/metabolism , Gibberellins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/metabolism , Promoter Regions, Genetic , Trees/genetics , Trees/growth & development , Indoleacetic Acids/metabolism
7.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000285

ABSTRACT

Here, cytosine methylation in the whole genome of pear flower buds was mapped at a single-base resolution. There was 19.4% methylation across all sequenced C sites in the Pyrus pyrifolia cultivar 'Sucui 1' flower bud genome. Meantime, the CG, CHG, and CHH sequence contexts (where H = A, T or C) exhibited 47.4%, 33.3%, and 11.9% methylation, respectively. Methylation in different gene regions was revealed through combining methylome and transcriptome analysis, which presented various transcription trends. Genes with methylated promoters exhibited lower expression levels than genes with non-methylated promoters, while body-methylated genes displayed an obvious negative correlation with their transcription levels. The methylation profiles of auxin- and cytokinin-related genes were estimated. And some of them proved to be hypomethylated, with increased transcription levels, in wizened buds. More specifically, the expression of the genes PRXP73, CYP749A22, and CYP82A3 was upregulated as a result of methylation changes in their promoters. Finally, auxin and cytokinin concentrations were higher in wizened flower buds than in normal buds. The exogenous application of paclobutrazol (PP333) in the field influenced the DNA methylation status of some genes and changed their expression level, reducing the proportion of wizened flower buds in a concentration-dependent manner. Overall, our results demonstrated the relationship between DNA methylation and gene expression in wizened flower buds of P. pyrifolia cultivar 'Sucui 1', which was associated with changes in auxin and cytokinin concentrations.


Subject(s)
DNA Methylation , Epigenome , Flowers , Gene Expression Profiling , Gene Expression Regulation, Plant , Pyrus , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , Pyrus/genetics , Pyrus/growth & development , Pyrus/metabolism , Promoter Regions, Genetic , Transcriptome , Indoleacetic Acids/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Cytokinins/metabolism
8.
Int J Mol Sci ; 25(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39000581

ABSTRACT

The auxin/indoleacetic acid (Aux/IAA) family plays a central role in regulating gene expression during auxin signal transduction. Nonetheless, there is limited knowledge regarding this gene family in sugarcane. In this study, 92 members of the IAA family were identified in Saccharum spontaneum, distributed on 32 chromosomes, and classified into three clusters based on phylogeny and motif compositions. Segmental duplication and recombination events contributed largely to the expansion of this superfamily. Additionally, cis-acting elements in the promoters of SsIAAs involved in plant hormone regulation and stress responsiveness were predicted. Transcriptomics data revealed that most SsIAA expressions were significantly higher in stems and basal parts of leaves, and at nighttime, suggesting that these genes might be involved in sugar transport. QRT-PCR assays confirmed that cold and salt stress significantly induced four and five SsIAAs, respectively. GFP-subcellular localization showed that SsIAA23 and SsIAA12a were localized in the nucleus, consistent with the results of bioinformatics analysis. In conclusion, to a certain extent, the functional redundancy of family members caused by the expansion of the sugarcane IAA gene family is related to stress resistance and regeneration of sugarcane as a perennial crop. This study reveals the gene evolution and function of the SsIAA gene family in sugarcane, laying the foundation for further research on its mode of action.


Subject(s)
Gene Expression Regulation, Plant , Indoleacetic Acids , Multigene Family , Phylogeny , Plant Proteins , Saccharum , Saccharum/genetics , Indoleacetic Acids/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Genome, Plant , Promoter Regions, Genetic , Chromosomes, Plant/genetics , Gene Expression Profiling , Plant Growth Regulators/metabolism
9.
Physiol Plant ; 176(4): e14443, 2024.
Article in English | MEDLINE | ID: mdl-39039017

ABSTRACT

The plasticity of the xylem and its associated hydraulic properties play crucial roles in plant acclimation to environmental changes, with vessel diameter (Dv) being the most functionally prominent trait. While the effects of external environmental factors on xylem formation and Dv are not fully understood, the endogenous hormones indole-3-acetic acid (IAA) and abscisic acid (ABA) are known to play significant signalling roles under stress conditions. This study investigates how these hormones impact Dv under various environmental changes. Experiments were conducted in maize plants subjected to drought, soil salinity, and high CO2 concentration treatments. We found that drought and soil salinity significantly reduced Dv at the same stem internode, while an elevated CO2 concentration can mitigate this decrease in Dv. Remarkably, significant negative correlations were observed between Dv and the contents of IAA and ABA when considering the different treatments. Moreover, appropriate foliar application of either IAA or ABA on well-watered and stressed plants led to a decrease in Dv, while the application of corresponding inhibitors resulted in an increase in Dv. This finding underscores the causal relationship between Dv and the levels of both IAA and ABA, offering a promising approach to manipulating xylem vessel size.


Subject(s)
Abscisic Acid , Indoleacetic Acids , Plant Stems , Stress, Physiological , Xylem , Zea mays , Zea mays/drug effects , Zea mays/physiology , Zea mays/metabolism , Zea mays/growth & development , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Indoleacetic Acids/metabolism , Indoleacetic Acids/pharmacology , Xylem/drug effects , Xylem/physiology , Xylem/metabolism , Stress, Physiological/drug effects , Plant Stems/drug effects , Plant Stems/physiology , Plant Stems/metabolism , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Droughts , Soil/chemistry , Salinity , Carbon Dioxide/metabolism , Carbon Dioxide/pharmacology
10.
Zhongguo Zhong Yao Za Zhi ; 49(11): 2882-2888, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39041147

ABSTRACT

This study aims to evaluate the in vivo function of Fusarium oxysporum in Glycyrrhiza uralensis by salt tolerance,indoleacetic acid(IAA) production capacity, phosphate-dissolving capacity, and iron carrier production capacity. The stable genetic transformation system of the F. oxysporum was established by Agrobacterium tumefaciens-mediated genetic transformation( ATMT)technology, and the stability and staining efficiency of transformants were detected by the cloning of the marker gene green fluorescent protein(GFP) and the efficiency of ß-glucuronidase staining(GUS). Efficient and stable transformants were selected for restaining G. uralensis and evaluating its influence on the growth of the G. uralensis seedlings. The results show that F. oxysporum has good salt tolerance and could still grow on potato glucose agar(PDA) medium containing 7% sodium chloride, but the growth rate slows down with the increase in sodium chloride content in PDA medium. F. oxysporum has the function of producing indoleacetic acid, and the concentration of IAA in its fermentation broth is about 3. 32 mg · m L~(-1). In this study, the genetic transformation system of F. oxysporum is successfully constructed, and the ATMT system is efficient and stable. One transformant with both high staining efficiency and genetic stability is selected, and the restaining rate of the transformant in G. uralensis is 76. 92%, which could significantly improve the main root length of one-month-old G. uralensis seedlings and promote the growth and development of G. uralensis seedlings. The results of this study can lay the foundation for the development of biological bacterial fertilizer and the growth regulation of high-quality G. uralensis.


Subject(s)
Fusarium , Glycyrrhiza uralensis , Transformation, Genetic , Fusarium/genetics , Fusarium/growth & development , Fusarium/metabolism , Glycyrrhiza uralensis/genetics , Glycyrrhiza uralensis/microbiology , Glycyrrhiza uralensis/growth & development , Indoleacetic Acids/metabolism , Agrobacterium tumefaciens/genetics , Salt Tolerance/genetics
11.
Proc Natl Acad Sci U S A ; 121(29): e2320470121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38990951

ABSTRACT

Although the formation of new walls during plant cell division tends to follow maximal tensile stress direction, analyses of individual cells over time reveal a much more variable behavior. The origin of such variability as well as the exact role of interphasic microtubule behavior before cell division have remained mysterious so far. To approach this question, we took advantage of the Arabidopsis stem, where the tensile stress pattern is both highly anisotropic and stable. Although cortical microtubules (CMTs) generally align with maximal tensile stress, we detected a specific time window, ca. 3 h before cell division, where cells form a radial pattern of CMTs. This microtubule array organization preceded preprophase band (PPB) formation, a transient CMT array predicting the position of the future division plane. It was observed under different growth conditions and was not related to cell geometry or polar auxin transport. Interestingly, this cortical radial pattern correlated with the well-documented increase of cytoplasmic microtubule accumulation before cell division. This radial organization was prolonged in cells of the trm678 mutant, where CMTs are unable to form a PPB. Whereas division plane orientation in trm678 is noisier, we found that cell division symmetry was in contrast less variable between daughter cells. We propose that this "radial step" reflects a trade-off in robustness for two essential cell division attributes: symmetry and orientation. This involves a "reset" stage in G2, where an increased cytoplasmic microtubule accumulation transiently disrupts CMT alignment with tissue stress.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cell Division , Microtubules , Arabidopsis/metabolism , Arabidopsis/cytology , Microtubules/metabolism , Cell Division/physiology , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Indoleacetic Acids/metabolism
12.
Plant Mol Biol ; 114(4): 82, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954114

ABSTRACT

Transcription factors in coordination with phytohormones form an intricate regulatory network modulating vital cellular mechanisms like development, growth and senescence in plants. In this study, we have functionally characterized the transcription factor OsNAC121 by developing gene silencing and overexpressing transgenic rice plants, followed by detailed analyses of the plant architecture. Transgenic lines exhibited remodelling in crown root development, lateral root structure and density, tiller height and number, panicle and grain morphologies, underpinning the imbalanced auxin: cytokinin ratio due to perturbed auxin transportation. Application of cytokinin, auxin and abscisic acid increased OsNAC121 gene expression nearly 17-, 6- and 91-folds, respectively. qRT-PCR results showed differential expressions of auxin and cytokinin pathway genes, implying their altered levels. A 47-fold higher expression level of OsNAC121 during milky stage in untransformed rice, compared to 14-day old shoot tissue, suggests its crucial role in grain filling; as evidenced by a large number of undeveloped grains produced by the gene silenced lines. Crippled gravitropic response by the transgenic plants indicates their impaired auxin transport. Bioinformatics revealed that OsNAC121 interacts with co-repressor (TOPLESS) proteins and forms a part of the inhibitor complex OsIAA10, an essential core component of auxin signalling pathway. Therefore, OsNAC121 emerges as an important regulator of various aspects of plant architecture through modulation of crosstalk between auxin and cytokinin, altering their concentration gradient in the meristematic zones, and consequently modifying different plant organogenesis processes.


Subject(s)
Cytokinins , Gene Expression Regulation, Plant , Indoleacetic Acids , Oryza , Plant Growth Regulators , Plant Proteins , Plant Roots , Plants, Genetically Modified , Transcription Factors , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Indoleacetic Acids/metabolism , Cytokinins/metabolism , Plant Growth Regulators/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Abscisic Acid/metabolism , Edible Grain/genetics , Edible Grain/growth & development , Edible Grain/metabolism
13.
Microbiol Res ; 286: 127823, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38959523

ABSTRACT

Plant-associated streptomycetes play important roles in plant growth and development. However, knowledge of volatile-mediated crosstalk between Streptomyces spp. and plants remains limited. In this study, we investigated the impact of volatiles from nine endophytic Streptomyces strains on the growth and development of plants. One versatile strain, Streptomyces setonii WY228, was found to significantly promote the growth of Arabidopsis thaliana and tomato seedlings, confer salt tolerance, and induce early flowering and increased fruit yield following volatile treatment. Analysis of plant growth-promoting traits revealed that S. setonii WY228 could produce indole-3-acetic acid, siderophores, ACC deaminase, fix nitrogen, and solubilize inorganic phosphate. These capabilities were further confirmed through genome sequencing and analysis. Volatilome analysis indicated that the volatile organic compounds emitted from ISP-2 medium predominantly comprised sesquiterpenes and 2-ethyl-5-methylpyrazine. Further investigations showed that 2-ethyl-5-methylpyrazine and sesquiterpenoid volatiles were the primary regulators promoting growth, as confirmed by experiments using the terpene synthesis inhibitor phosphomycin, pure compounds, and comparisons of volatile components. Transcriptome analysis, combined with mutant and inhibitor studies, demonstrated that WY228 volatiles promoted root growth by activating Arabidopsis auxin signaling and polar transport, and enhanced root hair development through ethylene signaling activation. Additionally, it was confirmed that volatiles can stimulate plant abscisic acid signaling and activate the MYB75 transcription factor, thereby promoting anthocyanin synthesis and enhancing plant salt stress tolerance. Our findings suggest that aerial signaling-mediated plant growth promotion and abiotic stress tolerance represent potentially overlooked mechanisms of Streptomyces-plant interactions. This study also provides an exciting strategy for the regulation of plant growth and the improvement of horticultural crop yields within sustainable agricultural practices.


Subject(s)
Arabidopsis , Indoleacetic Acids , Salt Tolerance , Streptomyces , Volatile Organic Compounds , Arabidopsis/growth & development , Arabidopsis/microbiology , Streptomyces/metabolism , Volatile Organic Compounds/metabolism , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Plant Development/drug effects , Salt Stress , Signal Transduction , Plant Roots/microbiology , Plant Roots/growth & development , Seedlings/growth & development , Seedlings/microbiology , Seedlings/metabolism , Gene Expression Regulation, Plant , Carbon-Carbon Lyases/metabolism , Phosphates/metabolism
14.
Microbiol Res ; 286: 127798, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38964073

ABSTRACT

Phyllosphere microbiota play a crucial role in plant productivity and adaptation, and the abundant and rare microbial taxa often possess distinct characteristics and ecological functions. However, it is unclear whether the different subcommunities of phyllosphere microbiota respond variably to the factors that influence their formation, which limits the understanding of community assembly. The effects of two phytohormones, namely, indole-3-acetic acid (IAA) and N6-(delta 2-isopentenyl)-adenine (IP), on the phyllosphere microbial subcommunities of Eucommia ulmoides were investigated using potted experiments. The results demonstrated that the phytohormones induced significant variations in the composition, diversity, and function of the abundant microbial subcommunity in the phyllosphere of E. ulmoides, however, their effects on the rare subcommunity were negligible, and their effects on the moderate subcommunity were between those of the abundant and rare taxa. The phytohormones also induced significant alterations in the phenotypic and physiological properties of E. ulmoides, which indirectly affected the phyllosphere microbial community. Leaf thickness and average leaf area were the main phenotypic variables that affected the composition of the phyllosphere microbial community. The total alkaloid content and activity of superoxide dismutase (SOD) were the main physiological variables that affected the composition of the phyllosphere microbial community. The phenotypic and physiological indices of E. ulmoides explained the variations in the phyllosphere microbial subcommunities in descending order: abundant > moderate > rare taxa. These variables explained a significant proportion of the variations in the abundant taxa, and an insignificant proportion of the variations in the rare taxa. This study improves our understanding of the assembly of the phyllosphere microbiota, which provides important theoretical knowledge for future sustainable agriculture and forestry management based on the precise regulation of phyllosphere microbiota.


Subject(s)
Bacteria , Eucommiaceae , Indoleacetic Acids , Microbiota , Plant Growth Regulators , Plant Leaves , Plant Growth Regulators/metabolism , Eucommiaceae/microbiology , Plant Leaves/microbiology , Indoleacetic Acids/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Phylogeny
15.
Microbiol Res ; 286: 127818, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38970906

ABSTRACT

The agricultural land in the Indian Himalayan region (IHR) is susceptible to various spells of snowfall, which can cause nutrient leaching, low temperatures, and drought conditions. The current study, therefore, sought an indigenous psychrotrophic plant growth-promoting (PGP) bacterial inoculant with the potential to alleviate crop productivity under cold and drought stress. Psychrotrophic bacteria preisolated from the night-soil compost of the Lahaul Valley of northwestern Himalaya were screened for phosphate (P) and potash (K) solubilization, nitrogen fixation, indole acetic acid (IAA) production, siderophore and HCN production) in addition to their tolerance to drought conditions for consortia development. Furthermore, the effects of the selected consortium on the growth and development of wheat (Triticum aestivum L.) and maize (Zea mays L.) were assessed in pot experiments under cold semiarid conditions (50 % field capacity). Among 57 bacteria with P and K solubilization, nitrogen fixation, IAA production, siderophore and HCN production, Pseudomonas protegens LPH60, Pseudomonas atacamensis LSH24, Psychrobacter faecalis LUR13, Serratia proteamaculans LUR44, Pseudomonas mucidolens LUR70, and Glutamicibacter bergerei LUR77 exhibited tolerance to drought stress (-0.73 MPa). The colonization of wheat and maize seeds with these drought-tolerant PGP strains resulted in a germination index >150, indicating no phytotoxicity under drought stress. Remarkably, a particular strain, Pseudomonas sp. LPH60 demonstrated antagonistic activity against three phytopathogens Ustilago maydis, Fusarium oxysporum, and Fusarium graminearum. Treatment with the consortium significantly increased the foliage (100 % and 160 %) and root (200 % and 133 %) biomasses of the wheat and maize plants, respectively. Furthermore, whole-genome sequence comparisons of LPH60 and LUR13 with closely related strains revealed genes associated with plant nutrient uptake, phytohormone synthesis, siderophore production, hydrogen cyanide (HCN) synthesis, volatile organic compound production, trehalose and glycine betaine transport, cold shock response, superoxide dismutase activity, and gene clusters for nonribosomal peptide synthases and polyketide synthetases. With their PGP qualities, biocontrol activity, and ability to withstand environmental challenges, the developed consortium represents a promising cold- and drought-active PGP bioinoculant for cereal crops grown in cold semiarid regions.


Subject(s)
Cold Temperature , Crops, Agricultural , Droughts , Indoleacetic Acids , Siderophores , Soil Microbiology , Triticum , Zea mays , Triticum/microbiology , Zea mays/microbiology , Zea mays/growth & development , Crops, Agricultural/microbiology , Indoleacetic Acids/metabolism , Siderophores/metabolism , Nitrogen Fixation , India , Hydrogen Cyanide/metabolism , Bacteria/genetics , Bacteria/metabolism , Bacteria/classification , Microbial Consortia/genetics , Plant Roots/microbiology , Phosphates/metabolism , Fusarium/genetics , Stress, Physiological , Plant Diseases/microbiology , Plant Growth Regulators/metabolism , Pseudomonas/genetics , Pseudomonas/metabolism
16.
BMC Genomics ; 25(1): 682, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982341

ABSTRACT

BACKGROUND: Green foxtail [Setaria viridis (L.)] is one of the most abundant and troublesome annual grass weeds in alfalfa fields in Northeast China. Synthetic auxin herbicide is widely used in agriculture, while how auxin herbicide affects tillering on perennial grass weeds is still unclear. A greenhouse experiment was conducted to examine the effects of auxin herbicide 2,4-D on green foxtail growth, especially on tillers. RESULTS: In the study, 2,4-D isooctyl ester was used. There was an inhibition of plant height and fresh weight on green foxtail after application. The photosynthetic rate of the leaves was dramatically reduced and there was an accumulation of malondialdehyde (MDA) content. Moreover, applying 2,4-D isooctyl ester significantly reduced the tillering buds at rates between 2100 and 8400 ga. i. /ha. Transcriptome results showed that applying 2,4-D isooctyl ester on leaves affected the phytohormone signal transduction pathways in plant tillers. Among them, there were significant effects on auxin, cytokinin, abscisic acid (ABA), gibberellin (GA), and brassinosteroid signaling. Indeed, external ABA and GA on leaves also limited tillering in green foxtail. CONCLUSIONS: These data will be helpful to further understand the responses of green foxtail to 2, 4-D isooctyl ester, which may provide a unique perspective for the development and identification of new target compounds that are effective against this weed species.


Subject(s)
2,4-Dichlorophenoxyacetic Acid , Herbicides , Plant Growth Regulators , Setaria Plant , 2,4-Dichlorophenoxyacetic Acid/pharmacology , Setaria Plant/drug effects , Setaria Plant/genetics , Setaria Plant/metabolism , Setaria Plant/growth & development , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Herbicides/pharmacology , Plant Leaves/drug effects , Plant Leaves/metabolism , Indoleacetic Acids/metabolism , Indoleacetic Acids/pharmacology , Gene Expression Regulation, Plant/drug effects , Photosynthesis/drug effects , Gibberellins/pharmacology , Gibberellins/metabolism , Signal Transduction/drug effects , Transcriptome/drug effects , Esters
17.
Antonie Van Leeuwenhoek ; 117(1): 99, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985203

ABSTRACT

A novel Gram-negative, white-pigmented, and auxin-producing strain, 20NA77.5T, was isolated from fresh water during cyanobacterial bloom period. Pairwise comparison of the 16S rRNA gene sequences showed that strain 20NA77.5T belonged to the genus Undibacterium and exhibited the highest sequence similarity to the type strains of Undibacterium danionis (98.00%), Undibacterium baiyunense (97.93%), Undibacterium macrobrachii (97.92%), and Undibacterium fentianense (97.71%). The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain 20NA77.5T and its related type strains were below 79.93 and 23.80%, respectively. The predominant fatty acids (> 10% of the total fatty acids) were C16:0 and summed feature 3 (C16:1ω7c and/or C16:1ω6c). The genomic DNA G + C content of strain 20NA77.5T was found to be 48.61%. Based on the phylogenetic distinctness, chemotaxonomic features, and phenotypic features, strain 20NA77.5T is considered to represent a novel species of the genus Undibacterium, for which the name Undibacterium cyanobacteriorum sp. nov is proposed. The type strain is 20NA77.5T (= KCTC 8005T = LMG 33136T).


Subject(s)
Bacterial Typing Techniques , Base Composition , Cyanobacteria , DNA, Bacterial , Fatty Acids , Fresh Water , Indoleacetic Acids , Phylogeny , RNA, Ribosomal, 16S , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Fresh Water/microbiology , Indoleacetic Acids/metabolism , Fatty Acids/analysis , Cyanobacteria/genetics , Cyanobacteria/classification , Cyanobacteria/isolation & purification , Cyanobacteria/metabolism , Nucleic Acid Hybridization , Sequence Analysis, DNA , Water Microbiology
18.
Planta ; 260(2): 54, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012577

ABSTRACT

MAIN CONCLUSION: phytoglobin1 positively regulates root bending in hypoxic Arabidopsis roots through regulation of ethylene response factors and auxin transport. Hypoxia-induced root bending is known to be mediated by the redundant activity of the group VII ethylene response factors (ERFVII) RAP2.12 and HRE2, causing changes in polar auxin transport (PAT). Here, we show that phytoglobin1 (Pgb1), implicated in hypoxic adaptation through scavenging of nitric oxide (NO), can alter root direction under low oxygen. Hypoxia-induced bending is exaggerated in roots over-expressing Pgb1 and attenuated in those where the gene is suppressed. These effects were attributed to Pgb1 repressing both RAP2.12 and HRE2. Expression, immunological and genetic data place Pgb1 upstream of RAP2.12 and HRE2 in the regulation of root bending in oxygen-limiting environments. The attenuation of slanting in Pgb1-suppressing roots was associated with depletion of auxin activity at the root tip because of depression in PAT, while exaggeration of root bending in Pgb1-over-expressing roots with the retention of auxin activity. Changes in PIN2 distribution patterns, suggestive of redirection of auxin movement during hypoxia, might contribute to the differential root bending responses of the transgenic lines. In the end, Pgb1, by regulating NO levels, controls the expression of 2 ERFVIIs which, in a cascade, modulate PAT and, therefore, root bending.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Indoleacetic Acids , Oxygen , Plant Roots , Signal Transduction , Indoleacetic Acids/metabolism , Plant Roots/metabolism , Plant Roots/genetics , Plant Roots/physiology , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Oxygen/metabolism , Gene Expression Regulation, Plant , Ethylenes/metabolism , Nitric Oxide/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Biological Transport , DNA-Binding Proteins
19.
Plant Cell Rep ; 43(7): 188, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38960994

ABSTRACT

KEY MESSAGE: BIG regulates ground tissue formative divisions by bridging the auxin gradient with SHR abundance in Arabidopsis roots. The formative divisions of cortex/endodermis initials (CEIs) and CEI daughter cells (CEIDs) in Arabidopsis roots are coordinately controlled by the longitudinal auxin gradient and the radial SHORT ROOT (SHR) abundance. However, the mechanism underlying this coordination remains poorly understood. In this study, we demonstrate that BIG regulates ground tissue formative divisions by bridging the auxin gradient with SHR abundance. Mutations in BIG gene repressed cell cycle progression, delaying the formative divisions within the ground tissues and impairing the establishment of endodermal and cortical identities. In addition, we uncovered auxin's suppressive effect on BIG expression, triggering CYCLIND6;1 (CYCD6;1) activation in an SHR-dependent fashion. Moreover, the degradation of RETINOBLASTOMA-RELATED (RBR) is jointly regulated by BIG and CYCD6;1. The loss of BIG function led to RBR protein accumulation, detrimentally impacting the SHR/SCARECROW (SCR) protein complex and the CEI/CEID formative divisions. Collectively, these findings shed light on a fundamental mechanism wherein BIG intricately coordinates the interplay between SHR/SCR and auxin, steering ground tissue patterning within Arabidopsis root tissue.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Indoleacetic Acids , Plant Roots , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/cytology , Indoleacetic Acids/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Plant Roots/cytology , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/genetics , Asymmetric Cell Division , Mutation/genetics , Stem Cells/metabolism , Stem Cells/cytology , Cyclins/metabolism , Cyclins/genetics , Calmodulin-Binding Proteins , Transcription Factors
20.
Gut Microbes ; 16(1): 2374608, 2024.
Article in English | MEDLINE | ID: mdl-38972055

ABSTRACT

With the increasing of aging population and the consumption of high-fat diets (HFD), the incidence of Alzheimer's disease (AD) has skyrocketed. Natural antioxidants show promising potential in the prevention of AD, as oxidative stress and neuroinflammation are two hallmarks of AD pathogenesis. Here, we showed that quinic acid (QA), a polyphenol derived from millet, significantly decreased HFD-induced brain oxidative stress and neuroinflammation and the levels of Aß and p-Tau. Examination of gut microbiota suggested the improvement of the composition of gut microbiota in HFD mice after QA treatment. Metabolomic analysis showed significant increase of gut microbial tryptophan metabolites indole-3-acetic acid (IAA) and kynurenic acid (KYNA) by QA. In addition, IAA and KYNA showed negative correlation with pro-inflammatory factors and AD indicators. Further experiments on HFD mice proved that IAA and KYNA could reproduce the effects of QA that suppress brain oxidative stress and inflammation and decrease the levels of of Aß and p-Tau. Transcriptomics analysis of brain after IAA administration revealed the inhibition of DR3/IKK/NF-κB signaling pathway by IAA. In conclusion, this study demonstrated that QA could counteract HFD-induced brain oxidative stress and neuroinflammation by regulating inflammatory DR3/IKK/NF-κB signaling pathway via gut microbial tryptophan metabolites.


Subject(s)
Brain , Diet, High-Fat , Gastrointestinal Microbiome , Mice, Inbred C57BL , NF-kappa B , Oxidative Stress , Quinic Acid , Signal Transduction , Tryptophan , Animals , Gastrointestinal Microbiome/drug effects , Tryptophan/metabolism , Diet, High-Fat/adverse effects , Mice , NF-kappa B/metabolism , Signal Transduction/drug effects , Male , Oxidative Stress/drug effects , Quinic Acid/analogs & derivatives , Quinic Acid/pharmacology , Quinic Acid/metabolism , Brain/metabolism , Brain/drug effects , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/prevention & control , I-kappa B Kinase/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/prevention & control , Indoleacetic Acids/metabolism , Kynurenic Acid/metabolism , Inflammation/metabolism , Inflammation/drug therapy , Inflammation/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL