Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20.378
Filter
1.
PLoS One ; 19(7): e0306330, 2024.
Article in English | MEDLINE | ID: mdl-38968255

ABSTRACT

The efficiency of aerobic biodegradation of distillery wastewater using various microbial cultures is intricately linked to process conditions. The study aimed to examine the aerobic biodegradation by a Bacillus bacteria under controlled dissolved oxygen tension (DOT) conditions as a novel approach in the treatment of sugar beet distillery stillage. The processes were conducted in a 2-L Biostat®B stirred-tank reactor (STR), at a temperature of 36°C, with aeration of 1.0 L/(L·min), and uncontrolled pH of the medium (an initial pH of 8.0). Each experiment was performed at a different DOT setpoint: 75%, 65% and 55% saturation, controlled through stirrer rotational speed adjustments. The study showed that the DOT setpoint did not influence the process efficiency, determined by the pollutant load removal expressed as COD, BOD5 and TOC. In all three experiments, the obtained reduction values of these parameters were comparable, falling within the narrow ranges of 78.6-78.7%, 97.3-98.0% and 75.0-76.4%, respectively. However, the DOT setpoint did influence the rate of process biodegradation. The removal rate of the pollutant load expressed as COD, was the lowest when DOT was set at 55% (0.48 g O2/(L•h)), and the highest when DOT was set at 65% (0.55 g O2/(L•h)). For biogenic elements (nitrogen and phosphorus), a beneficial effect was observed at a low setpoint of controlled DOT during biodegradation. The maximum extent of removal of both total nitrogen (54%) and total phosphorus (67.8%) was achieved at the lowest DOT setpoint (55%). The findings suggest that conducting the batch aerobic process biodegradation of sugar beet stillage at a relatively low DOT setpoint in the medium might achieve high efficiency pollutant load removal and potentially lead to a reduction in the process cost.


Subject(s)
Beta vulgaris , Biodegradation, Environmental , Oxygen , Beta vulgaris/metabolism , Oxygen/metabolism , Aerobiosis , Bioreactors/microbiology , Biological Oxygen Demand Analysis , Bacillus/metabolism , Wastewater/microbiology , Wastewater/chemistry , Industrial Waste
2.
Environ Monit Assess ; 196(8): 703, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967833

ABSTRACT

Industrial effluents pose a serious environmental problem, because they contain toxic contaminants mainly heavy metals that are the most dangerous to humans, animals, plants, and the environment in general. Phytoremediation using macrophytes is an adopted technique for the environment decontamination due to its efficiency and cost-effectiveness. The present study aims to highlight the capabilities of macrophytes to remove heavy metals from wastewater of Biskra region (Algeria). The methodology consists of filling out the filters planted with Arundo donax and Phragmites australis with raw industrial wastewater, then recovering decontaminated water after 15 days to assess removal of lead, copper, zinc, and iron. Both plants had shown a good efficiency for the removal of metals loaded in wastewater eliminating about 94 to 98% of initial concentration. In addition, calculated bioaccumulation factor (BAF) had confirmed the accumulation of heavy metals in different parts of experimental plants; recorded values of BAF > 1 allowed the consideration of Arundo donax and Phragmites australis as good hyper-accumulator plants. Obtained results confirm the efficiency of phytoremediation technology using macrophytes for the wastewater treatment in particular and the environment decontamination in general.


Subject(s)
Biodegradation, Environmental , Metals, Heavy , Poaceae , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Metals, Heavy/analysis , Metals, Heavy/metabolism , Wastewater/chemistry , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Waste Disposal, Fluid/methods , Algeria , Industrial Waste
3.
Environ Geochem Health ; 46(8): 287, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970741

ABSTRACT

The aim of the study was an assessment of the pollution level and identification of the antimony sources in soils in areas subjected to industrial anthropopressure from: transport, metallurgy and electrical waste recycling. The combination of soil magnetometry, chemical analyzes using atomic spectrometry (ICP-OES and ICP-MS), Sb fractionation analysis, statistical analysis (Pearson's correlation matrix, factor analysis) as well as Geoaccumulation Index, Pollution Load Index, and Sb/As factor allowed not only the assessment of soil contamination degree, but also comprehensive identification of different Sb sources. The results indicate that the soil in the vicinity of the studied objects was characterized by high values of magnetic susceptibility and thus, high contents of potentially toxic elements. The most polluted area was in the vicinity of electrical waste processing plants. Research has shown that the impact of road traffic and wearing off brake blocks, i.e. traffic anthropopression in general, has little effect on the surrounding soil in terms of antimony content. Large amounts of Pb, Zn, As and Cd were found in the soil collected in the vicinity of the heap after the processing of zinc-lead ores, the average antimony (11.31 mg kg-1) content was lower in the vicinity of the heap than in the area around the electrical and electronic waste processing plant, but still very high. Antimony in the studied soils was demobilized and associated mainly with the residual fraction.


Subject(s)
Antimony , Environmental Monitoring , Soil Pollutants , Soil , Antimony/analysis , Soil Pollutants/analysis , Environmental Monitoring/methods , Soil/chemistry , Spectrophotometry, Atomic/methods , Electronic Waste/analysis , Industrial Waste/analysis
4.
Food Res Int ; 190: 114586, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945606

ABSTRACT

The acerola seed is an agro-industrial waste. It is a high moisture content product, rich in bioactive compounds. Drying is an alternative to make this waste available in a safe condition. The use of ethanol as a pretreatment could improve the drying process besides reducing the operation time. This study aimed to investigate the influence of ethanol pretreatment (ET) on the content of bioactive compounds, cell wall thickness, and color. The drying kinetics was studied, and the influence of external and internal resistance was discussed. The samples were immersed in ethanol for 2 min with subsequent convective drying (40 °C and 60 °C; 1 m s-1) until they reached the equilibrium condition. The ET reduced the drying time up to 36.36 %. The external and mixed control of mass transfer were identified as the governing regimes for drying this material, depending on the use of ethanol. ET led to an increase in effective diffusivity, a reduction in cell wall thickness, and preservation of the color of the dried waste. The ET positively impacted the conservation of ascorbic acid compared to untreated dried samples but was not relevant to phenolic compounds, carotenoids, and antioxidant activity. The drying process increased the bioactivity of the anthocyanins. The best condition was drying at 60 °C, pretreated with ethanol.


Subject(s)
Desiccation , Ethanol , Ethanol/chemistry , Desiccation/methods , Antioxidants/analysis , Seeds/chemistry , Malpighiaceae/chemistry , Industrial Waste , Anthocyanins/analysis , Food Handling/methods , Ascorbic Acid/chemistry , Kinetics , Phenols/analysis
5.
Environ Sci Pollut Res Int ; 31(29): 41964-41979, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38856856

ABSTRACT

Potential toxicity of treated effluents of selected natural rubber processing industries was evaluated by integrating physicochemical analysis with Daphnia magna and Poecilia reticulata bioassays as ecotoxicity tools. Further, the efficacy of the constructed wetland treatments practiced by the industries for reducing the ecotoxicity of the final effluents reaching the receiving water course was assessed. Even after passing through the constructed wetlands, some of the measured physicochemical parameters of the final effluents did not comply with the stipulated rubber processing effluent regulatory limits. Acute toxicity data of treated effluents demonstrated greater susceptibility of D. magna compared to P. reticulata. Erythrocytic abnormality tests with P. reticulata revealed that rubber industry effluents contained cytogenotoxic contaminations which had not been completely eliminated by the treatment processes. Wetland treatment technique was not effective in reducing the cytogenotoxic effects of final effluents reaching the receiving water course. The use of ecotoxicity tools for optimization of rubber industry effluent treatment processes would help to reduce potential toxic/cytogenotoxic effects of effluent receiving waterbodies considering sustainable development goals focusing on ecosystem safety.


Subject(s)
Daphnia , Rubber , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Daphnia/drug effects , Wetlands , Industrial Waste , Waste Disposal, Fluid , Poecilia , Ecotoxicology
6.
Plant Physiol Biochem ; 213: 108807, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38905730

ABSTRACT

The aim of this work was to investigate the impact of nano selenium (N-Se) and compost on the growth, photosynthesis, enzymes activity, compatible solutes and metals accumulation in soybean grown under tannery effluent polluted soil. The plants were exposed to compost application (no compost and compost addition) and foliar application of N-Se (0, 25, 50, and 75 mg L-1). The results showed the addition of compost in soil and foliar applied N-Se alleviated the toxic effect of tannery effluent polluted soil. Furthermore, foliar application of N-Se with basal compost supply significantly improved antoxidant enzymes activity in soybean grown in tannery effluent polluted soil. Addition of compost increased the root dry weight (46.43%) and shoot dry weight (33.50 %), relative water contents by (13.74 %), soluble sugars (15.99 %), stomatal conductance (gs) (83.33 %), intercellular CO2 concentration (Ci) (23.34 %), transpiration rate (E) (12.10 %) and decreased the electrolyte leakage (27.96 %) and proline contents by (20.34 %). The foliage application of N-Se at the rate of 75 mg L-1 showed the most promising results in control and compost amended tannery effluent polluted soil. The determined health risk index (HRI) values were recorded less than 1 for both adults and children under the application of compost and N-Se. In summary, the combined use of N-Se at 75 mg L⁻1 and basal supply of compost is an effective strategy for enhancing soybean productivity while minimizing the potential risks of metal accumulation in soybean grains grown in tannery effluent polluted soil.


Subject(s)
Antioxidants , Composting , Glycine max , Selenium , Soil Pollutants , Glycine max/metabolism , Glycine max/drug effects , Glycine max/growth & development , Soil Pollutants/metabolism , Selenium/metabolism , Antioxidants/metabolism , Photosynthesis/drug effects , Soil/chemistry , Tanning , Industrial Waste
7.
Environ Sci Pollut Res Int ; 31(29): 41791-41823, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38861062

ABSTRACT

Increasing world population, urbanization, and industrialization have led to an increase in demand in production and consumption, resulting in an increase in industrial solid wastes and pollutant levels in water. These two main consequences have become global problems. The high Si and Al content of solid wastes suggests that they can be used as raw materials for the synthesis of zeolites. In this context, when the literature studies conducted to obtain synthetic zeolites are evaluated, it is seen that hydrothermal synthesis method is generally used. In order to improve the performance of the hydrothermal synthesis method in terms of energy cost, synthesis time, and even product quality, additional methods such as alkaline fusion, ultrasonic effect, and microwave support have been developed. The zeolites synthesized by different techniques exhibit superior properties such as high surface area and well-defined pore sizes, thermal stability, high cation exchange capacity, high regeneration ability, and catalytic activity. Due to these specific properties, zeolites are recognized as one of the most effective methods for the removal of pollutants. The toxic properties of heavy metals and dyes in water and their carcinogenic effects in long-term exposure pose a serious risk to living organisms. Therefore, they should be treated at specified levels before discharge to the environment. In this review study, processes including different methods developed for the production of zeolites from industrial solid wastes were evaluated. Studies using synthetic zeolites for the removal of high levels of health and environmental risks such as heavy metals and dyes are reviewed. In addition, EPMA, SEM, EDX, FTIR, BET, AFM, and 29Si and 27Al NMR techniques, which are characterization methods of synthetic zeolites, are presented and the cation exchange capacity, thermodynamics of adsorption, effect of temperature, and pH are investigated. It is expected that energy consumption can be reduced by large-scale applications of alternative techniques developed for zeolite synthesis and their introduction into the industry. It is envisaged that zeolites synthesized by utilizing wastes will be effective in obtaining a green technology. The use of synthesized zeolites in a wide variety of applications, especially in environmental problems, holds great promise.


Subject(s)
Coloring Agents , Industrial Waste , Metals, Heavy , Zeolites , Zeolites/chemistry , Coloring Agents/chemistry , Water Pollutants, Chemical
8.
Environ Sci Pollut Res Int ; 31(30): 42495-42520, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38872037

ABSTRACT

Plants have numerous strategies for phytoremediation depending upon the characteristic of pollutants. Plant growth promoting rhizobacteria (PGPR) are essential to the process of phytoremediation and play a key part in it. The mechanism of PGPR for phytoremediation is mediated by two methods; under the direct method there is phytohormone production, nitrogen fixation, nutrient mineral solubilization, and siderophore production while the indirect method includes quorum quenching, antibiosis, production of lytic enzyme, biofilm formation, and hydrogen cyanide production. Due to their economic and environmental viability, most researchers have recently concentrated on the potential of weed plants for phytoremediation. Although weed plants are considered unwanted and noxious, they have a high growth rate and adaptability which opens a high scope for its role in phytoremediation of contaminated site. The interaction of plant with rhizobacteria starts from root exudates containing various organic acids and peptides which act as nutrients essential for colonization and siderophore production by the rhizospheric bacteria. The rhizobacteria, while colonizing, tend to promote plant growth and health either directly by providing phytohormones and minerals or indirectly by suppressing growth of possible phytopathogens. Recently, several weed plants have been reported for phytoextraction of heavy metals (Ni, Pb, Zn, Hg, Cd, Cu, As, Fe, and Cr) contaminants from various agro-based industries. These potential native weed plants have high prospect of eco-restoration of polluted site with complex organo-metallic waste for sustainable development.


Subject(s)
Biodegradation, Environmental , Industrial Waste , Plant Weeds , Soil Pollutants/metabolism , Plant Development , Metals, Heavy/metabolism
9.
Environ Geochem Health ; 46(7): 255, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884657

ABSTRACT

The discharge of electroplating wastewater, containing high concentrations of N-nitrosamines, poses significant risks to human health and aquatic ecosystems. Karst aquatic environment is easily impacted by N-nitrosamines due to the fragile surface ecosystem. However, it's still unclear in understanding N-nitrosamine transformation in karst water systems. To explore the response and transport of nine N-nitrosamines in electroplating effluent within both karst surface water and groundwater, different river and groundwater samples were collected from both the upper and lower reaches of the effluent discharge areas in a typical karst industrial catchment in Southwest China. Results showed that the total average concentrations of N-nitrosamines (∑NAs) in electroplating effluent (1800 ng/L) was significantly higher than that in the receiving river water (130 ng/L) and groundwater (70 ng/L). The dynamic nature of karst aquifers resulted in comparable average concentrations of ∑NAs in groundwater (70 ng/L) and river water (79 ng/L) at this catchment. Based on the principal component analysis and multiple linear regression analysis, the electroplating effluent contributed 89% and 53% of N-nitrosamines to the river water and groundwater, respectively. The results based on the species sensitivity distribution model revealed N-nitrosodibutylamine as a particularly toxic compound to aquatic organisms. Furthermore, the average N-nitrosamine carcinogenic risk was significantly higher in lower groundwater reaches compared to upper reaches. This study represents a pioneering effort in considering specific N-nitrosamine properties in evaluating their toxicity and constructing species sensitivity curves. It underscores the significance of electroplating effluent as a primary N-nitrosamine source in aquatic environments, emphasizing their swift dissemination and significant accumulation in karst groundwater.


Subject(s)
Environmental Monitoring , Groundwater , Nitrosamines , Rivers , Water Pollutants, Chemical , Nitrosamines/analysis , Water Pollutants, Chemical/analysis , China , Groundwater/chemistry , Rivers/chemistry , Wastewater/chemistry , Industrial Waste/analysis , Electroplating , Animals , Ecosystem
10.
Environ Monit Assess ; 196(7): 600, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849696

ABSTRACT

Herbal waste produced during the manufacturing of herbal products is a potential feedstock for anaerobic digestion due to high amount of organic matter that can be transformed into biogas as an energy resource. Therefore, the present study was undertaken to convert herbal waste produced during the manufacturing of common of Ayurveda products into biogas through anaerobic digestion process using batch test study under controlled mesophilic temperature conditions of 35 °C with food to inoculum ratio of 0.75. The maximum biomethane potential (BMP) of 0.90 (gCH4COD/g CODfed) and sludge activity of 0.70 (gCH4-CD/gVSS) was exhibited by WS herbal waste owing to its high chemical oxygen demand (COD) of 4 g/g and better solubilization potential of the organic matter showing change in volatile suspended solids (ΔVSS) of 79%. On the other hand, the waste derived from the TA herb, exhibited the least biogas yield of 0.55 (gCH4COD/g CODfed) and sludge activity of 0.40 (gCH4-CD/gVSS), albeit with higher organic matter present. This was due to the possible hindrance of waste solubilization by the presence of lignin. The waste derived from VVL and PE showed intermediate BMP and sludge activity. The methane generation rate constant (k), a key indicator of the biodegradation potential, was also evaluated. The k values showed similar trend as of BMP values ranging from 0.081 to 0.15 d-1 thus indicating the influence of presence of lignin and the change in ΔVSS. The present study proves anaerobic digestion to be an alternative treatment method to be a milestone for management of herbal wastes and can be successfully implemented on real-scale systems.


Subject(s)
Biofuels , Anaerobiosis , Methane/analysis , Biological Oxygen Demand Analysis , Sewage/chemistry , Waste Disposal, Fluid/methods , Bioreactors , Industrial Waste/analysis
11.
Sci Rep ; 14(1): 12655, 2024 06 02.
Article in English | MEDLINE | ID: mdl-38825597

ABSTRACT

Potato peel waste (PPW) is an underutilized substrate which is produced in huge amounts by food processing industries. Using PPW a feedstock for production of useful compounds can overcome the problem of waste management as well as cost-effective. In present study, potential of PPW was investigated using chemical and thermochemical treatment processes. Three independent variables i.e., PPW concentration, dilute sulphuric acid concentration and liberation time were selected to optimize the production of fermentable sugars (TS and RS) and phenolic compounds (TP). These three process variables were selected in the range of 5-15 g w/v substrate, 0.8-1.2 v/v acid conc. and 4-6 h. Whole treatment process was optimized by using box-behnken design (BBD) of response surface methodology (RSM). Highest yield of total and reducing sugars and total phenolic compounds obtained after chemical treatment was 188.00, 144.42 and 43.68 mg/gds, respectively. The maximum yield of fermentable sugars attained by acid plus steam treatment were 720.00 and 660.62 mg/gds of TS and RS, respectively w.r.t 5% substrate conc. in 0.8% acid with residence time of 6 h. Results recorded that acid assisted autoclaved treatment could be an effective process for PPW deconstruction. Characterization of substrate before and after treatment was checked by SEM and FTIR. Spectras and micrographs confirmed the topographical variations in treated substrate. The present study was aimed to utilize biowaste and to determine cost-effective conditions for degradation of PWW into value added compounds.


Subject(s)
Industrial Waste , Plant Extracts , Solanum tuberosum , Chemistry Techniques, Analytical/methods , Chemistry Techniques, Analytical/standards , Solanum tuberosum/chemistry , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Industrial Waste/analysis , Food Industry , Fermentation , Sugars/analysis , Sugars/isolation & purification , Phenols/analysis , Phenols/isolation & purification , Acids/chemistry , Steam , Spectroscopy, Fourier Transform Infrared
12.
Sci Rep ; 14(1): 13750, 2024 06 14.
Article in English | MEDLINE | ID: mdl-38877150

ABSTRACT

In this investigation, the modeling of the Aksaray industrial wastewater treatment plant was performed using artificial neural networks with various architectures in the MATLAB software. The dataset utilized in this study was collected from the Aksaray wastewater treatment plant over a 9-month period through daily records. The treatment efficiency of the plants was assessed based on the output values of chemical oxygen demand (COD) output. Principal component analysis (PCA) was applied to furnish input for the Feedforward Backpropagation Artificial Neural Networks (FFBANN). The model's performance was evaluated using the Mean Squared Error (MSE), the Mean Absolute Error (MAE) and correlation coefficient (R2) parameters. The optimal architecture for the neural network model was determined through several trial and error iterations. According to the modeling results, the ANN exhibited a high predictive capability for plant performance, with an R2 reaching up to 0.9997 when comparing the observed and predicted output variables.


Subject(s)
Biological Oxygen Demand Analysis , Neural Networks, Computer , Wastewater , Wastewater/chemistry , Principal Component Analysis , Waste Disposal, Fluid/methods , Water Purification/methods , Industrial Waste/analysis
13.
PLoS One ; 19(6): e0305673, 2024.
Article in English | MEDLINE | ID: mdl-38889113

ABSTRACT

Microbial fuel cells (MFCs) are innovative eco-friendly technologies that advance a circular economy by enabling the conversion of both organic and inorganic substances in wastewater to electricity. While conceptually promising, there are lingering questions regarding the performance and stability of MFCs in real industrial settings. To address this research gap, we investigated the influence of specific operational settings, regarding the hydraulic retention time (HRT) and organic loading rate (OLR) on the performance of MFCs used for treating sulfide-rich wastewater from a canned pineapple factory. Experiments were performed at varying hydraulic retention times (2 days and 4 days) during both low and high seasonal production. Through optimization, we achieved a current density generation of 47±15 mA/m2, a COD removal efficiency of 91±9%, and a sulfide removal efficiency of 86±10%. Microbiome analysis revealed improved MFC performance when there was a substantial presence of electrogenic bacteria, sulfide-oxidizing bacteria, and methanotrophs, alongside a reduced abundance of sulfate-reducing bacteria and methanogens. In conclusion, we recommend the following operational guidelines for applying MFCs in industrial wastewater treatment: (i) Careful selection of the microbial inoculum, as this step significantly influences the composition of the MFC microbial community and its overall performance. (ii) Initiating MFC operation with an appropriate OLR is essential. This helps in establishing an effective and adaptable microbial community within the MFCs, which can be beneficial when facing variations in OLR due to seasonal production changes. (iii) Identifying and maintaining MFC-supporting microbes, including those identified in this study, should be a priority. Keeping these microbes as an integral part of the system's microbial composition throughout the operation enhances and stabilizes MFC performance.


Subject(s)
Bioelectric Energy Sources , Sulfides , Wastewater , Wastewater/microbiology , Bioelectric Energy Sources/microbiology , Bacteria/metabolism , Bacteria/genetics , Industrial Waste/analysis , Water Purification/methods , Microbiota , Waste Disposal, Fluid/methods
14.
BMC Microbiol ; 24(1): 193, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831400

ABSTRACT

INTRODUCTION: Optimal exploitation of the huge amounts of agro-industrial residuals that are produced annually, which endangers the ecosystem and ultimately contributes to climate change, is one of the solutions available to produce value-added compounds. AIM AND OBJECTIVES: This study aimed at the economic production and optimization of surfactin. Therefore, the production was carried out by the microbial conversion of Potato Peel Waste (PPW) and Frying Oil Waste (FOW) utilizing locally isolated Bacillus halotolerans. Also, investigating its potential application as an antimicrobial agent towards some pathogenic strains. RESULTS: Screening the bacterial isolates for surfactin production revealed that the strain with the highest yield (49 g/100 g substrate) and efficient oil displacement activity was genetically identified as B. halotolerans. The production process was then optimized utilizing Central Composite Design (CCD) resulting in the amelioration of yield by 11.4% (from 49 to 55.3 g/100 g substrate) and surface tension (ST) by 8.3% (from 36 to 33 mN/m) with a constant level of the critical micelle concentration (CMC) at 125 mg/L. Moreover, the physiochemical characterization studies of the produced surfactin by FTIR, 1H NMR, and LC-MS/MS proved the existence of a cyclic lipopeptide (surfactin). The investigations further showed a strong emulsification affinity for soybean and motor oil (E24 = 50%), as well as the ability to maintain the emulsion stable over a wide pH (4-10) and temperature (10-100 °C) range. Interestingly, surfactin had a broad-spectrum range of inhibition activity against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, klebsiella pneumonia, and Candida albicans. CONCLUSION: Subsequently, the screening of the isolates and the utilized food-processing wastes along with the extraction technique resulted in a high yield of surfactin characterized by acceptable ST and CMC levels. However, optimization of the cultural conditions to improve the activity and productivity was achieved using Factor-At-A-Time (OFAT) and Central Composite Design (CCD). In contrast, surface activity recorded a maximum level of (33 mN/n) and productivity of 55.3 g/100 g substrate. The optimized surfactin had also the ability to maintain the stability of emulsions over a wide range of pH and temperature. Otherwise, the obtained results proved the promising efficiency of the surfactin against bacterial and fungal pathogens.


Subject(s)
Bacillus , Industrial Waste , Lipopeptides , Solanum tuberosum , Bacillus/metabolism , Bacillus/genetics , Bacillus/isolation & purification , Lipopeptides/pharmacology , Lipopeptides/metabolism , Lipopeptides/biosynthesis , Lipopeptides/chemistry , Lipopeptides/isolation & purification , Solanum tuberosum/microbiology , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemistry , Peptides, Cyclic/isolation & purification , Peptides, Cyclic/biosynthesis , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Anti-Infective Agents/metabolism , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Agriculture/methods
15.
World J Microbiol Biotechnol ; 40(8): 239, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38862848

ABSTRACT

Anaerobic digestion (AD) emerges as a pivotal technique in climate change mitigation, transforming organic materials into biogas, a renewable energy form. This process significantly impacts energy production and waste management, influencing greenhouse gas emissions. Traditional research has largely focused on anaerobic bacteria and methanogens for methane production. However, the potential of anaerobic lignocellulolytic fungi for degrading lignocellulosic biomass remains less explored. In this study, buffalo rumen inocula were enriched and acclimatized to improve lignocellulolytic hydrolysis activity. Two consortia were established: the anaerobic fungi consortium (AFC), selectively enriched for fungi, and the anaerobic lignocellulolytic microbial consortium (ALMC). The consortia were utilized to create five distinct microbial cocktails-AF0, AF20, AF50, AF80, and AF100. These cocktails were formulated based on varying of AFC and ALMC by weights (w/w). Methane production from each cocktail of lignocellulosic biomasses (cassava pulp and oil palm residues) was evaluated. The highest methane yields of CP, EFB, and MFB were obtained at 337, 215, and 54 mL/g VS, respectively. Cocktails containing a mix of anaerobic fungi, hydrolytic bacteria (Sphingobacterium sp.), syntrophic bacteria (Sphaerochaeta sp.), and hydrogenotrophic methanogens produced 2.1-2.6 times higher methane in cassava pulp and 1.1-1.2 times in oil palm empty fruit bunch compared to AF0. All cocktails effectively produced methane from oil palm empty fruit bunch due to its lipid content. However, methane production ceased after 3 days when oil palm mesocarp fiber was used, due to long-chain fatty acid accumulation. Anaerobic fungi consortia showed effective lignocellulosic and starchy biomass degradation without inhibition due to organic acid accumulation. These findings underscore the potential of tailored microbial cocktails for enhancing methane production from diverse lignocellulosic substrates.


Subject(s)
Biomass , Fungi , Lignin , Methane , Microbial Consortia , Methane/metabolism , Anaerobiosis , Lignin/metabolism , Fungi/metabolism , Fungi/classification , Animals , Rumen/microbiology , Biofuels , Hydrolysis , Fermentation , Bacteria/metabolism , Bacteria/classification , Industrial Waste , Agriculture/methods
16.
J Environ Manage ; 362: 121302, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38824896

ABSTRACT

Two industrial solid wastes, Ti-bearing blast furnace slag (TBFS) and diamond wire saw silicon waste (DWSSW), contain large amounts of Ti and Si, and their accumulation wastes resources and intensifies environmental pollution. In the present study, DWSSW was used as the silicon source to reduce titanium oxide in TBFS by electromagnetic induction smelting, and meanwhile Na3AlF6 was added as a flux to improve the recycling of the wastes. Ti and Si of the two wastes were simultaneously recovered in the form of alloy. The effects of different addition amount of Na3AlF6 flux in the mixture of DWSSW and TBFS on chemical composition, viscosity, basicity and structure of slag were investigated. The dissolution behavior of SiO2 in Na3AlF6 flux was theoretically deduced and experimentally verification. The optimized recovery rate of Ti and Si were obtained, and the research realizes the efficient recycling of DWSSW and TBFS simultaneously.


Subject(s)
Alloys , Recycling , Silicon , Titanium , Titanium/chemistry , Silicon/chemistry , Alloys/chemistry , Diamond/chemistry , Industrial Waste/analysis
17.
World J Microbiol Biotechnol ; 40(8): 237, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38853194

ABSTRACT

Industrial activities contribute to environmental pollution, particularly through unregulated effluent discharges, causing adverse effects on ecosystems. Vegetable oils, as insoluble substances, exacerbate this pollution, forming impermeable films and affecting the oxygen transfer, leading to serious habitat disruption. Organic wastes, such as soybean texturized waste, spent mushroom substrate, and stabilized poultry litter, were assessed for their efficacy in enhancing the degradation of vegetable oil in contaminated soil. For this purpose, contaminated soil was amended with each of the wastes (10% w/w) using microcosm systems, which were monitored physico-chemically, microbiologically and toxicologically. Results indicate that the wastes promoted significant oil degradation, achieving 83.1, 90.7, and 86.2% removal for soybean texturized waste, spent mushroom substrate, and stabilized poultry litter, respectively, within a 90-day period. Additionally, they positively influenced soil microbial activity, as evidenced by increased levels of culturable microorganisms and hydrolytic microbial activity. While bioassays indicated no phytotoxicity in most cases, soybean texturized waste exhibited inhibitory effects on seed germination and root elongation of Lactuca sativa. This study significantly enhances our comprehension of remediation techniques for sites tainted with vegetable oils, highlighting the critical role of organic waste as eco-friendly agents in soil restoration. Emphasizing the practical implications of these findings is imperative to underscore the relevance and urgency of addressing vegetable oil contamination in soil. Moving forward, tailored strategies considering both contaminant characteristics and soil ecosystem traits are vital for ensuring effective and sustainable soil remediation.


Subject(s)
Biodegradation, Environmental , Glycine max , Plant Oils , Poultry , Soil Microbiology , Soil Pollutants , Soil , Animals , Soil Pollutants/metabolism , Glycine max/growth & development , Glycine max/microbiology , Plant Oils/metabolism , Soil/chemistry , Agaricales/metabolism , Agaricales/growth & development , Lactuca/growth & development , Bacteria/metabolism , Germination/drug effects , Industrial Waste
18.
World J Microbiol Biotechnol ; 40(8): 249, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38907753

ABSTRACT

Tannery effluents contain high amounts of polluting chemicals, such as salts and heavy metals released often to surface waters. New economic and eco-friendly purification methods are needed. Two adsorbing materials and five salt-tolerant fungal isolates from mangrove habitat were studied. Purification experiments were carried out using the pollutant adsorbents biochar and the biomass of vetiver grass (Chrysopogon zizanioides) roots and the fungi Cladosporium cladosporioides, Phomopsis glabrae, Aspergillus niger, Emericellopsis sp., and Scopulariopsis sp., which were isolated from mangrove sediment. They efficacy to reduce pollutants was studied in different combinations. Salinity, turbidity, total dissolved solids, total suspended solids, phenols, nitrogen, ammonia. Biological and chemical oxygen demand (BOD, COD) and several heavy metals were measured. The adsorbents were efficient reducing the pollutants to 15-50% of the original. The efficiency of the combination of biochar and roots was generally at the same level as the adsorbents alone. Some pollutants such as turbidity, COD and ammonium were reduced slightly more by the combination than the adsorbents alone. From all 14 treatments, Emericellopsis sp. with biochar and roots appeared to be the most efficient reducing pollutants to < 10-30%. BOD and COD were reduced to ca 5% of the original. The treatment was efficient in reducing also heavy metals (As, Cd, Cr, Mn Pb, Zn). The fungal species originating from the environment instead of the strains present in the tannery effluent reduced pollutants remarkably and the adsorbents improved the reduction efficiency. However, the method needs development for effluents with high pollutant concentrations to fulfil the environmental regulations.


Subject(s)
Biodegradation, Environmental , Biomass , Charcoal , Fungi , Metals, Heavy , Plant Roots , Poaceae , Tanning , Water Pollutants, Chemical , Charcoal/chemistry , Poaceae/microbiology , Plant Roots/microbiology , Fungi/isolation & purification , Fungi/classification , Wastewater/microbiology , Wastewater/chemistry , Biological Oxygen Demand Analysis , Adsorption , Water Purification/methods , Industrial Waste/analysis , Wetlands
19.
Appl Microbiol Biotechnol ; 108(1): 379, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888798

ABSTRACT

The transition towards a sustainable model, particularly the circular economy, emphasizes the importance of redefining waste as a valuable resource, paving the way for innovative upcycling strategies. The olive oil industry, with its significant output of agricultural waste, offers a promising avenue for high-value biomass conversion into useful products through microbial processes. This study focuses on exploring new, high-value applications for olive leaves waste, utilizing a biotechnological approach with Lactobacillus casei for the production of second-generation lactic acid. Contrary to initial expectations, the inherent high polyphenol content and low fermentable glucose levels in olive leaves posed challenges for fermentation. Addressing this, an enzymatic hydrolysis step, following a preliminary extraction process, was implemented to increase glucose availability. Subsequent small-scale fermentation tests were conducted with and without nutrient supplements, identifying the medium that yielded the highest lactic acid production for scale-up. The scaled-up batch fermentation process achieved an enhanced conversion rate (83.58%) and specific productivity (0.26 g/L·h). This research confirms the feasibility of repurposing olive waste leaves for the production of lactic acid, contributing to the advancement of a greener economy through the valorization of agricultural waste. KEY POINTS: • Olive leaves slurry as it did not allow L. casei to ferment. • High concentrations of polyphenols inhibit fermentation of L. casei. • Enzymatic hydrolysis combined to organosolv extraction is the best pretreatment for lactic acid production starting from leaves and olive pruning waste.


Subject(s)
Fermentation , Lactic Acid , Lacticaseibacillus casei , Olea , Olive Oil , Plant Leaves , Lactic Acid/metabolism , Lacticaseibacillus casei/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Olive Oil/metabolism , Glucose/metabolism , Hydrolysis , Industrial Waste , Polyphenols/metabolism , Biomass
20.
J Hazard Mater ; 474: 134701, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38824774

ABSTRACT

Coking wastewater (CWW) treatment is difficult due to its complex composition and high biological toxicity. Iron-carbon mediators was used to enhance the treatment of CWW through iron-carbon microelectrolysis (ICME). The results indicated that the removal rate of COD and phenolic compounds were enhanced by 24.1 % and 23.5 %, while biogas production and methane content were promoted by 50 % and 7 %. Microbial community analysis indicated that iron-carbon mediators had a transformative impact on the reactor's performance and dependability by enriching microorganisms involved in direct and indirect electron transfer, such as Anaerolineae and Methanothrix. The mediator also produced noteworthy gains in LB-EPS and TB-EPS, increasing by roughly 109.3 % and 211.6 %, respectively. PICRISt analysis demonstrated that iron-carbon mediators effectively augment the abundance of functional genes associated with metabolism, Citrate cycle, and EET pathway. This study provides a new approach for CWW treatment.


Subject(s)
Bioreactors , Carbon , Coke , Iron , Wastewater , Wastewater/chemistry , Iron/metabolism , Iron/chemistry , Carbon/chemistry , Carbon/metabolism , Methane/metabolism , Waste Disposal, Fluid/methods , Biofuels , Biological Oxygen Demand Analysis , Industrial Waste , Water Pollutants, Chemical/metabolism , Phenols/metabolism , Bacteria/metabolism , Bacteria/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...