Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24.593
1.
PLoS One ; 19(6): e0304782, 2024.
Article En | MEDLINE | ID: mdl-38833447

PURPOSE: Pathological angiogenesis and vascular instability are observed in diabetic retinopathy (DR), diabetic macular edema (DME), and wet age-related macular degeneration (wAMD). Many receptor tyrosine kinases (RTKs) including vascular endothelial growth factor receptors (VEGFRs) contribute to angiogenesis, whereas the RTK TIE2 is important for vascular stability. Pan-VEGFR tyrosine kinase inhibitors (TKIs) such as vorolanib, sunitinib, and axitinib are of therapeutic interest over current antibody treatments that target only one or two ligands. This study compared the anti-angiogenic potential of these TKIs. METHODS: A kinase HotSpot™ assay was conducted to identify TKIs inhibiting RTKs associated with angiogenesis and vascular stability. Half-maximal inhibitory concentration (IC50) for VEGFRs and TIE2 was determined for each TKI. In vitro angiogenesis inhibition was investigated using a human umbilical vein endothelial cell sprouting assay, and in vivo angiogenesis was studied using the chorioallantoic membrane assay. Melanin binding was assessed using a melanin-binding assay. Computer modeling was conducted to understand the TIE2-axitinib complex as well as interactions between vorolanib and VEGFRs. RESULTS: Vorolanib, sunitinib, and axitinib inhibited RTKs of interest in angiogenesis and exhibited pan-VEGFR inhibition. HotSpot™ assay and TIE2 IC50 values showed that only axitinib potently inhibited TIE2 (up to 89%). All three TKIs effectively inhibited angiogenesis in vitro. In vivo, TKIs were more effective at inhibiting VEGF-induced angiogenesis than the anti-VEGF antibody bevacizumab. Of the three TKIs, only sunitinib bound melanin. TKIs differ in their classification and binding to VEGFRs, which is important because type II inhibitors have greater selectivity than type I TKIs. CONCLUSIONS: Vorolanib, sunitinib, and axitinib exhibited pan-VEGFR inhibition and inhibited RTKs associated with pathological angiogenesis. Of the three TKIs, only axitinib potently inhibited TIE2 which is an undesired trait as TIE2 is essential for vascular stability. The findings support the use of vorolanib for therapeutic inhibition of angiogenesis observed in DR, DME, and wAMD.


Angiogenesis Inhibitors , Axitinib , Human Umbilical Vein Endothelial Cells , Imidazoles , Indazoles , Indoles , Protein Kinase Inhibitors , Pyrroles , Receptors, Vascular Endothelial Growth Factor , Sunitinib , Axitinib/pharmacology , Humans , Sunitinib/pharmacology , Angiogenesis Inhibitors/pharmacology , Imidazoles/pharmacology , Pyrroles/pharmacology , Indoles/pharmacology , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Receptors, Vascular Endothelial Growth Factor/metabolism , Indazoles/pharmacology , Animals , Protein Kinase Inhibitors/pharmacology , Receptor, TIE-2/metabolism , Receptor, TIE-2/antagonists & inhibitors , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism
2.
PLoS One ; 19(6): e0297817, 2024.
Article En | MEDLINE | ID: mdl-38833479

Lentiviral vectors derived from human immunodeficiency virus type I are widely used to deliver functional gene copies to mammalian cells for research and gene therapies. Post-transcriptional splicing of lentiviral vector transgene in transduced host and transfected producer cells presents barriers to widespread application of lentiviral vector-based therapies. The present study examined effects of indole derivative compound IDC16 on splicing of lentiviral vector transcripts in producer cells and corresponding yield of infectious lentiviral vectors. Indole IDC16 was shown previously to modify alternative splicing in human immunodeficiency virus type I. Human embryonic kidney 293T cells were transiently transfected by 3rd generation backbone and packaging plasmids using polyethyleneimine. Reverse transcription-quantitative polymerase chain reaction of the fraction of unspliced genomes in human embryonic kidney 293T cells increased up to 31% upon the indole's treatment at 2.5 uM. Corresponding yield of infectious lentiviral vectors decreased up to 4.5-fold in a cell transduction assay. Adjusting timing and duration of IDC16 treatment indicated that the indole's disruption of early stages of transfection and cell cycle had a greater effect on exponential time course of lentiviral vector production than its reduction of post-transcriptional splicing. Decrease in transfected human embryonic kidney 293T proliferation by IDC16 became significant at 10 uM. These findings indicated contributions by early-stage transfection, cell proliferation, and post-transcriptional splicing in transient transfection of human embryonic kidney 293T cells for lentiviral vector production.


Alternative Splicing , Cell Proliferation , Genetic Vectors , Indoles , Lentivirus , Transfection , Humans , Indoles/pharmacology , Cell Proliferation/drug effects , Genetic Vectors/genetics , Lentivirus/genetics , Transfection/methods , HEK293 Cells
3.
J Cell Mol Med ; 28(9): e18329, 2024 May.
Article En | MEDLINE | ID: mdl-38693863

Therapy failure with the tyrosine kinase inhibitor (TKI) sunitinib remains a great challenge in metastatic renal cell carcinoma (mRCC). Growing evidence indicates that the tumour subpopulation can enter a transient, non-mutagenic drug-tolerant state to endure the treatment underlying the minimal residual disease and tumour relapse. Drug tolerance to sunitinib remains largely unexplored in RCC. Here, we show that sunitinib-tolerant 786-O/S and Caki-2/S cells are induced by prolonged drug treatment showing reduced drug sensitivity, enhanced clonogenicity, and DNA synthesis. Sunitinib-tolerance developed via dynamic processes, including (i) engagement of c-MET and AXL pathways, (ii) alteration of stress-induced p38 kinase and pro-survival BCL-2 signalling, (iii) extensive actin remodelling, which was correlated with activation of focal adhesion proteins. Remarkably, the acute drug response in both sensitive and sunitinib-tolerant cell lines led to dramatic fine-tuning of the actin-cytoskeleton and boosted cellular migration and invasion, indicating that the drug-response might depend on cell state transition rather than pre-existing mutations. The drug-tolerant state was transiently acquired, as the cells resumed initial drug sensitivity after >10 passages under drug withdrawal, reinforcing the concept of dynamic regulation and phenotypic heterogeneity. Our study described molecular events contributing to the reversible switch into sunitinib-tolerance, providing possible novel therapeutic opportunities in RCC.


Carcinoma, Renal Cell , Cell Movement , Drug Resistance, Neoplasm , Kidney Neoplasms , Sunitinib , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Sunitinib/pharmacology , Sunitinib/therapeutic use , Cell Line, Tumor , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Cell Movement/drug effects , Receptor Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Signal Transduction/drug effects , Proto-Oncogene Proteins c-met/metabolism , Proto-Oncogene Proteins c-met/genetics , Antineoplastic Agents/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Axl Receptor Tyrosine Kinase , Pyrroles/pharmacology , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Cell Proliferation/drug effects , Indoles/pharmacology
4.
Int J Nanomedicine ; 19: 4679-4699, 2024.
Article En | MEDLINE | ID: mdl-38803997

Background: Breast cancer is a heterogeneous disease globally accounting for approximately 1 million new cases annually. Chemotherapy remains the main therapeutic option, but the antitumor efficacy needs to be improved. Methods: Two multifunctional nanoparticles were developed in this paper using oleic acid and mPEG2k-PCL2k as the drug carriers. Squamocin (Squ) was employed as a chemotherapeutic agent. Resiquimod (R848) or ginsenoside Rh2 was co-encapsulated in the nanoparticles to remold the immunosuppressive tumor microenvironment, and IR780 was coloaded as a photosensitizer to realize photothermal therapy. Results: The obtained Squ-R848-IR780 nanoparticles and Squ-Rh2-IR780 nanoparticles were uniformly spherical and approximately (162.200 ± 2.800) nm and (157.300 ± 1.1590) nm, respectively, in average diameter, with good encapsulation efficiency (above 85% for each drug), excellent stability in various physiological media and high photothermal conversion efficiency (24.10% and 22.58%, respectively). After intravenous administration, both nanoparticles quickly accumulated in the tumor and effectively enhanced the local temperature of the tumor to over 45 °C when irradiated by an 808 nm laser. At a low dose of 0.1 mg/kg, Squ nanoparticles treatment alone displayed a tumor inhibition rate of 55.28%, pulmonary metastasis inhibition rate of 59.47% and a mean survival time of 38 days, which were all higher than those of PTX injection (8 mg/kg) (43.64%, 25 days and 37.25%), indicating that Squ was a potent and effective antitumor agent. Both multifunctional nanoparticles, Squ-Rh2-IR780 nanoparticles and Squ-R848-IR780 nanoparticles, demonstrated even better therapeutic efficacy, with tumor inhibition rates of 90.02% and 97.28%, pulmonary metastasis inhibition rates of 95.42% and 98.09, and mean survival times of 46 days and 52 days, respectively. Conclusion: The multifunctional nanoparticles coloaded with squamocin, R848 and IR 780 achieved extraordinary therapeutic efficacy and excellent antimetastasis activity and are thus promising in the future treatment of breast tumors and probably other tumors.


Breast Neoplasms , Indoles , Nanoparticles , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Animals , Nanoparticles/chemistry , Humans , Indoles/chemistry , Indoles/pharmacology , Cell Line, Tumor , Mice , Drug Carriers/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Photothermal Therapy/methods , Mice, Inbred BALB C , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/administration & dosage , Imidazoles/chemistry , Imidazoles/pharmacology , Imidazoles/administration & dosage , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Tumor Microenvironment/drug effects
5.
Molecules ; 29(9)2024 May 03.
Article En | MEDLINE | ID: mdl-38731618

Neurodegeneration is a gradual decay process leading to the depletion of neurons in both the central and peripheral nervous systems, ultimately resulting in cognitive dysfunctions and the deterioration of brain functions, alongside a decline in motor skills and behavioral capabilities. Neurodegenerative disorders (NDs) impose a substantial socio-economic strain on society, aggravated by the advancing age of the world population and the absence of effective remedies, predicting a negative future. In this context, the urgency of discovering viable therapies is critical and, despite significant efforts by medicinal chemists in developing potential drug candidates and exploring various small molecules as therapeutics, regrettably, a truly effective treatment is yet to be found. Nitrogen heterocyclic compounds, and particularly those containing the indole nucleus, which has emerged as privileged scaffold, have attracted particular attention for a variety of pharmacological applications. This review analyzes the rational design strategy adopted by different research groups for the development of anti-neurodegenerative indole-based compounds which have the potential to modulate various molecular targets involved in NDs, with reference to the most recent advances between 2018 and 2023.


Indoles , Neurodegenerative Diseases , Neuroprotective Agents , Humans , Indoles/chemistry , Indoles/pharmacology , Indoles/therapeutic use , Neurodegenerative Diseases/drug therapy , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/chemistry
6.
Int J Nanomedicine ; 19: 4163-4180, 2024.
Article En | MEDLINE | ID: mdl-38751660

Purpose: The study aimed to address the non-specific toxicity of cytotoxins (CTX) in liver cancer treatment and explore their combined application with the photosensitizer Ce6, co-loaded into carbonized Zn/Co bimetallic organic frameworks. The goal was to achieve controlled CTX release and synergistic photodynamic therapy, with a focus on evaluating anti-tumor activity against human liver cancer cell lines (Hep G2). Methods: Purified cobra cytotoxin (CTX) and photosensitizer Ce6 were co-loaded into carbonized Zn/Co bimetallic organic frameworks, resulting in RGD-PDA@C-ZIF@(CTX+Ce6). The formulation was designed with surface-functionalization using polydopamine and tumor-penetrating peptide RGD. This approach aimed to facilitate controlled CTX release and enhance the synergistic effect of photodynamic therapy. The accumulation of RGD-PDA@C-ZIF@(CTX+Ce6) at tumor sites was achieved through RGD's active targeting and the enhanced permeability and retention (EPR) effect. In the acidic tumor microenvironment, the porous structure of the metal-organic framework disintegrated, releasing CTX and Ce6 into tumor cells. Results: Experiments demonstrated that RGD-PDA@C-ZIF@(CTX+Ce6) nanoparticles, combined with near-infrared laser irradiation, exhibited optimal anti-tumor effects against human liver cancer cells. The formulation showcased heightened anti-tumor activity without discernible systemic toxicity. Conclusion: The study underscores the potential of utilizing metal-organic frameworks as an efficient nanoplatform for co-loading cytotoxins and photodynamic therapy in liver cancer treatment. The developed formulation, RGD-PDA@C-ZIF@(CTX+Ce6), offers a promising avenue for advancing the clinical application of cytotoxins in oncology, providing a solid theoretical foundation for future research and development.


Indoles , Liver Neoplasms , Metal-Organic Frameworks , Photochemotherapy , Photosensitizing Agents , Zinc , Humans , Photochemotherapy/methods , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Liver Neoplasms/drug therapy , Zinc/chemistry , Zinc/pharmacology , Indoles/chemistry , Indoles/pharmacology , Indoles/administration & dosage , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/administration & dosage , Animals , Hep G2 Cells , Cobalt/chemistry , Cobalt/pharmacology , Oligopeptides/chemistry , Oligopeptides/pharmacology , Oligopeptides/pharmacokinetics , Polymers/chemistry , Mice , Cytotoxins/chemistry , Cytotoxins/pharmacology , Cytotoxins/pharmacokinetics , Mice, Nude , Mice, Inbred BALB C , Cell Survival/drug effects
7.
J Nanobiotechnology ; 22(1): 264, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760771

Glioblastoma (GBM) is the most aggressive primary brain tumor with low survival rate. Currently, temozolomide (TMZ) is the first-line drug for GBM treatment of which efficacy is unfortunately hindered by short circulation time and drug resistance associated to hypoxia and redox tumor microenvironment. Herein, a dual-targeted and multi-responsive nanoplatform is developed by loading TMZ in hollow manganese dioxide nanoparticles functionalized by polydopamine and targeting ligands RAP12 for photothermal and receptor-mediated dual-targeted delivery, respectively. After accumulated in GBM tumor site, the nanoplatform could respond to tumor microenvironment and simultaneously release manganese ion (Mn2+), oxygen (O2) and TMZ. The hypoxia alleviation via O2 production, the redox balance disruption via glutathione consumption and the reactive oxygen species generation, together would down-regulate the expression of O6-methylguanine-DNA methyltransferase under TMZ medication, which is considered as the key to drug resistance. These strategies could synergistically alleviate hypoxia microenvironment and overcome TMZ resistance, further enhancing the anti-tumor effect of chemotherapy/chemodynamic therapy against GBM. Additionally, the released Mn2+ could also be utilized as a magnetic resonance imaging contrast agent for monitoring treatment efficiency. Our study demonstrated that this nanoplatform provides an alternative approach to the challenges including low delivery efficiency and drug resistance of chemotherapeutics, which eventually appears to be a potential avenue in GBM treatment.


Brain Neoplasms , Drug Resistance, Neoplasm , Glioblastoma , Manganese Compounds , Nanoparticles , Oxides , Temozolomide , Tumor Microenvironment , Glioblastoma/drug therapy , Glioblastoma/metabolism , Temozolomide/pharmacology , Temozolomide/therapeutic use , Tumor Microenvironment/drug effects , Drug Resistance, Neoplasm/drug effects , Humans , Cell Line, Tumor , Animals , Manganese Compounds/chemistry , Manganese Compounds/pharmacology , Nanoparticles/chemistry , Brain Neoplasms/drug therapy , Oxides/chemistry , Oxides/pharmacology , Mice , Drug Delivery Systems/methods , Indoles/chemistry , Indoles/pharmacology , Polymers/chemistry , Mice, Nude , Mice, Inbred BALB C , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Reactive Oxygen Species/metabolism
8.
J Biol Inorg Chem ; 29(3): 303-314, 2024 Apr.
Article En | MEDLINE | ID: mdl-38727821

This study demonstrates the potential of sono-photodynamic therapy as an effective approach for enhancing singlet oxygen generation using the synthesized Schiff-base diaxially substituted silicon phthalocyanines. In photochemical studies, the singlet oxygen quantum yields (Φ∆) were determined as 0.43 for Si1a, 0.94 for Q-Si1a, 0.58 for S-Si1a, and 0.49 for B-Sia1. In sono-photochemical studies, the Φ∆ values were reached to 0.67 for Si1a, 1.06 for Q-Si1a, 0.65 for S-Si1a, and 0.67 for B-Sia1. In addition, this study demonstrates the therapeutic efficacy of phthalocyanines synthesized as sensitizers on the PC3 prostate cancer cell line through in vitro experiments. The application of these treatment modalities exhibited notable outcomes, leading to a substantial decrease in cell viability within the PC3 prostate cancer cell line. These findings highlight the potential of utilizing these synthesized phthalocyanines as promising therapeutic agents for prostate cancer treatment.


Cell Survival , Indoles , Organosilicon Compounds , Prostatic Neoplasms , Schiff Bases , Singlet Oxygen , Humans , Indoles/chemistry , Indoles/pharmacology , Schiff Bases/chemistry , Schiff Bases/pharmacology , Male , Singlet Oxygen/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Organosilicon Compounds/chemistry , Organosilicon Compounds/pharmacology , Cell Survival/drug effects , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Drug Screening Assays, Antitumor , PC-3 Cells , Photochemotherapy , Photochemical Processes , Cell Line, Tumor , Molecular Structure
9.
J Nanobiotechnology ; 22(1): 275, 2024 May 22.
Article En | MEDLINE | ID: mdl-38778401

BACKGROUND: Acute gouty is caused by the excessive accumulation of Monosodium Urate (MSU) crystals within various parts of the body, which leads to a deterioration of the local microenvironment. This degradation is marked by elevated levels of uric acid (UA), increased reactive oxygen species (ROS) production, hypoxic conditions, an upsurge in pro-inflammatory mediators, and mitochondrial dysfunction. RESULTS: In this study, we developed a multifunctional nanoparticle of polydopamine-platinum (PDA@Pt) to combat acute gout by leveraging mild hyperthermia to synergistically enhance UA degradation and anti-inflammatory effect. Herein, PDA acts as a foundational template that facilitates the growth of a Pt shell on the surface of its nanospheres, leading to the formation of the PDA@Pt nanomedicine. Within this therapeutic agent, the Pt nanoparticle catalyzes the decomposition of UA and actively breaks down endogenous hydrogen peroxide (H2O2) to produce O2, which helps to alleviate hypoxic conditions. Concurrently, the PDA component possesses exceptional capacity for ROS scavenging. Most significantly, Both PDA and Pt shell exhibit absorption in the Near-Infrared-II (NIR-II) region, which not only endow PDA@Pt with superior photothermal conversion efficiency for effective photothermal therapy (PTT) but also substantially enhances the nanomedicine's capacity for UA degradation, O2 production and ROS scavenging enzymatic activities. This photothermally-enhanced approach effectively facilitates the repair of mitochondrial damage and downregulates the NF-κB signaling pathway to inhibit the expression of pro-inflammatory cytokines. CONCLUSIONS: The multifunctional nanomedicine PDA@Pt exhibits exceptional efficacy in UA reduction and anti-inflammatory effects, presenting a promising potential therapeutic strategy for the management of acute gout.


Gout , Indoles , Polymers , Reactive Oxygen Species , Uric Acid , Gout/drug therapy , Gout/metabolism , Gout/therapy , Reactive Oxygen Species/metabolism , Animals , Mice , Polymers/chemistry , Indoles/chemistry , Indoles/pharmacology , Nanoparticles/chemistry , Platinum/chemistry , Platinum/pharmacology , Platinum/therapeutic use , Humans , Hydrogen Peroxide/metabolism , Hyperthermia, Induced/methods , RAW 264.7 Cells , Photothermal Therapy/methods , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Male
10.
Sci Rep ; 14(1): 11788, 2024 05 23.
Article En | MEDLINE | ID: mdl-38783016

Fascaplysin is a red cytotoxic pigment with anticancer properties isolated from the marine sponge Fascaplysinopsis sp. Recently, structure-activity relationship analysis reported by our group suggested that selective cytotoxicity of fascaplysin derivatives towards tumor cells negatively correlates with their ability to intercalate into DNA. To validate this hypothesis, we synthesized 6- and 7-tert-butylfascaplysins which reveal mitigated DNA-intercalating properties. These derivatives were found to be strongly cytotoxic to drug-resistant human prostate cancer cells, albeit did not demonstrate improved selectivity towards cancer cells when compared to fascaplysin. At the same time, kinome analysis suggested an activation of CHK1/ATR axis in cancer cells shortly after the drug exposure. Further experiments revealed induction of replication stress that is eventually converted to the toxic DNA double-strand breaks, resulting in caspase-independent apoptosis-like cell death. Our observations highlight new DNA-targeting effect of some fascaplysin derivatives and indicate more complex structure-activity relationships within the fascaplysin family, suggesting that cytotoxicity and selectivity of these alkaloids are influenced by multiple factors. Furthermore, combination with clinically-approved inhibitors of ATR/CHK1 as well as testing in tumors particularly sensitive to the DNA damage should be considered in further studies.


Antineoplastic Agents , Checkpoint Kinase 1 , Humans , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Checkpoint Kinase 1/metabolism , Checkpoint Kinase 1/antagonists & inhibitors , Indoles/pharmacology , Indoles/chemistry , Apoptosis/drug effects , Structure-Activity Relationship , Male , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , DNA/metabolism , Animals , DNA Breaks, Double-Stranded/drug effects , Quaternary Ammonium Compounds , Carbolines , Indolizines
11.
Oncol Rep ; 52(1)2024 Jul.
Article En | MEDLINE | ID: mdl-38785163

Inotuzumab ozogamicin (IO), a novel therapeutic drug for relapsed or refractory acute lymphoblastic leukemia (RR)­(ALL), is a humanized anti­cluster of differentiation (CD) 22 monoclonal antibody conjugated with calicheamicin that causes DNA single­ and double­strand breaks. Although the efficacy of IO is significantly improved compared with that of conventional chemotherapies, the prognosis for RR­ALL remains poor, highlighting the need for more effective treatment strategies. The present study examined the role of DNA damage repair inhibition using the poly (ADP­ribose) polymerase (PARP) inhibitors olaparib or talazoparib on the enhancement of the antitumor effects of IO on B­ALL cells in vitro. The Reh, Philadelphia (Ph)­B­ALL and the SUP­B15 Ph+ B­ALL cell lines were used for experiments. Both cell lines were ~90% CD22+. The half­maximal inhibitory concentration (IC50) values of IO were 5.3 and 49.7 ng/ml for Reh and SUP­B15 cells, respectively. The IC50 values of IO combined with minimally toxic concentrations of olaparib or talazoparib were 0.8 and 2.9 ng/ml for Reh cells, respectively, and 36.1 and 39.6 ng/ml for SUP­B15 cells, respectively. The combination index of IO with olaparib and talazoparib were 0.19 and 0.56 for Reh cells and 0.76 and 0.89 for SUP­B15 cells, demonstrating synergistic effects in all combinations. Moreover, the addition of minimally toxic concentrations of PARP inhibitors augmented IO­induced apoptosis. The alkaline comet assay, which quantitates the amount of DNA strand breaks, was used to investigate the degree to which DNA damage observed 1 h after IO administration was repaired 6 h later, reflecting successful repair of DNA strand breaks. However, DNA strand breaks persisted 6 h after IO administration combined with olaparib or talazoparib, suggesting inhibition of the repair processes by PARP inhibitors. Adding olaparib or talazoparib thus synergized the antitumor effects of IO by inhibiting DNA strand break repair via the inhibition of PARP.


DNA Repair , Drug Synergism , Inotuzumab Ozogamicin , Phthalazines , Piperazines , Poly(ADP-ribose) Polymerase Inhibitors , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Phthalazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Piperazines/pharmacology , Piperazines/administration & dosage , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Cell Line, Tumor , DNA Repair/drug effects , Inotuzumab Ozogamicin/pharmacology , Apoptosis/drug effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Proliferation/drug effects , Indoles/pharmacology
12.
Lasers Med Sci ; 39(1): 135, 2024 May 24.
Article En | MEDLINE | ID: mdl-38787412

In this study, we assess the impact of photodynamic therapy (PDT) using aluminum phthalocyanine tetrasulfonate (AlPcS4) on the viability and cellular stress responses of MCF-7 breast cancer cells. Specifically, we investigate changes in cell viability, cytokine production, and the expression of stress-related genes. Experimental groups included control cells, those treated with AlPcS4 only, light-emitting diode (LED) only, and combined PDT. To evaluate these effects on cell viability, cytokine production, and the expression of stress-related genes, techniques such as 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay, enzyme-linked immunosorbent assays (ELISA), and real-time quantitative PCR (RT‒qPCR) were employed. Our findings reveal how PDT with AlPcS4 modulates mitochondrial activity and cytokine responses, shedding light on the cellular pathways essential for cell survival and stress adaptation. This work enhances our understanding of PDT's therapeutic potential and mechanisms in treating breast cancer.


Breast Neoplasms , Cell Survival , Cytokines , Indoles , Organometallic Compounds , Photochemotherapy , Photosensitizing Agents , Humans , Photochemotherapy/methods , MCF-7 Cells , Cytokines/metabolism , Cell Survival/drug effects , Cell Survival/radiation effects , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Female , Organometallic Compounds/pharmacology , Photosensitizing Agents/pharmacology , Indoles/pharmacology , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Enzyme-Linked Immunosorbent Assay
13.
Sci Rep ; 14(1): 10419, 2024 05 06.
Article En | MEDLINE | ID: mdl-38710746

The present work elicits a novel approach to combating COVID-19 by synthesizing a series of azo-anchored 3,4-dihydroimidazo[4,5-b]indole derivatives. The envisaged methodology involves the L-proline-catalyzed condensation of para-amino-functionalized azo benzene, indoline-2,3-dione, and ammonium acetate precursors with pertinent aryl aldehyde derivatives under ultrasonic conditions. The structures of synthesized compounds were corroborated through FT-IR, 1H NMR, 13C NMR, and mass analysis data. Molecular docking studies assessed the inhibitory potential of these compounds against the main protease (Mpro) of SARS-CoV-2. Remarkably, in silico investigations revealed significant inhibitory action surpassing standard drugs such as Remdesivir, Paxlovid, Molnupiravir, Chloroquine, Hydroxychloroquine (HCQ), and (N3), an irreversible Michael acceptor inhibitor. Furthermore, the highly active compound was also screened for cytotoxicity activity against HEK-293 cells and exhibited minimal toxicity across a range of concentrations, affirming its favorable safety profile and potential suitability. The pharmacokinetic properties (ADME) of the synthesized compounds have also been deliberated. This study paves the way for in vitro and in vivo testing of these scaffolds in the ongoing battle against SARS-CoV-2.


Antiviral Agents , COVID-19 Drug Treatment , Coronavirus 3C Proteases , Indoles , Molecular Docking Simulation , Protease Inhibitors , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , SARS-CoV-2/drug effects , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/chemistry , Indoles/pharmacology , Indoles/chemistry , Indoles/chemical synthesis , HEK293 Cells , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/chemical synthesis , Imidazoles/pharmacology , Imidazoles/chemistry , Imidazoles/chemical synthesis , Computer Simulation , COVID-19/virology , Azo Compounds/pharmacology , Azo Compounds/chemistry , Azo Compounds/chemical synthesis
14.
Int J Mol Sci ; 25(10)2024 May 12.
Article En | MEDLINE | ID: mdl-38791304

Depression is emerging as the predominant psychiatric disorder globally. Despite the wide availability of antidepressants, up to 30% of patients exhibit poor response to treatment, falling into the category of treatment-resistant depression (TRD). This underscores the need for the exploration of novel therapeutic options. Our work aims to study the effect of chronic administration of the pyridoindole derivative SMe1EC2M3, a triple reuptake inhibitor, and the combination of zoletil and venlafaxine under conditions of stress induced by a 4-week chronic mild stress (CMS) procedure in Wistar-Kyoto male rats as an animal model of TRD. Therefore, we investigated the possible effect of the selected compounds in four experimental groups, i.e., stress + vehicle, stress + venlafaxine, stress + zoletil + venlafaxine and stress + SMe1EC2M3. The following variables were assessed: anhedonia in sucrose preference test (SPT), spontaneous locomotion and exploration in open field test (OF), anxiety-like behavior in elevated plus maze test (EPM), motivation and depressive-like behavior in forced swim test (FST) and nociception in tail flick test. We also evaluated cognition, particularly recognition memory, in the novel object recognition test (NOR). Sucrose preference was significantly increased in the SMe1EC2M3 group (p < 0.05) in comparison with the venlafaxine animals. In the OF, we observed a significantly higher number of entries into both the central and peripheral zones in the venlafaxine (p < 0.05 central zone; p ≤ 0.05 periphery zone) and SMe1EC2M3 (p < 0.05 central zone; p < 0.05 periphery zone) groups compared to the venlafaxine + zoletil group. SMe1EC2M3 was able to significantly increase the time of climbing in FST (p < 0.05) in comparison with the venlafaxine and control groups. The NOR test revealed a significantly higher discrimination ratio in the SMe1EC2M3 group (p < 0.05) compared to the control and venlafaxine groups. Analyses of the tail flick test showed a significant increase in reaction time to painful stimuli in the SMe1EC2M3 group (p < 0.05) in comparison to both the control and venlafaxine groups. Our findings suggest that SMe1EC2M3 has the potential to ameliorate some behavioral changes associated with TRD, and the venlafaxine + zoletil combination treatment was not a promising treatment alternative in the animal model of TRD.


Antidepressive Agents , Disease Models, Animal , Venlafaxine Hydrochloride , Animals , Rats , Male , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Venlafaxine Hydrochloride/pharmacology , Venlafaxine Hydrochloride/therapeutic use , Depression/drug therapy , Behavior, Animal/drug effects , Depressive Disorder, Treatment-Resistant/drug therapy , Rats, Inbred WKY , Stress, Psychological/drug therapy , Anxiety/drug therapy , Indoles/pharmacology , Indoles/therapeutic use , Anhedonia/drug effects
15.
Int J Mol Sci ; 25(10)2024 May 14.
Article En | MEDLINE | ID: mdl-38791402

Alkaloids are natural compounds useful as scaffolds for discovering new bioactive molecules. This study utilized alkaloid gramine to synthesize two groups of C3-substituted indole derivatives, which were either functionalized at N1 or not. The compounds were characterized by spectroscopic methods. The protective effects of the new compounds against in vitro oxidative hemolysis induced by standard oxidant 2,2'-azobis(2-amidinopropane dihydro chloride (AAPH) on human erythrocytes as a cell model were investigated. Additionally, the compounds were screened for antimicrobial activity. The results indicated that most of the indole derivatives devoid of the N1 substitution exhibited strong cytoprotective properties. The docking studies supported the affinities of selected indole-based ligands as potential antioxidants. Furthermore, the derivatives obtained exhibited potent fungicidal properties. The structures of the eight derivatives possessing indole moiety bridged to the imidazole-, benzimidazole-, thiazole-, benzothiazole-, and 5-methylbenzothiazoline-2-thiones were determined by X-ray diffraction. The C=S bond lengths in the thioamide fragment pointed to the involvement of zwitterionic structures of varying contribution. The predominance of zwitterionic mesomers may explain the lack of cytoprotective properties, while steric effects, which limit multiple the hydrogen-bond acceptor properties of a thione sulfur, seem to be responsible for the high hemolytic activity.


Erythrocytes , Hemolysis , Indoles , Humans , Hemolysis/drug effects , Indoles/chemistry , Indoles/pharmacology , Erythrocytes/drug effects , Molecular Docking Simulation , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Structure-Activity Relationship , Antioxidants/pharmacology , Antioxidants/chemistry , Microbial Sensitivity Tests , Cytoprotection/drug effects , Amidines
16.
Biochem Biophys Res Commun ; 716: 150020, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38692011

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive disease with high mortality rates. It has been shown that pirfenidone (PFD) and nintedanib (Ofev) can slow down the decline in lung function of IPF patients, but their efficacy remains suboptimal. Some studies have suggested that the combination of PFD and Ofev may yield promising results. However, there is a lack of research on the combined application of these two medications in the treatment of IPF. A mouse model of bleomycin-induced (BLM) pulmonary fibrosis was established to investigate the impact of combination therapy on pulmonary fibrosis of mice. The findings demonstrated a significant reduction in lung tissue damage in mice treated with the combination therapy. Subsequent transcriptome analysis identified the differential gene secreted phosphoprotein 1 (SPP1), which was found to be associated with macrophages and fibroblasts based on multiple immunofluorescence staining results. Analysis of a phosphorylated protein microarray indicated that SPP1 plays a regulatory role in macrophages and fibroblasts via the AKT pathway. Consequently, the regulation of macrophages and fibroblasts in pulmonary fibrosis by the combination of PFD and Ofev is mediated by SPP1 through the AKT pathway, potentially offering a novel therapeutic option for IPF patients. Further investigation into the targeting of SPP1 for the treatment of pulmonary fibrosis is warranted.


Fibroblasts , Indoles , Macrophages , Mice, Inbred C57BL , Osteopontin , Proto-Oncogene Proteins c-akt , Pyridones , Animals , Pyridones/pharmacology , Pyridones/therapeutic use , Indoles/pharmacology , Indoles/therapeutic use , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Proto-Oncogene Proteins c-akt/metabolism , Macrophages/drug effects , Macrophages/metabolism , Mice , Osteopontin/metabolism , Osteopontin/genetics , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/chemically induced , Signal Transduction/drug effects , Antifibrotic Agents/pharmacology , Antifibrotic Agents/therapeutic use , Male , Drug Therapy, Combination , Bleomycin
17.
ACS Appl Mater Interfaces ; 16(20): 25757-25772, 2024 May 22.
Article En | MEDLINE | ID: mdl-38738757

The development of therapeutics with high antimicrobial activity and immunomodulatory effects is urgently needed for the treatment of infected wounds due to the increasing danger posed by recalcitrant-infected wounds. In this study, we developed light-controlled antibacterial, photothermal, and immunomodulatory biomimetic N/hPDA@M nanoparticles (NPs). This nanoplatform was developed by loading flavonoid naringenin onto hollow mesoporous polydopamine NPs in a π-π-stacked configuration and encasing them with macrophage membranes. First, our N/hPDA@M NPs efficiently neutralized inflammatory factors present within the wound microenvironment by the integration of macrophage membranes. Afterward, the N/hPDA@M NPs effectively dismantled bacterial biofilms through a combination of the photothermal properties of PDA and the quorum sensing inhibitory effects of naringenin. It is worth noting that N/hPDA@M NPs near-infrared-enhanced release of naringenin exhibited specificity toward the NF-κB-signaling pathway, effectively mitigating the inflammatory response. This innovative design not only conferred remarkable antibacterial properties upon the N/hPDA@M NPs but also endowed them with the capacity to modulate inflammatory responses, curbing excessive inflammation and steering macrophage polarization toward the M2 phenotype. As a result, this multifaceted approach significantly contributes to expediting the healing process of infected skin wounds.


Anti-Bacterial Agents , Biofilms , Indoles , NF-kappa B , Nanoparticles , Quorum Sensing , Wound Healing , Biofilms/drug effects , Nanoparticles/chemistry , Mice , NF-kappa B/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Wound Healing/drug effects , Animals , Quorum Sensing/drug effects , Indoles/chemistry , Indoles/pharmacology , Signal Transduction/drug effects , Flavanones/chemistry , Flavanones/pharmacology , RAW 264.7 Cells , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Polymers/chemistry , Polymers/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Wound Infection/drug therapy , Wound Infection/microbiology , Wound Infection/pathology , Immunomodulating Agents/chemistry , Immunomodulating Agents/pharmacology , Humans
18.
Sci Rep ; 14(1): 11450, 2024 05 20.
Article En | MEDLINE | ID: mdl-38769394

A mesoporous silica nanoparticle (MSN) coated with polydopamine (PDA) and loaded with umbelliprenin (UMB) was prepared and evaluated for its anti-cancer properties in this study. Then UMB-MSN-PDA was characterized by dynamic light scattering (DLS), Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM) and FTIR methods. UV-visible spectrometry was employed to study the percentage of encapsulation efficiency (EE%). UMB-MSN-PDA mediated cell cytotoxicity and their ability to induce programmed cell death were evaluated by MTT, real-time qPCR, flow cytometry, and AO/PI double staining methods. The size of UMB-MSN-PDA was 196.7 with a size distribution of 0.21 and a surface charge of -41.07 mV. The EE% was 91.92%. FESEM and TEM showed the spherical morphology of the UMB-MSN-PDA. FTIR also indicated the successful interaction of the UMB and MSN and PDA coating. The release study showed an initial 20% release during the first 24 h of the study and less than 40% during 168 h. The lower cytotoxicity of the UMB-MSN-PDA against HFF normal cells compared to MCF-7 carcinoma cells suggested the safety of formulation on normal cells and tissues. The induction of apoptosis in MCF-7 cells was indicated by the upregulation of P53, caspase 8, and caspase 9 genes, enhanced Sub-G1 phase cells, and the AO/PI fluorescent staining. As a result of these studies, it may be feasible to conduct preclinical studies shortly to evaluate the formulation for its potential use in cancer treatment.


Antineoplastic Agents , Indoles , Nanoparticles , Polymers , Silicon Dioxide , Humans , Indoles/chemistry , Indoles/pharmacology , Silicon Dioxide/chemistry , Polymers/chemistry , Nanoparticles/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Porosity , MCF-7 Cells , Umbelliferones/chemistry , Umbelliferones/pharmacology , Drug Carriers/chemistry , Cell Line, Tumor , Cell Survival/drug effects
19.
Theranostics ; 14(7): 2719-2735, 2024.
Article En | MEDLINE | ID: mdl-38773969

Aim: To elucidate dynamics and functions in colonic macrophage subsets, and their regulation by Bifidobacterium breve (B. breve) and its associated metabolites in the initiation of colitis-associated colorectal cancer (CAC). Methods: Azoxymethane (AOM) and dextran sodium sulfate (DSS) were used to create a CAC model. The tumor-suppressive effect of B. breve and variations of macrophage subsets were evaluated. Intestinal macrophages were ablated to determine their role in the protective effects of B. breve. Efficacious molecules produced by B. breve were identified by non-targeted and targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The molecular mechanism was further verified in murine bone marrow-derived macrophages (BMDMs), macrophages derived from human peripheral blood mononuclear cells (hPBMCs), and demonstrated in CAC mice. Results: B. breve alleviated colitis symptoms, delayed colonic tumorigenesis, and promoted phenotypic differentiation of immature inflammatory macrophages into mature homeostatic macrophages. On the contrary, the ablation of intestinal macrophages largely annulled the protective effects of B. breve. Microbial analysis of colonic contents revealed the enrichment of probiotics and the depletion of potential pathogens following B. breve supplementation. Moreover, indole-3-lactic acid (ILA) was positively correlated with B. breve in CAC mice and highly enriched in the culture supernatant of B. breve. Also, the addition of ILA directly promoted AKT phosphorylation and restricted the pro-inflammatory response of murine BMDMs and macrophages derived from hPBMCs in vitro. The effects of ILA in murine BMDMs and macrophages derived from hPBMCs were abolished by the aryl hydrocarbon receptor (AhR) antagonist CH-223191 or the AKT inhibitor MK-2206. Furthermore, ILA could protect against tumorigenesis by regulating macrophage differentiation in CAC mice; the AhR antagonist largely abrogated the effects of B. breve and ILA in relieving colitis and tumorigenesis. Conclusion: B. breve-mediated tryptophan metabolism ameliorates the precancerous inflammatory intestinal milieu to inhibit tumorigenesis by directing the differentiation of immature colonic macrophages.


Bifidobacterium breve , Cell Differentiation , Colitis , Indoles , Macrophages , Probiotics , Animals , Mice , Macrophages/metabolism , Macrophages/drug effects , Bifidobacterium breve/metabolism , Indoles/pharmacology , Indoles/metabolism , Humans , Colitis/chemically induced , Colitis/microbiology , Colitis/complications , Cell Differentiation/drug effects , Probiotics/pharmacology , Probiotics/administration & dosage , Disease Models, Animal , Carcinogenesis/drug effects , Colitis-Associated Neoplasms/pathology , Colitis-Associated Neoplasms/microbiology , Colitis-Associated Neoplasms/metabolism , Mice, Inbred C57BL , Colon/microbiology , Colon/pathology , Colon/metabolism , Dextran Sulfate , Male , Gastrointestinal Microbiome , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/microbiology , Azoxymethane
20.
J Agric Food Chem ; 72(20): 11331-11340, 2024 May 22.
Article En | MEDLINE | ID: mdl-38721769

Research on mesoionic structures in pesticide design has gained significant attention in recent years. However, the 1-position of pyridino[1,2-a]pyrimidine is usually designed with 2-chlorothiazole, 2-chloropyridine, or cyano moieties commonly found in neonicotinoid insecticides. In order to enrich the available pharmacophore library, here, we disclose a series of new pyridino[1,2-a]pyrimidine mesoionics bearing indole-containing substituents at the 1-position. Most of these target compounds are confirmed to have good insecticidal activity against aphids through bioevaluation. In addition, a three-dimensional structure-activity relationship model is established to allow access to optimal compound F45 with an LC50 value of 2.97 mg/L. This value is comparable to the property achieved by the positive control triflumezopyrim (LC50 = 2.94 mg/L). Proteomics and molecular docking analysis suggest that compound F45 has the potential to modulate the functioning of the aphid nervous system through its interaction with neuronal nicotinic acetylcholine receptors. This study expands the existing pharmacophore library for the future development of new mesoionic insecticides based on 1-position modifications of the pyridino[1,2-a]pyrimidine scaffold.


Aphids , Drug Design , Indoles , Insecticides , Molecular Docking Simulation , Pyrimidines , Insecticides/chemistry , Insecticides/chemical synthesis , Insecticides/pharmacology , Animals , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Aphids/drug effects , Indoles/chemistry , Indoles/pharmacology , Indoles/chemical synthesis , Structure-Activity Relationship , Molecular Structure , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/drug effects
...