Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.760
Filter
1.
Gynecol Endocrinol ; 40(1): 2373742, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38946430

ABSTRACT

BACKGROUND: Telomeres maintain chromosome stability, while telomerase counteracts their progressive shortening. Telomere length varies between cell types, with leukocyte telomere length (LTL) decreasing with age. Reduced telomerase activity has been linked to reproductive issues in females, such as low pregnancy rates and premature ovarian failure, with recent studies indicating correlations between telomere length in granulosa cells and IVF outcomes. OBJECTIVES: The study aims to explore the relationship between telomere length, telomerase activity, and euploid blastocyst rate in infertile women undergoing IVF/ICSI PGT-A cycles. METHODS: This prospective study involves 108 patients undergoing controlled ovarian stimulation and PGT-A. Telomere length and telomerase activity were measured in peripheral mononuclear cells and granulosa cells (GC), respectively. RESULTS: The telomere repeat copy number to single gene copy number ratio (T/S) results respectively 0.6 ± 0.8 in leukocytes and 0.7 ± 0.9 in GC. An inverse relationship was found between LTL and the patient's age (p < .01). A higher aneuploid rate was noticed in patients with short LTL, with no differences in ovarian reserve markers (p = .15), number of oocytes retrieved (p = .33), and number of MII (p = 0.42). No significant association was noticed between telomere length in GC and patients' age (p = 0.95), in ovarian reserve markers (p = 0.32), number of oocytes retrieved (p = .58), number of MII (p = .74) and aneuploidy rate (p = .65). CONCLUSION: LTL shows a significant inverse correlation with patient age and higher aneuploidy rates. Telomere length in GCs does not correlate with patient age or reproductive outcomes, indicating differential telomere dynamics between leukocytes and granulosa cells.


Subject(s)
Telomerase , Telomere , Humans , Female , Adult , Telomerase/genetics , Telomerase/metabolism , Prospective Studies , Pregnancy , Aneuploidy , Fertilization in Vitro , Granulosa Cells/metabolism , Infertility, Female/genetics , Infertility, Female/therapy , Ovulation Induction , Blastocyst , Telomere Homeostasis/physiology , Sperm Injections, Intracytoplasmic
3.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 559-565, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38948269

ABSTRACT

Objective: Infertility affects approximately one-sixth of the people of childbearing age worldwide, causing not only economic burdens of treatment for families with fertility problems but also psychological stress for patients and presenting challenges to societal and economic development. Premature ovarian insufficiency (POI) refers to the loss of ovarian function in women before the age of 40 due to the depletion of follicles or decreased quality of remaining follicles, constituting a significant cause of female infertility. In recent years, with the help of the rapid development in genetic sequencing technology, it has been demonstrated that genetic factors play a crucial role in the onset of POI. Among the population suffering from POI, genetic studies have revealed that genes involved in processes such as meiosis, DNA damage repair, and mitosis account for approximately 37.4% of all pathogenic and potentially pathogenic genes identified. FA complementation group M (FANCM) is a group of genes involved in the damage repair of DNA interstrand crosslinks (ICLs), including FANCA-FANCW. Abnormalities in the FANCM genes are associated with female infertility and FANCM gene knockout mice also exhibit phenotypes similar to those of POI. During the genetic screening of POI patients, this study identified a suspicious variant in FANCM. This study aims to explore the pathogenic mechanisms of the FANCM genes of the FA pathway and their variants in the development of POI. We hope to help shed light on potential diagnostic and therapeutic strategies for the affected individuals. Methods: One POI patient was included in the study. The inclusion criteria for POI patients were as follows: women under 40 years old exhibiting two or more instances of basal serum follicle-stimulating hormone levels>25 IU/L (with a minimum interval of 4 weeks inbetween tests), alongside clinical symptoms of menstrual disorders, normal chromosomal karyotype analysis results, and exclusion of other known diseases that can lead to ovarian dysfunction. We conducted whole-exome sequencing for the POI patient and identified pathogenic genes by classifying variants according to the standards and guidelines established by the American College of Medical Genetics and Genomics (ACMG). Subsequently, the identified variants were validated through Sanger sequencing and subjected to bioinformatics analysis. Plasmids containing wild-type and mutant FANCM genes were constructed and introduced into 293T cells. The 293T cells transfected with wild-type and mutant human FANCM plasmids and pEGFP-C1 empty vector plasmids were designated as the EGFP FANCM-WT group, the EGFP FANCM-MUT group, and the EGFP group, respectively. To validate the production of truncated proteins, cell proteins were extracted 48 hours post-transfection from the three groups and confirmed using GFP antibody. In order to investigate the impact on DNA damage repair, immunofluorescence experiments were conducted 48 hours post-transfection in the EGFP FANCM-WT group and the EGFP FANCM-MUT group to examine whether the variant affected FANCM's ability to localize on chromatin. Mitomycin C was used to induce ICLs damage in vitro in both the EGFP FANCM-WT group and the EGFP FANCM-MUT group, which was followed by verification of its effect on ICLs damage repair using γ-H2AX antibody. Results: In a POI patient from a consanguineous family, we identified a homozygous variant in the FANCM gene, c.1152-1155del:p.Leu386Valfs*10. The patient presented with primary infertility, experiencing irregular menstruation since menarche at the age of 16. Hormonal evaluation revealed an FSH level of 26.79 IU/L and an anti-Müllerian hormone (AMH) level of 0.07 ng/mL. Vaginal ultrasound indicated unsatisfactory visualization of the ovaries on both sides and uterine dysplasia. The patient's parents were a consanguineous couple, with the mother having regular menstrual cycles. The patient had two sisters, one of whom passed away due to osteosarcoma, while the other exhibited irregular menstruation, had been diagnosed with ovarian insufficiency, and remained childless. Bioinformatics analysis revealed a deletion of four nucleotides (c.1152-1155del) in the exon 6 of the patient's FANCM gene. This variant resulted in a frameshift at codon 386, introducing a premature stop codon at codon 396, which ultimately led to the production of a truncated protein consisting of 395 amino acids. In vitro experiments demonstrated that this variant led to the production of a truncated FANCM protein of approximately 43 kDa and caused a defect in its nuclear localization, with the protein being present only in the cytoplasm. Following treatment with mitomycin C, there was a significant increase in γ-H2AX levels in 293T cells transfected with the mutant plasmid (P<0.01), indicating a statistically significant impairment of DNA damage repair capability caused by this variant. Conclusions: The homozygous variant in the FANCM gene, c.1152-1155del:p.Leu386Valfs*10, results in the production of a truncated FANCM protein. This truncation leads to the loss of its interaction site with the MHF1-MHF2 complex, preventing its entry into the nucleus and the subsequent recognition of DNA damage. Consequently, the localization of the FA core complex on chromatin is disrupted, impeding the normal activation of the FA pathway and reducing the cell's ability to repair damaged ICLs. By disrupting the rapid proliferation and meiotic division processes of primordial germ cells, the reserve of oocytes is depleted, thereby triggering premature ovarian insufficiency in females.


Subject(s)
Primary Ovarian Insufficiency , Female , Primary Ovarian Insufficiency/genetics , Humans , Mutation , Fanconi Anemia/genetics , Adult , Infertility, Female/genetics , Infertility, Female/etiology , DNA Helicases
4.
PLoS One ; 19(6): e0304216, 2024.
Article in English | MEDLINE | ID: mdl-38848344

ABSTRACT

BACKGROUND: The causal relationship between sex hormone-binding globulin (SHBG) and infertility has remained unclear. Thus, we used Mendelian randomization (MR) to investigate this relationship. METHODS: Risk factors for SHBG were extracted from European individuals within the UK Biobank using single-nucleotide polymorphism (SNP) data. Summary-level data for infertility outcomes were obtained from the FinnGen dataset. The causal relationship between SHBG and infertility was examined using inverse variance weighted, weighted model, weighted median, and MR-Egger regression analyses. Additionally, Cochran's Q test and Egger intercept tests were used to confirm the heterogeneity and pleiotropy of identified instrumental variables (IVs). RESULTS: Our findings revealed a significant negative association between sex hormone-binding globulin (SHBG) levels and infertility, particularly with anovulation, a specific form of female infertility. However, SHBG did not exert a causal impact on male infertility or on female infertility of tubal origin. CONCLUSIONS: SHBG expression offers protection against the development of certain types of female infertility, suggesting it is a potential therapeutic target for infertility.


Subject(s)
Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Sex Hormone-Binding Globulin , Sex Hormone-Binding Globulin/genetics , Sex Hormone-Binding Globulin/metabolism , Humans , Female , Male , Infertility, Female/genetics , Infertility, Female/blood , Infertility, Male/genetics , Infertility, Male/blood , Risk Factors , Infertility/genetics , Anovulation/genetics , Anovulation/blood
5.
Genes (Basel) ; 15(5)2024 05 12.
Article in English | MEDLINE | ID: mdl-38790245

ABSTRACT

Insulin receptor signaling promotes cell differentiation, proliferation, and growth which are essential for oocyte maturation, embryo implantation, endometrial decidualization, and placentation. The dysregulation of insulin signaling in women with metabolic syndromes including diabetes exhibits poor pregnancy outcomes that are poorly understood. We utilized the Cre/LoxP system to target the tissue-specific conditional ablation of insulin receptor (Insr) and insulin-like growth factor-1 receptor (Igf1r) using an anti-Mullerian hormone receptor 2 (Amhr2) Cre-driver which is active in ovarian granulosa and uterine stromal cells. Our long-term goal is to examine insulin-dependent molecular mechanisms that underlie diabetic pregnancy complications, and our conditional knockout models allow for such investigation without confounding effects of ligand identity, source and cross-reactivity, or global metabolic status within dams. Puberty occurred with normal timing in all conditional knockout models. Estrous cycles progressed normally in Insrd/d females but were briefly stalled in diestrus in Igf1rd/d and double receptor (DKO) mice. The expression of vital ovulatory genes (Lhcgr, Pgr, Ptgs2) was not significantly different in 12 h post-hCG superovulated ovaries in knockout mice. Antral follicles exhibited an elevated apoptosis of granulosa cells in Igf1rd/d and DKO mice. However, the distribution of ovarian follicle subtypes and subsequent ovulations was normal in all insulin receptor mutants compared to littermate controls. While ovulation was normal, all knockout lines were subfertile suggesting that the loss of insulin receptor signaling in the uterine stroma elicits implantation and decidualization defects responsible for subfertility in Amhr2-Cre-derived insulin receptor mutants.


Subject(s)
Ovary , Receptor, IGF Type 1 , Receptor, Insulin , Animals , Female , Mice , Pregnancy , Granulosa Cells/metabolism , Granulosa Cells/pathology , Infertility, Female/genetics , Infertility, Female/metabolism , Infertility, Female/pathology , Mice, Knockout , Ovary/metabolism , Ovary/pathology , Ovulation/genetics , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Signal Transduction/genetics
6.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167228, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38734318

ABSTRACT

BACKGROUND: Early embryonic arrest and fragmentation (EEAF) is a common cause of female infertility, but the genetic causes remain to be largely unknown. CIP2A encodes the cellular inhibitor of PP2A, playing a crucial role in mitosis and mouse oocyte meiosis. METHODS: Exome sequencing and Sanger sequencing were performed to identify candidate causative genes in patients with EEAF. The pathogenicity of the CIP2A variant was assessed and confirmed in cultured cell lines and human oocytes through Western blotting, semi-quantitative RT-PCR, TUNEL staining, and fluorescence localization analysis. FINDINGS: We identified CIP2A (c.1510C > T, p.L504F) as a novel disease-causing gene in human EEAF from a consanguineous family. L504 is highly conserved throughout evolution. The CIP2A variant (c.1510C > T, p.L504F) reduced the expression level of the mutant CIP2A protein, leading to the abnormal aggregation of mutant CIP2A protein and cell apoptosis. Abnormal aggregation of CIP2A protein and chromosomal dispersion occurred in the patient's oocytes and early embryos. We further replicated the patient phenotype by knockdown CIP2A in human oocytes. Additionally, CIP2A deficiency resulted in decreased levels of phosphorylated ERK1/2. INTERPRETATION: We first found that the CIP2A loss-of-function variant associate with female infertility characterized by EEAF. Our findings suggest the uniqueness and importance of CIP2A gene in human oocyte and early embryo development. FUNDING: This work was supported by National Key Research and Development Program of China (2023YFC2706302), the National Natural Science Foundation of China (81000079, 81170165, and 81870959), the HUST Academic Frontier Youth Team (2016QYTD02), and the Key Research of Huazhong University of Science and Technology, Tongji Hospital (2022A20).


Subject(s)
Autoantigens , Infertility, Female , Intracellular Signaling Peptides and Proteins , Membrane Proteins , Oocytes , Humans , Female , Autoantigens/genetics , Autoantigens/metabolism , Infertility, Female/genetics , Infertility, Female/pathology , Infertility, Female/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Oocytes/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Apoptosis/genetics , Loss of Function Mutation , Adult , Exome Sequencing , Animals , Pedigree , Mice
7.
FASEB J ; 38(9): e23622, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38703029

ABSTRACT

Endometriosis (EMs)-related infertility commonly has decreased endometrial receptivity and normal decidualization is the basis for establishing and maintaining endometrial receptivity. However, the potential molecular regulatory mechanisms of impaired endometrial decidualization in patients with EMs have not been fully clarified. We confirmed the existence of reduced endometrial receptivity in patients with EMs by scanning electron microscopy and quantitative real-time PCR. Here we identified an lncRNA, named BMPR1B-AS1, which is significantly downregulated in eutopic endometrium in EMs patients and plays an essential role in decidual formation. Furthermore, RNA pull-down, mass spectrometry, RNA immunoprecipitation, and rescue analyses revealed that BMPR1B-AS1 positively regulates decidual formation through interaction with the RNA-binding protein insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2). Downregulation of IGF2BP2 led to a decreased stability of BMPR1B-AS1 and inhibition of activation of the SMAD1/5/9 pathway, an inhibitory effect which diminished decidualization in human endometrial stromal cells (hESCs) decidualization. In conclusion, our identified a novel regulatory mechanism in which the IGF2BP2-BMPR1B-AS1-SMAD1/5/9 axis plays a key role in the regulation of decidualization, providing insights into the potential link between abnormal decidualization and infertility in patients with EMs, which will be of clinical significance for the management and treatment of infertility in patients with EMs.


Subject(s)
Endometriosis , RNA, Long Noncoding , RNA-Binding Proteins , Adult , Female , Humans , Bone Morphogenetic Protein Receptors, Type I/metabolism , Bone Morphogenetic Protein Receptors, Type I/genetics , Decidua/metabolism , Decidua/pathology , Endometriosis/metabolism , Endometriosis/genetics , Endometriosis/pathology , Endometrium/metabolism , Endometrium/pathology , Infertility, Female/metabolism , Infertility, Female/genetics , Infertility, Female/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Signal Transduction , Stromal Cells/metabolism , Smad Proteins , Young Adult
8.
Front Endocrinol (Lausanne) ; 15: 1376800, 2024.
Article in English | MEDLINE | ID: mdl-38715795

ABSTRACT

Background: Although studies on the effects of diet on fertility has progressed, some cumulative evidence has piled against popular hypotheses. The aim of our study was to investigate the effects of 31 diets including 23 individual dietary intakes and 8 dietary habits on infertility in men and women. Methods: The datas of diets and infertility were collected from genome-wide association studies (GWAS). Mendelian randomization (MR) methods were used to analyze causal relationships. Multivariate MR (MVMR) adjusted for the effects of other exposures on causality. And MR-Egger, Cochran's Q, radial MR, and MR-PRESSO tests were employed to assess heterogeneity and horizontal pleiotropy. Results: Our study found that coffee intake (OR, 3.6967; 95% CI, 1.0348 - 13.2065; P = 0.0442) and cooked vegetable intakes (OR, 54.7865; 95% CI, 2.9011 - 1030.5500; P = 0.0076) increased the risk of male infertility. For women, beer was a risk factor for infertility (OR, 4.0932; 95% CI, 1.8728 - 8.9461; P = 0.0004); but processed meat was negatively associated with infertility (OR, 0.5148; 95% CI, 0.2730 - 0.9705; P = 0.0401). MVMR demonstrated selenium as a protective factor against female infertility (OR, 7.4474e-12; 95% CI, 5.4780e-22 - 1.0125e-01; P = 0.0314). Conclusion: We found the causal relationships between four diets and infertility. We look forward to more high-quality epidemiologic studies to prove our conclusions.


Subject(s)
Diet , Genome-Wide Association Study , Infertility, Female , Infertility, Male , Mendelian Randomization Analysis , Humans , Female , Male , Infertility, Male/genetics , Infertility, Male/epidemiology , Infertility, Male/etiology , Infertility, Female/genetics , Infertility, Female/etiology , Risk Factors , Feeding Behavior , Adult , Coffee/adverse effects
9.
Reprod Biol Endocrinol ; 22(1): 61, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783347

ABSTRACT

BACKGROUND: Prospective observational studies have demonstrated that the machine learning (ML) -guided noninvasive chromosome screening (NICS) grading system, which we called the noninvasive chromosome screening-artificial intelligence (NICS-AI) grading system, can be used embryo selection. The current prospective interventional clinical study was conducted to investigate whether this NICS-AI grading system can be used as a powerful tool for embryo selection. METHODS: Patients who visited our centre between October 2018 and December 2021 were recruited. Grade A and B embryos with a high probability of euploidy were transferred in the NICS group. The patients in the control group selected the embryos according to the traditional morphological grading. Finally, 90 patients in the NICS group and 161 patients in the control group were compared statistically for their clinical outcomes. RESULTS: In the NICS group, the clinical pregnancy rate (70.0% vs. 54.0%, p < 0.001), the ongoing pregnancy rate (58.9% vs. 44.7%, p = 0.001), and the live birth rate (56.7% vs. 42.9%, p = 0.001) were significantly higher than those of the control group. When the female was ≥ 35 years old, the clinical pregnancy rate (67.7% vs. 32.1%, p < 0.001), ongoing pregnancy rate (56.5% vs. 25.0%, p = 0.001), and live birth rate (54.8% vs. 25.0%, p = 0.001) in the NICS group were significantly higher than those of the control group. Regardless of whether the patients had a previous record of early spontaneous abortion or not, the live birth rate of the NICS group was higher than that of the control group (61.0% vs. 46.9%; 57.9% vs. 34.8%; 33.3% vs. 0%) but the differences were not statistically significant. CONCLUSIONS: NICS-AI was able to improve embryo utilisation rate, and the live birth rate, especially for those ≥ 35 years old, with transfer of Grade A embryos being preferred, followed by Grade B embryos. NICS-AI can be used as an effective tool for embryo selection in the future.


Subject(s)
Machine Learning , Pregnancy Rate , Humans , Female , Pregnancy , Adult , Prospective Studies , Single Embryo Transfer/methods , Preimplantation Diagnosis/methods , Embryo Transfer/methods , Infertility, Female/therapy , Infertility, Female/genetics , Infertility, Female/diagnosis , Treatment Outcome , Infertility/therapy , Infertility/diagnosis , Infertility/genetics
10.
BMC Pregnancy Childbirth ; 24(1): 398, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816754

ABSTRACT

BACKGROUND: The causes of infertility have remained an important challenge. The relationship between VDR gene polymorphisms and infertility has been reported, with controversial findings. OBJECTIVE AND RATIONALE: We aimed to determine this relationship by conducting a systematic review and meta-analysis. SEARCH METHODS: The study was started with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) declaration and the final draft was registered as a protocol in PROSPERO (ID: CRD42023416535). The international electronic databases including PubMed (Medline), Scopus, Web of Sciences, and Cumulative Index to Nursing and Allied Health Literature (CINHAL) were searched until January 30, 2023, by using appropriate keywords. The quality of the final studies was assessed using the NOS Checklist for case-control studies. The odds ratios (ORs) for each of the genetic models were pooled, and a subgroup analysis based on geographical region and types of infertility was carried out by the MetaGenyo online tool. OUTCOMES: Case-control studies including 18 and 2 studies about infertility in women and men, respectively, and 4 miscarriage studies were entered into the meta-analysis. The VDR gene TaqI polymorphism was associated with infertility susceptibility in women in the allele contrast [OR = 1.2065, 95% CI (1.0846-1.3421); P = 0.0005], Recessive model [OR = 1.3836, 95% CI (1.1197-1.7096); P = 0.002], Dominant model [OR = 1.2146, 95% CI (0.0484-1.4072); P = 0.009], Homozygote [OR = 1.4596, 95% CI (1.1627-1.8325); P = 0.001], and TT vs. Tt [OR = 1.2853, 95% CI (1.0249-1.6117); P = 0.029. ApaI and FokI gene polymorphisms were found to be significantly protective SNPs against women and men infertility in the Dominant model [OR = 0.8379, 95% CI (0.7039- 0.9975); P = 0.046] and Recessive model [OR = 0.421, 95% CI (0.1821-0.9767); P = 0.043], respectively. Sub-group meta-analysis showed a protection association of ApaI in dominant [OR = 0.7738, 95% CI = 0.6249-0.9580; P = 0.018] and AA vs. aa [OR = 0.7404, 95 CI% (0.5860-0.9353) P = 0.011725] models in PCOS subgroup, however, a negative association with idiopathic infertility was found in AA vs. Aa [OR = 1.7063, 95% CI (1.1039-2.6375); P = 0.016187] and Aa vs. aa [OR = 0.6069, 95% CI (0.3761-0.9792); P = 0.040754]. TaqI SNP was significantly associated with infertility in the African population and BsmI was associated with the disease mostly in the Asian population. CONCLUSION: This meta-analysis showed that the TaqI polymorphism may be linked to women's infertility susceptibility. However, ApaI and FokI might be the protective SNPs against infertility in Women and men, respectively.


Subject(s)
Genetic Predisposition to Disease , Receptors, Calcitriol , Humans , Receptors, Calcitriol/genetics , Female , Male , Polymorphism, Genetic , Infertility, Female/genetics , Case-Control Studies , Infertility/genetics , Infertility, Male/genetics
11.
PLoS Genet ; 20(4): e1011226, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38578788

ABSTRACT

CRISPR-based gene drives offer promising prospects for controlling disease-transmitting vectors and agricultural pests. A significant challenge for successful suppression-type drive is the rapid evolution of resistance alleles. One approach to mitigate the development of resistance involves targeting functionally constrained regions using multiple gRNAs. In this study, we constructed a 3-gRNA homing gene drive system targeting the recessive female fertility gene Tyrosine decarboxylase 2 (Tdc2) in Drosophila suzukii, a notorious fruit pest. Our investigation revealed only a low level of homing in the germline, but feeding octopamine restored the egg-laying defects in Tdc2 mutant females, allowing easier line maintenance than for other suppression drive targets. We tested the effectiveness of a similar system in Drosophila melanogaster and constructed additional split drive systems by introducing promoter-Cas9 transgenes to improve homing efficiency. Our findings show that genetic polymorphisms in wild populations may limit the spread of gene drive alleles, and the position effect profoundly influences Cas9 activity. Furthermore, this study highlights the potential of conditionally rescuing the female infertility caused by the gene drive, offering a valuable tool for the industrial-scale production of gene drive transgenic insects.


Subject(s)
Gene Drive Technology , Infertility, Female , Female , Animals , Humans , Drosophila/genetics , Drosophila melanogaster/genetics , Infertility, Female/genetics , CRISPR-Cas Systems , Fruit , RNA, Guide, CRISPR-Cas Systems , Phenotype
12.
J Assist Reprod Genet ; 41(5): 1417-1431, 2024 May.
Article in English | MEDLINE | ID: mdl-38456991

ABSTRACT

PURPOSE: Gene expression analysis of the endometrium has been shown to be a useful approach for identifying the molecular signatures and pathways involved in recurrent implantation failure (RIF). Nevertheless, individual studies have limitations in terms of study design, methodology and analysis to detect minor changes in expression levels or identify novel gene signatures associated with RIF. METHOD: To overcome this, we conducted an in silico meta-analysis of nine studies, the systematic collection and integration of gene expression data, utilizing rigorous selection criteria and statistical techniques to ensure the robustness of our findings. RESULTS: Our meta-analysis successfully unveiled a meta-signature of 49 genes closely associated with RIF. Of these genes, 38 were upregulated and 11 downregulated in RIF patients' endometrium and believed to participate in key processes like cell differentiation, communication, and adhesion. GADD45A, IGF2, and LIF, known for their roles in implantation, were identified, along with lesser-studied genes like OPRK1, PSIP1, SMCHD1, and SOD2 related to female infertility. Many of these genes are involved in MAPK and PI3K-Akt pathways, indicating their role in inflammation. We also investigated to look for key miRNAs regulating these 49 dysregulated mRNAs as potential diagnostic biomarkers. Along with this, we went to associate protein-protein interactions of 49 genes, and we could recognize one cluster consisting of 11 genes (consisted of 22 nodes and 11 edges) with the highest score (p = 0.001). Finally, we validated some of the genes by qRT-PCR in our samples. CONCLUSION: In summary, the meta-signature genes hold promise for improving RIF patient identification and facilitating the development of personalized treatment strategies, illuminating the multifaceted nature of this complex condition.


Subject(s)
Embryo Implantation , Endometrium , Transcriptome , Humans , Female , Endometrium/metabolism , Endometrium/pathology , Embryo Implantation/genetics , Transcriptome/genetics , Gene Expression Profiling , Infertility, Female/genetics , Infertility, Female/pathology , MicroRNAs/genetics , Gene Expression Regulation/genetics , Pregnancy
13.
Acta Obstet Gynecol Scand ; 103(7): 1348-1365, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38520066

ABSTRACT

INTRODUCTION: Implantation failure after transferring morphologically "good-quality" embryos in in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) may be explained by impaired endometrial receptivity. Analyzing the endometrial transcriptome analysis may reveal the underlying processes and could help in guiding prognosis and using targeted interventions for infertility. This exploratory study investigated whether the endometrial transcriptome profile was associated with short-term or long-term implantation outcomes (ie success or failure). MATERIAL AND METHODS: Mid-luteal phase endometrial biopsies of 107 infertile women with one full failed IVF/ICSI cycle, obtained within an endometrial scratching trial, were subjected to RNA-sequencing and differentially expressed genes analysis with covariate adjustment (age, body mass index, luteinizing hormone [LH]-day). Endometrial transcriptomes were compared between implantation failure and success groups in the short term (after the second fresh IVF/ICSI cycle) and long term (including all fresh and frozen cycles within 12 months). The short-term analysis included 85/107 women (33 ongoing pregnancy vs 52 no pregnancy), excluding 22/107 women. The long-term analysis included 46/107 women (23 'fertile' group, ie infertile women with a live birth after ≤3 embryos transferred vs 23 recurrent implantation failure group, ie no live birth after ≥3 good quality embryos transferred), excluding 61/107 women not fitting these categories. As both analyses drew from the same pool of 107 samples, there was some sample overlap. Additionally, cell type enrichment scores and endometrial receptivity were analyzed, and an endometrial development pseudo-timeline was constructed to estimate transcriptomic deviations from the optimum receptivity day (LH + 7), denoted as ΔWOI (window of implantation). RESULTS: There were no significantly differentially expressed genes between implantation failure and success groups in either the short-term or long-term analyses. Principal component analysis initially showed two clusters in the long-term analysis, unrelated to clinical phenotype and no longer distinct following covariate adjustment. Cell type enrichment scores did not differ significantly between groups in both analyses. However, endometrial receptivity analysis demonstrated a potentially significant displacement of the WOI in the non-pregnant group compared with the ongoing pregnant group in the short-term analysis. CONCLUSIONS: No distinct endometrial transcriptome profile was associated with either implantation failure or success in infertile women. However, there may be differences in the extent to which the WOI is displaced.


Subject(s)
Embryo Implantation , Endometrium , Infertility, Female , Transcriptome , Humans , Female , Infertility, Female/genetics , Infertility, Female/therapy , Infertility, Female/metabolism , Endometrium/metabolism , Adult , Pregnancy , Sperm Injections, Intracytoplasmic , Embryo Transfer , Fertilization in Vitro
14.
Genes (Basel) ; 15(3)2024 03 04.
Article in English | MEDLINE | ID: mdl-38540391

ABSTRACT

Disruption of meiosis and DNA repair genes is associated with female fertility disorders like premature ovarian insufficiency (POI). In this study, we identified a homozygous missense variant in the HELQ gene (c.596 A>C; p.Gln199Pro) through whole exome sequencing in a POI patient, a condition associated with disrupted ovarian function and female infertility. HELQ, an enzyme involved in DNA repair, plays a crucial role in repairing DNA cross-links and has been linked to germ cell maintenance, fertility, and tumour suppression in mice. To explore the potential association of the HELQ variant with POI, we used CRISPR/Cas9 to create a knock-in mouse model harbouring the equivalent of the human HELQ variant identified in the POI patient. Surprisingly, Helq knock-in mice showed no discernible phenotype, with fertility levels, histological features, and follicle development similar to wild-type mice. Despite the lack of observable effects in mice, the potential role of HELQ in human fertility, especially in the context of POI, should not be dismissed. Larger studies encompassing diverse ethnic populations and alternative functional approaches will be necessary to further examine the role of HELQ in POI. Our results underscore the potential uncertainties associated with genomic variants and the limitations of in vivo animal modelling.


Subject(s)
Infertility, Female , Primary Ovarian Insufficiency , Animals , Female , Humans , Mice , DNA Helicases/genetics , Homozygote , Infertility, Female/genetics , Mutation, Missense , Primary Ovarian Insufficiency/genetics
15.
Endocrinology ; 165(5)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38527850

ABSTRACT

Thyroid hormones (THs) T4 and T3 are vital for development, growth, and metabolism. Thyroid dysfunction can also cause problems in fertility, suggesting involvement of THs in reproduction. In zebrafish, there exist 2 forms of TH receptor alpha gene (thraa and thrab). Disruption of these genes by CRISPR/Cas9 showed no reproductive irregularities in the thraa mutant; however, inactivation of the thrab gene resulted in female infertility. Although young female mutants (thrabm/m) showed normal ovarian development and folliculogenesis before sexual maturation, they failed to release eggs during oviposition after sexual maturation. This spawning failure was due to oviductal blockage at the genital papilla. The obstruction of the oviduct subsequently caused an accumulation of the eggs in the ovary, resulting in severe ovarian hypertrophy, abdominal distention, and disruption of folliculogenesis. Gene expression analysis showed expression of both TH receptors and estrogen receptors in the genital papilla, suggesting a direct TH action and potential interactions between thyroid and estrogen signaling pathways in controlling genital papilla development and function. In addition to their actions in the reproductive tracts, THs may also have direct effects in the ovary, as suggested by follicle atresia and cessation of folliculogenesis in the heterozygous mutant (thrab+/m), which was normal in all aspects of female reproduction in young and sexually mature fish but exhibited premature ovarian failure in aged females. In summary, this study provides substantial evidence for roles of THs in controlling the development and functions of both reproductive tract and ovary.


Subject(s)
Infertility, Female , Ovary , Zebrafish , Animals , Female , Zebrafish/genetics , Infertility, Female/genetics , Ovary/metabolism , Thyroid Hormone Receptors alpha/genetics , Thyroid Hormone Receptors alpha/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Mutation , CRISPR-Cas Systems , Reproduction/genetics
16.
PLoS One ; 19(3): e0298997, 2024.
Article in English | MEDLINE | ID: mdl-38512957

ABSTRACT

Infertility is a significant challenge in modern society, and observed studies have reported the association between telomere length and infertility. Whether this relationship is causal remains controversial.We employed two-sample mendelian randomization (MR) to investigate the causal relationship between leukocyte telomere length (LTL) and major causes of infertility, including male and female infertility, sperm abnormalities, and endometriosis. MR analyses were mainly performed using the inverse variance weighted (IVW) method and complemented with other MR methods.Our findings demonstrate a causal association between LTL and endometriosis (OR1.304, 95% CI (1.122,1.517), p = 0.001), suggesting its potential as a biomarker for this condition. However, we did not observe a significant causal relationship between LTL and other infertility causes.Our study presents compelling evidence on the relationship between LTL and endometriosis. Meanwhile, our study demonstrates that there is no causal relationship between LTL and infertility. This research contributes to the field by shedding light on the importance of LTL in the early diagnosis and intervention of endometriosis.


Subject(s)
Endometriosis , Infertility, Female , Male , Female , Humans , Endometriosis/genetics , Mendelian Randomization Analysis , Semen , Infertility, Female/genetics , Leukocytes , Telomere/genetics , Genome-Wide Association Study
17.
Medicine (Baltimore) ; 103(10): e37346, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38457599

ABSTRACT

Since December 2019, COVID-19 has triggered a global pandemic. The association of COVID-19 with the long-term reproductive situation of women and males is not clear. Thus, our aim was to assess the causal association between COVID-19 and infertility using Mendelian randomization (MR) analysis based on the OpenGWAS database. Two-sample MR analysis was conducted using one genome-wide association study (GWAS) on COVID-19 and infertility in individuals of European ancestry. The summary data of genetic variation come from the GWAS in European populations. We applied several MR methods, including MR Egger, weighted median, inverse variance weighted, simple mode, weighted mode, to test causal relationships. After observing the statistical analysis results of MR, we conducted sensitivity analysis to test robustness. After gene prediction, it was found that there was no clear causal relationship between COVID-19 and male infertility in MR analysis [OR 0.4702 (95% CI, 0.1569-1.4093), P = .178]. Moreover, COVID-19 was not associated with female infertility [OR 0.9981 (95% CI, 0.763-1.544), P = .646]. Sensitivity analysis showed that the MR results were robust [level pleiotropy, male: (MR-Egger, intercept = 0.1967434; se = 0.1186876; P = .2392406); female: (MR-Egger, intercept = -0.05902506; se = 0.05362049; P = .3211367)]. To further validate the impact of COVID-19 on infertility, we added a covariate (sex hormone binding global levels, abortion) to the MR analysis, which is a multivariate MR analysis. According to univariate and multivariate MR analyses, the evidence does not support that COVID-19 is a causal risk factor for infertility in European population. This information can provide information for doctors in reproductive centers when managing infertility patients.


Subject(s)
COVID-19 , Infertility, Female , Infertility, Male , Pregnancy , Female , Humans , Male , Mendelian Randomization Analysis , Genome-Wide Association Study , COVID-19/genetics , Infertility, Female/epidemiology , Infertility, Female/genetics , Infertility, Male/epidemiology , Infertility, Male/genetics
18.
J Reprod Immunol ; 163: 104238, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38479056

ABSTRACT

PURPOSE: Observational studies have linked cytokines to the occurrence of female and male infertility. However, it is not clear how biomarkers of inflammation are causally related to infertility. To explore whether genetic variants in circulating cytokines are associated with the pathogenesis of infertility, we performed two-sample Mendelian randomization (MR) analysis. METHODS: A total of 31,112 individuals of European ancestry were included in a genome-wide association study (GWAS) of 47 circulating cytokines as instrumental variables (IVs). Outcome data were female infertility, including four different subtypes, and male infertility, from the FinnGen consortium. Five MR methods, including inverse-variance weighted (IVW), MR-Egger, simple mode, weighted median, and weighted mode were employed to examine the genetic association between cytokines and the risk of female infertility and male infertility. The false discovery rate (FDR) was controlled using the Benjamini-Hochberg method. RESULTS: After FDR correction, cis-protein quantitative trait locus (cis-pQTL) instruments showed that the cytokines GROa and MCSF were positively associated with female infertility. In analyses of subtypes of female infertility, eotaxin and sICAM were inversely associated with ovulation-related infertility; MCP3 alone was positively associated with uterus-related infertility; GROa and MCSF were positively correlated with infertility of cervical, vaginal, and other or unspecified origin; and MIP1a was negatively correlated with tubal origin infertility. The cytokines HGF, IL-2ra, and RANTES were positively correlated with male infertility. Similar findings were obtained in sensitivity analyses. There was no evidence of pleiotropy or heterogeneity in the results. CONCLUSION: These findings contribute to current understanding of the role of cytokine biomarkers in the etiology of female and male infertility. Furthermore clinical experimental validation is required to evaluate the potential of these cytokines as biomarkers.


Subject(s)
Cytokines , Genome-Wide Association Study , Infertility, Female , Infertility, Male , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Humans , Female , Male , Cytokines/blood , Cytokines/genetics , Infertility, Male/genetics , Infertility, Male/blood , Infertility, Male/immunology , Infertility, Female/genetics , Infertility, Female/blood , Infertility, Female/immunology , Quantitative Trait Loci , Genetic Predisposition to Disease , Biomarkers/blood
19.
J Assist Reprod Genet ; 41(5): 1233-1243, 2024 May.
Article in English | MEDLINE | ID: mdl-38536595

ABSTRACT

AIM: Abnormalities in oocyte maturation, fertilization, and early embryonic development are major causes of primary infertility in women who are undergoing IVF/ICSI attempts. Although many genetic factors responsible for these abnormal phenotypes have been identified, there are more additional pathogenic genes and variants yet to be discovered. Previous studies confirmed that bi-allelic PATL2 deficiency is an important factor for female infertility. In this study, 935 infertile patients with IVF/ICSI failure were selected for whole-exome sequencing, and 18 probands carrying PATL2 variants with a recessive inheritance pattern were identified. METHODS: We estimated that the prevalence contributed by PATL2 was 1.93% (18/935) in our study cohort. RESULTS: 15 novel variants were found in those families, including c.1093C > T, c.1609dupA, c.1204C > T, c.643dupG, c.877-2A > G, c.1228C > G, c.925G > A, c.958G > A, c.4A > G, c.1258T > C, c.1337G > A, c.1264dupA, c.88G > T, c.1065-2A > G, and c.1271T > C. The amino acids altered by the corresponding variants were highly conserved in mammals, and in silico analysis and 3D molecular modeling suggested that the PATL2 mutants impaired the physiologic function of the resulting proteins. Diverse clinical phenotypes, including oocyte maturation defect, fertilization failure, and early embryonic arrest might result from different variants of PATL2. CONCLUSIONS: These results expand the spectrum of PATL2 variants and provide an important reference for genetic counseling for female infertility, and they increase our understanding of the mechanisms of oocyte maturation arrest caused by PATL2 deficiency.


Subject(s)
Exome Sequencing , Fertilization in Vitro , Infertility, Female , Mutation , Phenotype , Sperm Injections, Intracytoplasmic , Humans , Female , Infertility, Female/genetics , Infertility, Female/pathology , Adult , Mutation/genetics , Oocytes/growth & development , Oocytes/pathology , Pregnancy , Pedigree
20.
Fertil Steril ; 122(1): 162-173, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38355031

ABSTRACT

OBJECTIVE: To investigate the association between serum uric acid and women's ovarian reserve. DESIGN: Retrospective observational study and Mendelian randomization study. SETTING: University-affiliated in vitro fertilization center. PATIENTS: Observational analyses were undertaken using data from 8,257 women with infertility who finished their first in vitro fertilization treatments between May 2017 and December 2021. Mendelian randomization analyses were based on genome-wide association summary statistics from several biobanks of predominantly European ancestries. INTERVENTIONS: Observational study involved testing log2 transformed serum uric acid levels (for linear, negative regression, and logistic regression analyses); original uric acid levels (for nonlinear association analyses). Mendelian randomization study involved testing genetically predicted uric acid levels. MAIN OUTCOME MEASURES: Biomarkers including antimüllerian hormone, basal antral follicle count, follicle-stimulating hormone, luteinizing hormone, ratio of follicle-stimulating hormone to luteinizing hormone, estradiol; indices of ovarian response to stimulation including poor ovarian response according to different criteria and oocyte yield. RESULTS: In retrospective observational study, all ovarian reserve-related outcomes demonstrated significant differences across serum uric acid quartiles. A two-fold uric acid increase was associated with increased antimüllerian hormone (adjusted ß = 0.69; 95% confidence interval [CI], 0.43-0.95), antral follicle count (adjusted incidence rate ratio = 1.10, 95% CI, 1.05-1.14), luteinizing hormone (adjusted ß = 0.53, 95% CI, 0.28-0.78), decreased risks of Bologna poor ovarian response (adjusted odds ratio = 0.97; 95% CI, 0.95-0.99) and groups 2-4 Poseidon poor ovarian response (group 2: 0.63, 0.56-0.71; group 3: 0.71, 0.65-0.78; group 4: 0.50, 0.46-0.55), whereas an increased risk of group 1 (1.26, 1.13-1.41). Nonlinear analyses showed a common inflection point at 320-340 µmol/L of uric acid. Interactions between uric acid and antimüllerian hormone and antral follicle count were presented in association with oocyte yield. Mendelian randomization results suggested a significant association between genetically predicted uric acid levels and antimüllerian hormone levels (ß = 0.08; 95% CI, 0.04-0.12) but none for uric acid in relation to polycystic ovarian syndrome or other related hormones. CONCLUSION: Higher uric acid levels were associated with better ovarian reserve and increased levels of antimüllerian hormone albeit an increased risk of unexpected poor ovarian response.


Subject(s)
Mendelian Randomization Analysis , Ovarian Reserve , Uric Acid , Humans , Female , Ovarian Reserve/genetics , Uric Acid/blood , Adult , Retrospective Studies , Infertility, Female/blood , Infertility, Female/genetics , Infertility, Female/therapy , Infertility, Female/epidemiology , Infertility, Female/diagnosis , Infertility, Female/physiopathology , Fertilization in Vitro , Biomarkers/blood , Anti-Mullerian Hormone/blood , Genome-Wide Association Study , Ovulation Induction/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...