Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.404
1.
Se Pu ; 42(5): 445-451, 2024 Apr 08.
Article Zh | MEDLINE | ID: mdl-38736387

Mycotoxins are toxic secondary metabolites produced by fungal species that can cause acute, subacute, and chronic toxicity in humans and animals. Thus, these toxins pose a significant threat to health and safety. Owing to the lack of effective antimold measures in the agricultural industry, feed ingredients such as corn, peanuts, wheat, barley, millet, nuts, oily feed, forage, and their byproducts are prone to mold and mycotoxin contamination, which can affect animal production, product quality, and safety. Cyclopiazonic acid (CPA), which is mainly biosynthesized from mevalonate, tryptophan, and diacetate units, is a myotoxic secondary metabolite produced by Penicillium and Aspergillus fungi. CPA is widely present as a copollutant with aflatoxins in various crops. Compared with some common mycotoxins such as aflatoxins, fumonisins, ochratoxins, zearalenones, and their metabolites, CPA has not been well investigated. In the United States, a survey showed that 51% of corn and 90% of peanut samples contained CPA, with a maximum level of 2.9 mg/kg. In Europe, CPA was found in Penicillium-contaminated cheeses as high as 4.0 mg/kg. Some studies have shown that CPA can cause irreversible damage to organs such as the liver and spleen in mice. Therefore, the establishment of a rapid and efficient analytical method for CPA is of great significance for the risk assessment of CPA in feeds, the development of standard limits, and the protection of feed product quality and safety. The QuEChERS method, a sample pretreatment method that is fast, simple, cheap, effective, and safe, is widely used in the analysis of pesticide residues in food. In this study, a modified QuEChERS method combined with ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to determine CPA levels in feeds. The chromatographic separation and MS detection of CPA as well as the key factors affecting the extraction efficiency of CPA, including the type of extraction solvent, type of inorganic salt, and type and dosage of adsorbent, were optimized in detail. During the optimization of the chromatographic-separation step, the acid and salt concentrations of the mobile phase affected the separation and detection of CPA. During the optimization of the QuEChERS method, the addition of a certain amount of acetic acid improved the extraction efficiency of CPA because of its acidic nature; in addition, GCB and PSA significantly adsorbed CPA from the feed extract. Under optimal conditions, the CPA in the feed sample (1.0 g) was extracted with 2 mL of water and 4 mL of acetonitrile (ACN) containing 0.5% acetic acid. After salting out with 0.4 g of NaCl and 1.6 g of MgSO4, 1 mL of the ACN supernatant was purified by dispersive solid-phase extraction using 150 mg of MgSO4 and 50 mg of C18 and analyzed by UPLC-MS/MS. The sample was separated on a Waters HSS T3 column (100 mm×2.1 mm, 1.8 µm) using 2 mmol/L ammonium acetate aqueous solution with 0.5% formic acid and ACN as the mobile phases and then analyzed by positive electrospray ionization in multiple reaction monitoring mode. CPA exhibited good linearity in the range of 2-200 ng/mL, with a high correlation coefficient (r=0.9995). The limits of detection and quantification of CPA, which were calculated as 3 and 10 times the signal-to-noise ratio, respectively, were 0.6 and 2.0 µg/kg, respectively. The average recoveries in feed samples spiked with 10, 100, and 500 µg/kg CPA ranged from 70.1% to 78.5%, with an intra-day precision of less than 5.8% and an inter-day precision of less than 7.2%, indicating the good accuracy and precision of the proposed method. Finally, the modified QuEChERS-UPLC-MS/MS method was applied to the analysis of CPA in 10 feed samples obtained from Wuhan market. The analysis results indicated that the developed method has good applicability for CPA analysis in feed samples. In summary, an improved QuEChERS method was applied to the extraction and purification of CPA from feeds for the first time; this method provides a suitable analytical method for the risk monitoring, assessment, and standard-limit setting of CPA in feed samples.


Animal Feed , Food Contamination , Indoles , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Animal Feed/analysis , Chromatography, High Pressure Liquid/methods , Food Contamination/analysis , Indoles/analysis , Mycotoxins/analysis
2.
Enzyme Microb Technol ; 178: 110440, 2024 Aug.
Article En | MEDLINE | ID: mdl-38574422

The manufacturing of indigo naturalis requires prolonged leaf soaking and lime stirring; the resulting indigo purity is less than 3.00% and the yield of indigo (measured in stems and leaves weight) is less than 0.50%, making it unsuitable for use in industrial procedures like printing and dyeing. An enzymatic method of creating indigo without the requirement for lime was investigated in order to generate high purity indigo. Single factor tests were performed to optimize the enzymatic preparation conditions. The findings showed that 60 °C, pH 5.5, 200 mL of leaves extract containing 0.45 mg/mL indican, and a 4:1 ratio of the acidic cellulose (activity: 9000 U/mL, liquid) to indican were the ideal parameters for enzymatic preparation. The yield of indigo was 40.32%, and the contents of indigo and indirubin were 37.37% and 2.30%, respectively. MALDI-TOF-MS in positive ion mode and UPLC-Q-TOF-MS in both positive and negative ion modes were used to analyze indigo extracts from Baphicacanthus cusia(Nees) Bremek by enzymatic preparation. It has been discovered that 13 alkaloids, 5 organic acids, 3 terpenoids, 3 steroids, 2 flavones, and 7 other compounds are present in indigo extracts. The presence of the indigo, indirubin, isorhamnetin, tryptanthrin, indigodole B, and indigodole C determined by UPLC-Q-TOF-MS was verified by MALDI-TOF-MS analysis. The enzymatic preparation of indigo extracts kept the same chemical makeup as conventional indigo naturalis. Thermal analysis and SEM morphology were used to confirm that there was no lime in the indigo extract. During the enzymatic process, Baphicacanthus cusia (Nees) Bremek was employed more effectively, increasing the yield and purity of indigo.


Acanthaceae , Indigo Carmine , Plant Leaves , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Indigo Carmine/chemistry , Plant Leaves/chemistry , Acanthaceae/chemistry , Plant Extracts/chemistry , Chromatography, High Pressure Liquid , Indoles/chemistry , Indoles/analysis , Indican
3.
Anal Biochem ; 658: 114932, 2022 12 01.
Article En | MEDLINE | ID: mdl-36191667

"Boar taint" compounds influence the sexual behavioral responses of sows and stimulate their reproduction. This paper reports a fast, easier, and a non-invasive analytical method for the analysis of three "boar taint" compounds in boar' saliva samples: androstenone, androsten-3α-ol, and androsten-3ß-ol. This method was developed and validated based on solid-phase extraction (SPE) and multidimensional gas chromatography-mass spectrometry (MDGC-MS). All the compounds were detected without derivatization. This method affords good reproducibility (4%-8%), accuracy (80%-105%), precision (5.5%-9.1%), linearity (R2 = 0.98-0.99), and lower limits of quantitation (LLOQ) (0.1-0.2 µg/L). Although the presence of these compounds in saliva has been known for a long time, no simple and easy analytical method has been developed.


Skatole , Sterols , Swine , Animals , Male , Female , Skatole/analysis , Saliva/chemistry , Reproducibility of Results , Indoles/analysis
4.
Molecules ; 27(20)2022 Oct 12.
Article En | MEDLINE | ID: mdl-36296410

Camellia vietnamensis Huang is an important woody oil crop in China, which has attracted much attention because of its abundant nutritional components and pharmaceutical value. Its seeds undergo a complex series of physiological and biochemical changes during maturation, with consequent alterations in metabolites. In order to investigate the endogenous metabolism of C. vietnamensis on Hainan Island during seed development, in this study, ultra-high-performance liquid tandem chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF-MS) and multivariate statistical analysis (MSA) were used to analyze the differences in the chemical compounds of C. vietnamensis seeds among the four maturation stages. A total of 293 metabolites were identified from the methanol extract of the seeds of C. vietnamensis. Five metabolites, belonging to benzene and substituted derivatives, 5'-deoxyribonucleosides and linear 1,3-diarylpropanoids, were found in all three comparison groups, with consistently down-regulated trends. The Kyoto Encyclopedia of Genes and Genomes (KEGG) results showed that phloretin and 5'-methylthioadenosine were the differentially expressed metabolites when seeds were in the growth periods of S2 and S3, and indole and L-tryptophan were the differentially expressed metabolites when seeds were in the growth periods of S3 and S4. In addition, 34 flavonoid metabolites were detected, of which 4 were differentially expressed. It was indicated that flavonoids dynamically change during all the oil-tea camellia seed development stages. The findings provide data for the better understanding of endogenous metabolic pathways during C. vietnamensis seed development.


Camellia , Methanol , Methanol/analysis , Tryptophan/analysis , Benzene , Chromatography, High Pressure Liquid/methods , Seeds/chemistry , Flavonoids/analysis , Plant Extracts/chemistry , Phloretin , Indoles/analysis , Deoxyribonucleosides , Pharmaceutical Preparations/analysis , Tea , Metabolomics/methods
5.
J Environ Manage ; 322: 116140, 2022 Nov 15.
Article En | MEDLINE | ID: mdl-36070652

Extensive presence of aromatic organic compounds (AOCs) is a major course for the non-biodegradability of coking wastewater (COW). In-depth understanding of bio-degradation of AOCs is crucial for optimizing the design and operation of COW biological treatment systems in practical applications. Herein, the behavior and fate of AOCs were explored in a lab-scale step-feed three-stage integrated A/O biofilter (SFTIAOB) treating synthetic COW. Long-term operation demonstrated that COD, phenol, indole, quinoline and pyridine could be simultaneously removed. Phenol and indole were chiefly removed by anoxic zones, while quinoline and pyridine removal occurred in both anoxic and aerobic zones. Ultraviolet-visible spectrum observed that initial carboxylation and subsequent ring cracking and mineralization. Infrared spectroscopy also confirmed that key functional groups were cracked and produced during AOCs bio-degradation. Three-dimensional fluorescence spectrum indicated that significant transformation and elimination of tryptophan and humic acid with high molecular weight. Ring cleavage, distinct degradation and even complete mineralization of complex AOCs were further verified by gas chromatography-mass spectrometry. Moreover, functional degrading bacteria and aromatic ring-cleavage enzymes was successfully identified. Finally, AOCs biodegradation mechanisms by alternating anoxic and aerobic treatment was unraveled. This research provides thorough insights on AOCs biodegradation using a step-feed multi-stage alternating anoxic/oxic COW treatment process.


Coke , Quinolines , Biodegradation, Environmental , Bioreactors/microbiology , Coke/analysis , Humic Substances/analysis , Indoles/analysis , Organic Chemicals/analysis , Phenol/analysis , Pyridines/analysis , Sewage/chemistry , Tryptophan , Waste Disposal, Fluid/methods , Wastewater/chemistry
6.
Mikrochim Acta ; 189(9): 334, 2022 08 16.
Article En | MEDLINE | ID: mdl-35970980

To accomplish ultra-sensitive detection of alpha-fetoprotein(AFP), a novel electrochemical immunosensor using polydopamine-coated Fe3O4 nanoparticles (PDA@Fe3O4 NPs) as a smart label and polyaniline (PANI) and Au NPs as substrate materials has been created. The sensor has the following advantages over typical immunoassay technology: (1) The pH reaction causes PDA@Fe3O4 NPs to release Prussian blue (PB) prosoma while also destroying the secondary antibody label and immunological platform and lowering electrode impedance; (2) PB has a highly efficient catalytic effect on H2O2, allowing for the obvious amplification of electrical impulses; (3) PANI was electrodeposited on the electrode surface to avoid PB loss and signal leakage, which effectively absorbed and fixed PB while considerably increasing electron transmission efficiency. The sensor's detection limit was 0.254 pg·mL-1 (S/N = 3), with a detection range of 1 pg·mL-1 to 100 ng·mL-1. The sensor has a high level of selectivity, repeatability, and stability, and it is predicted to be utilized to detect AFP in real-world samples.


Biosensing Techniques , alpha-Fetoproteins , Delayed-Action Preparations , Electrochemical Techniques , Ferric Compounds/chemistry , Gold , Hydrogen Peroxide , Hydrogen-Ion Concentration , Immunoassay , Indoles/analysis , Indoles/chemistry , Polymers/chemistry
7.
ACS Sens ; 7(4): 1194-1200, 2022 04 22.
Article En | MEDLINE | ID: mdl-35404587

We developed an organic solvent-compatible paper-based analytical device (PAD) for the quantitative analysis of indole, which is an indicator of shrimp freshness. Although indole is insoluble in water, ethyl acetate is a suitable solvent to dissolve and extract indole from shrimp. The PADs are fabricated using a cutting method that allows the use of an organic solvent because no hydrophobic barrier is needed to form fluidic channels. Ehrlich's reagent consists of 4-(dimethylamino)benzaldehyde and p-dimethylaminobenzaldehyde and was deposited onto the reaction zone of the PAD followed by lamination to prevent evaporation of the ethyl acetate. Samples are introduced into the PAD via immersion in organic sample solutions. When the PAD is immersed into an indole solution of ethyl acetate in a closed bottle, the sample solution penetrates the channel of the PAD and successively flows into the detection zone to form a hydrophilic colored product. The PADs provide a linear relationship between the logarithm of the indole concentration and the color intensity within a range of 1.0-20 ppm with correlation coefficients of r2 > 0.99. The limits of detection and quantification are 0.36 and 0.71 ppm, respectively. Relative standard deviations for both the intraday (n = 2) and interday (n = 3) precision were less than 2.5%. In the indole analysis of shrimp, the PADs separated the interfering orange-colored astaxanthin in the extract from the colored product of indole via the paper chromatographic principle. We used the PADs to investigate the degradation of shrimp, and the results showed a rapid increase in the indole level after 7 days. High-performance liquid chromatography verified the accuracy of the PADs by showing good agreement with the obtained indole levels.


Indoles , Plant Extracts , Indoles/analysis , Solvents
8.
Sci Rep ; 12(1): 4875, 2022 03 22.
Article En | MEDLINE | ID: mdl-35318378

Chemopreventive properties of Brassica vegetables are attributed mainly to their characteristic compounds-glucosinolates (GLs) and their main hydrolysis products-isothiocyanates (ITCs) and indoles. In this study, we compared antiproliferative activity (MTT test in HT29 cells) and genotoxic effects (comet assay in HT29 cells and restriction analysis in a cell-free system) of three GLs (sinigrin (SIN), glucotropaeolin (GTL), and glucobrassicin (GLB)) with that of their major degradation products. Intact GLs did not exhibit cytotoxic activity, possibly due to their limited bioavailability. However, in the presence of myrosinase (MYR), GLs gained the ability to inhibit HT29 cells' growth. The addition of MYR caused the hydrolysis of GLs to the corresponding ITCs or indoles, i.e. compounds that show stronger biological activity than parent GLs. Pure ITC/indole solutions showed the strongest antiproliferative activity. Based on the results of restriction analysis, it was found that GLs to a greater extent than ITCs caused DNA modification in a cell-free system. In the case of GLs, metabolic activation by the S9 fraction increased this effect, and at the same time changed the preferential binding site from the area of base pairs AT to GC base pairs. Of all compounds tested, only benzyl ITC caused DNA damage detectable in the comet assay, but it required relatively high concentrations.


Antineoplastic Agents , Brassica , Brassica/metabolism , DNA Damage , Glucosinolates/chemistry , Humans , Indoles/analysis , Indoles/toxicity , Isothiocyanates/chemistry , Isothiocyanates/pharmacology
9.
Toxins (Basel) ; 14(2)2022 02 10.
Article En | MEDLINE | ID: mdl-35202161

Cheese represents a dairy product extremely inclined to fungal growth and mycotoxin production. The growth of fungi belonging to Aspergillus, Penicillium, Fusarium, Claviceps, Alternaria, and Trichoderma genera in or on cheese leads to undesirable changes able to affect the quality of the final products. In the present investigation, a total of 68 types of commercial and traditional Slovak cheeses were analyzed to investigate the occurrence of fungal metabolites. Altogether, 13 fungal metabolites were identified and quantified. Aflatoxin M1, the only mycotoxin regulated in milk and dairy products, was not detected in any case. However, the presence of metabolites that have never been reported in cheeses, such as tryptophol at a maximum concentration level from 13.4 to 7930 µg/kg (average: 490 µg/kg), was recorded. Out of all detected metabolites, enniatin B represents the most frequently detected mycotoxin (0.06-0.71 µg/kg) in the analyzed samples. Attention is drawn to the lack of data on mycotoxins' origin from Slovak cheeses; in fact, this is the first reported investigation. Our results indicate the presence of fungal mycotoxin contamination for which maximum permissible levels are not established, highlighting the importance of monitoring the source and producers of contamination in order to protect consumers' health.


Cheese/analysis , Cheese/microbiology , Depsipeptides/analysis , Food Contamination/analysis , Indoles/analysis , Mycotoxins/analysis , Secondary Metabolism , Slovakia
10.
Apoptosis ; 27(3-4): 283-295, 2022 04.
Article En | MEDLINE | ID: mdl-35129730

P2Y receptors belong to the large superfamily of G-protein-coupled receptors and play a crucial role in cell death and survival. P2Y1 receptor has been identified as a marker for prostate cancer (PCa). A previously unveiled selective P2Y1 receptor agonist, the indoline-derived HIC (1-(1-((2-hydroxy-5-nitrophenyl)(4-hydroxyphenyl)methyl)indoline-4-carbonitrile), induces a series of molecular and biological responses in PCa cells PC3 and DU145, but minimal toxicity to normal cells. Here, we evaluated the combinatorial effect of HIC with abiraterone acetate (AA) targeted on androgen receptor (AR) on the inhibition of PCa cells. Here, the presence of HIC and AA significantly inhibited cell proliferation of PC3 and DU145 cells with time-dependent manner as a synerfistic combination. Moreover, it was also shown that the anticancer and antimetastasis effects of the combinratorial drugs were noticed through a decrease in colony-forming ability, cell migration, and cell invasion. In addition, the HIC + AA induced apoptotic population of PCa cells as well as cell cycle arrest in G1 progression phase. In summary, these studies show that the combination of P2Y1 receptor agonist, HIC and AR inhibitor, AA, effectively improved the antitumor activity of each drug. Thus, the combinatorial model of HIC and AA should be a novel and promising therapeutic strategy for treating prostate cancer.


Abiraterone Acetate , Prostatic Neoplasms , Purinergic P2Y Receptor Agonists , Abiraterone Acetate/pharmacology , Abiraterone Acetate/therapeutic use , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/therapeutic use , Apoptosis , Cell Line, Tumor , Cell Proliferation , Humans , Indoles/analysis , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Purinergic P2Y Receptor Agonists/therapeutic use , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Receptors, Purinergic P2Y1
12.
Mikrochim Acta ; 188(11): 402, 2021 Nov 03.
Article En | MEDLINE | ID: mdl-34731326

Synthetic cannabinoids are one of the many substances of abuse widely spreading in modern society. Medical practitioners and law enforcement alike highly seek portable, efficient, and reliable tools for on-site detection and diagnostics. Here, we propose a colorimetric lateral flow assay (LFA) combined with dye-loaded polymersome to detect the synthetic cannabinoid JWH-073 efficiently. Rhodamine B-loaded polymersome was conjugated to antibodies and fully characterized. Two LFA were proposed (sandwich and competitive), showing a high level of sensitivity with a limit of detection (LOD) reaching 0.53 and 0.31 ng/mL, respectively. The competitive assay was further analyzed by fluorescence, where the LOD reached 0.16 ng/mL. The application of the LFA over spiked synthetic saliva or real human saliva demonstrated an overall response of 94% for the sandwich assay and 97% for the competitive LFA. The selectivity of the system was assessed in the presence of various interferents. The analytical performance of the LFA system showed a coefficient of variation below 6%. The current LFA system appears as a plausible system for non-invasive detection of substance abuse and shows promise for synthetic cannabinoid on-site sensing.


Cannabinoids/analysis , Fluorescent Dyes/chemistry , Polyesters/chemistry , Polyethylene Glycols/chemistry , Rhodamines/chemistry , Substance Abuse Detection/methods , Antibodies, Immobilized/immunology , Cannabinoids/immunology , Colorimetry/instrumentation , Colorimetry/methods , Humans , Illicit Drugs/analysis , Illicit Drugs/immunology , Immunoassay/instrumentation , Immunoassay/methods , Indoles/analysis , Indoles/immunology , Limit of Detection , Naphthalenes/analysis , Naphthalenes/immunology , Paper , Reproducibility of Results , Saliva/chemistry , Substance Abuse Detection/instrumentation
13.
Toxins (Basel) ; 13(11)2021 11 12.
Article En | MEDLINE | ID: mdl-34822582

The aim of this study was to identify and compare surface mycobiota of traditional and industrial Croatian dry-fermented sausage Kulen, especially toxicogenic species, and to detect contamination with mycotoxins recognized as the most important for meat products. Identification of mould species was performed by sequence analysis of beta- tubulin and calmodulin gene, while the determination of mycotoxins aflatoxin B1 (AFB1), ochratoxin A (OTA), and cyclopiazonic acid (CPA) was carried out using the LC-MS/MS (liquid chromatography-tandem mass spectrometry) method. The results showed a significantly higher number of mould isolates and greater species (including of those mycotoxigenic) diversity in traditional Kulen samples in comparison with the industrial ones. P. commune, as a potential CPA-producer, was the most represented in traditional Kulen (19.0%), followed by P. solitum (16.6%), which was the most represented in industrial Kulen samples (23.8%). The results also showed that 69% of the traditional sausage samples were contaminated with either CPA or OTA in concentrations of up to 13.35 µg/kg and 6.95 µg/kg, respectively, while in the industrial samples only OTA was detected (in a single sample in the concentration of 0.42 µg/kg). Mycotoxin AFB1 and its producers were not detected in any of the analysed samples (

Food Contamination/analysis , Meat Products/analysis , Mycotoxins/analysis , Aflatoxin B1/analysis , Chromatography, Liquid , Fermentation , Fungi/isolation & purification , Indoles/analysis , Ochratoxins/analysis , Tandem Mass Spectrometry
14.
Int J Mol Sci ; 22(20)2021 Oct 13.
Article En | MEDLINE | ID: mdl-34681712

Cruciferous vegetables are gaining importance as nutritious and sustainable foods, rich in phytochemical compounds such as glucosinolates (GSLs). However, the breakdown products of these sulfur-based compounds, mainly represented by isothiocyanates (ITC) and indoles, can contribute to human health. In the human digestive system, the formation of these compounds continues to varying extents in the different stages of digestion, due to the contact of GSLs with different gastric fluids and enzymes under the physicochemical conditions of the gastrointestinal tract. Therefore, the aim of the present work was to uncover the effect of gastrointestinal digestion on the release of glucosinolates and their transformation into their bioactive counterparts by applying a simulated in vitro static model on a range of brassica (red radish, red cabbage, broccoli, and mustard) sprouts. In this sense, significantly higher bioaccessibility of ITC and indoles from GSLs of red cabbage sprouts was observed in comparison with broccoli, red radish, and mustard sprouts, due to the aliphatic GSLs proportion present in the different sprouts. This indicates that the bioaccessibility of GSLs from Brasicaceae sprouts is not exclusively associated with the initial content of these compounds in the plant material (almost negligible), but also with the release of GSLs and the ongoing breakdown reactions during the gastric and intestinal phases of digestion, respectively. Additionally, aliphatic GSLs provided higher bioaccessibility of their corresponding ITC in comparison to indolic and aromatic GSLs.


Brassica/metabolism , Glucosinolates/metabolism , Bioaccumulation , Brassica/chemistry , Brassica/growth & development , Chromatography, High Pressure Liquid , Digestion , Glucosinolates/analysis , Glucosinolates/chemistry , Humans , Indoles/analysis , Indoles/chemistry , Indoles/metabolism , Isothiocyanates/analysis , Isothiocyanates/chemistry , Isothiocyanates/metabolism , Seedlings/chemistry , Seedlings/metabolism , Tandem Mass Spectrometry
15.
PLoS One ; 16(10): e0258396, 2021.
Article En | MEDLINE | ID: mdl-34644349

We described, for the first time, a case of predation of a non-arthropod species by a dung beetle species. Canthon chalybaeus Blanchard, 1843 kills healthy individuals of the terrestrial snail Bulimulus apodemetes (D'Orbigny, 1835) showing an evident pattern of physical aggressiveness in the attacks using the dentate clypeus and the anterior tibiae. The description of this predatory behaviour was complemented with the analysis of the chemical secretions of the pygidial glands of C. chalybaeus, highlighting those main chemical compounds that, due to their potential toxicity, could contribute to death of the snail. We observed a high frequency of predatory interactions reinforcing the idea that predation in dung beetles is not accidental and although it is opportunistic it involves a series of behavioural sophistications that suggest an evolutionary pattern within Deltochilini that should not only be better studied from a behavioural point of view but also phylogenetically.


Coleoptera/physiology , Predatory Behavior , Snails/physiology , Animals , Exocrine Glands/chemistry , Exocrine Glands/metabolism , Gas Chromatography-Mass Spectrometry , Indoles/analysis , Indoles/isolation & purification , Methylamines/analysis , Methylamines/isolation & purification
16.
Rapid Commun Mass Spectrom ; 35(23): e9201, 2021 Dec 15.
Article En | MEDLINE | ID: mdl-34542924

RATIONALE: Interest in growth hormone secretagogues has intensified during the past several years based on capable, ever-widening investigational applications of recombinant growth hormone in animals and humans. Ibutamoren is a potent, long-acting, selective and orally active non-peptide growth hormone secretagogue, which has a great potential for abuse as a performance-enhancing agent in sports. METHODS: To support drug metabolism and pharmacokinetic studies of chiral pharmaceuticals, it is necessary to combine the resolving power of high-performance liquid chromatography with the sensitivity of mass spectrometric techniques. This paper describes the metabolic conversion of ibutamoren using equine liver microsomes and metabolite characterization using a QExactive high-resolution mass spectrometer. RESULTS: A total of 32 metabolites for ibutamoren (20 phase I and 12 phase II) were detected. The important findings of the current research are as follows: (1) the growth hormone secretagogue ibutamoren was prone to oxidation, resulting in corresponding hydroxylated metabolites; (2) in ibutamoren, the dissociation of the phenyl ring and 2-amino-2-methylpropanamide side chain was also observed; (3) the glucuronic acid conjugates of mono-, di- and trihydroxylated analogues were detected; and (4) no sulfonic acid conjugated metabolites were observed in this study of ibutamoren. CONCLUSIONS: The reported data help in the speedy detection of the growth hormone secretagogue ibutamoren and reveal its illegal use in competitive sports.


Indoles , Microsomes, Liver/metabolism , Secretagogues , Spiro Compounds , Animals , Chromatography, High Pressure Liquid/methods , Chromatography, High Pressure Liquid/standards , Doping in Sports , Horses , Indoles/analysis , Indoles/chemistry , Indoles/metabolism , Secretagogues/analysis , Secretagogues/chemistry , Secretagogues/metabolism , Spiro Compounds/analysis , Spiro Compounds/chemistry , Spiro Compounds/metabolism , Tandem Mass Spectrometry/methods , Tandem Mass Spectrometry/standards
17.
Angew Chem Int Ed Engl ; 60(46): 24418-24423, 2021 11 08.
Article En | MEDLINE | ID: mdl-34498345

The knowledge on sulfur incorporation mechanism involved in sulfur-containing molecule biosynthesis remains limited. Chuangxinmycin is a sulfur-containing antibiotic with a unique thiopyrano[4,3,2-cd]indole (TPI) skeleton and selective inhibitory activity against bacterial tryptophanyl-tRNA synthetase. Despite the previously reported biosynthetic gene clusters and the recent functional characterization of a P450 enzyme responsible for C-S bond formation, the enzymatic mechanism for sulfur incorporation remains unknown. Here, we resolve this central biosynthetic problem by in vitro biochemical characterization of the key enzymes and reconstitute the TPI skeleton in a one-pot enzymatic reaction. We reveal that the JAMM/MPN+ protein Cxm3 functions as a deubiquitinase-like sulfurtransferase to catalyze a non-classical sulfur-transfer reaction by interacting with the ubiquitin-like sulfur carrier protein Cxm4GG. This finding adds a new mechanism for sulfurtransferase in nature.


Anti-Bacterial Agents/biosynthesis , Bacterial Proteins/metabolism , Sulfurtransferases/metabolism , Actinoplanes/genetics , Actinoplanes/metabolism , Anti-Bacterial Agents/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Escherichia coli/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Indoles/analysis , Indoles/chemistry , Indoles/metabolism , Multigene Family , Pyrococcus/enzymology , Pyrococcus/genetics , Sulfur/metabolism , Sulfurtransferases/chemistry , Sulfurtransferases/genetics , Ubiquitination , Ubiquitins/genetics , Ubiquitins/metabolism
18.
J Forensic Sci ; 66(6): 2156-2166, 2021 Nov.
Article En | MEDLINE | ID: mdl-34431514

Herbal blends containing synthetic cannabinoids have become popular alternatives to marijuana. The number of synthetic cannabinoids and speed of their emergence enable this group of compounds particularly challenging in terms of detection, monitoring, and responding. In this work, both gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR) methods were developed for the identification and quantification of synthetic cannabinoids in herbal blends. Ten types of indole/indazole carboxamide synthetic cannabinoids, which showed different types of substitutions connected to nitrogen of the indole/indazole carboxamide, were detected in 36 herbal blends. The GC-MS fragmentation routes of indole/indazole carboxamide synthetic cannabinoids were discussed in detail for structure identification purpose. The concentration range of synthetic cannabinoid in 36 herbal blends was 1.9-50.6 mg/g using GC-MS method, while 1.5-49.0 mg/g by NMR method. Nicotine in herbal blends was quantified by NMR method without using reference material, and showed a variation of 5.3-44.7 mg/g. For quantitative analysis, NMR method showed great advantage in the absence of reference material, while GC-MS method showed great merit for multiple-compound analysis when reference material was available. Therefore, for the quantitative analysis of new emerged synthetic cannabinoid in herbal blends, different methods could be chosen by considering whether reference material is available, as well as the number and types of synthetic cannabinoids detected in a single sample.


Cannabinoids/chemistry , Indazoles/analysis , Indoles/analysis , Plant Preparations/chemistry , Synthetic Drugs/chemistry , Forensic Toxicology/methods , Gas Chromatography-Mass Spectrometry , Humans , Magnetic Resonance Spectroscopy
19.
J Sep Sci ; 44(17): 3295-3304, 2021 Sep.
Article En | MEDLINE | ID: mdl-34185396

An open tubular capillary electrochromatography column was prepared by immobilizing ß-cyclodextrin on the inner wall of pretreated capillary via noncovalent adsorption of polydopamine. The resulting coating layer on the capillary was characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. Electroosmotic flow was studied to evaluate the variation of the immobilized columns. The prepared columns showed good chiral separation performance toward five proton pump inhibitors including lansoprazole, pantoprazole, tenatoprazole, rabeprazole, and omeprazole. The influences of ß-cyclodextrin concentration, coating time, buffer pH, buffer concentration, and applied voltage on separation were investigated. In the optimum conditions, the enantiomers of five analytes were fully resolved within 15 min with high resolutions of 4.57 to 8.13. The method was extensively validated in terms of accuracy, precision, and linearity and proved to be robust. The relative standard deviation values for migration times and peak areas of the analytes representing intraday and interday were less than 1.9 and 3.6%, respectively. Further, the polydopamine/ß-cyclodextrin coated capillary column could be successively used over 100 runs without showing significant decrease in the separation efficiency.


Capillary Electrochromatography , Indoles/chemical synthesis , Polymers/chemical synthesis , Proton Pump Inhibitors/chemical synthesis , beta-Cyclodextrins/chemical synthesis , Indoles/analysis , Molecular Structure , Polymers/analysis , Proton Pump Inhibitors/analysis , Stereoisomerism , beta-Cyclodextrins/analysis
20.
Mikrochim Acta ; 188(6): 195, 2021 05 22.
Article En | MEDLINE | ID: mdl-34021787

Surface-enhanced infrared absorption spectroscopy offers an alternative to conventional IR spectroscopy and utilizes the signal enhancement exerted by the plasmon resonance of nanostructured metal thin films. Citrate-capped silver nanoparticles were prepared in a single-step method, and their morphology was identified using transmission electron microscopy, scanning electron microscopy, ultraviolet/visible spectrophotometry, and Zetasizer. The nanoparticles generated were deposited on the surface of cheap aluminum slides for different durations aiming for the selection of the best time producing a thin film, suitable to act as a lab-on-a-chip SEIRA substrate. These substrates were coupled to partial least squares regression tools for simultaneous resolving of the quinary mixture in commercial dosage forms of bisoprolol, perindopril, bisoprolol acid degradation product, bisoprolol alkali degradation product, and perindoprilat in concentration ranges of 15-75, 60-300, 15-55, 12-60, and 20-80 µg/mL with limits of detection values of 0.69, 3.43, 0.97, 1.25, and 1.09 µg/mL, respectively. Overall, we could demostrate that the localized surface plasmon resonance sensor coupled to chemometrics provides cheap, simple, selective, multiplex, rapid, and molecular specific procedures for impurity detection, which would be beneficial in many applications for quality control and quality accuracy of active pharmaceutical ingredients.


Aluminum/chemistry , Bisoprolol/analysis , Indoles/analysis , Perindopril/analysis , Bisoprolol/analogs & derivatives , Citric Acid/chemistry , Drug Contamination/prevention & control , Limit of Detection , Metal Nanoparticles/chemistry , Silver/chemistry , Spectrophotometry, Infrared , Surface Plasmon Resonance , Tablets/analysis
...