Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 8.150
1.
Front Immunol ; 15: 1298275, 2024.
Article En | MEDLINE | ID: mdl-38707903

Background: Innate immune responses against infectious agents can act as triggers of inflammatory diseases. On the other hand, various pathogens have developed mechanisms for the evasion of the immune response, based on an inhibition of innate immunity and inflammatory responses. Inflammatory diseases could thus be controlled through the administration of pathogens or pathogen-derived molecules, capable of interfering with the mechanisms at the basis of inflammation. In this framework, the NLRP3 inflammasome is an important component in innate antimicrobial responses and a major player in the inflammatory disease. Parasites of the genus Leishmania are master manipulators of innate immune mechanisms, and different species have been shown to inhibit inflammasome formation. However, the exploitation of pathogenic Leishmania species as blockers of NLRP3-based inflammatory diseases poses safety concerns. Methods: To circumvent safety issues associated with pathogenic parasites, we focused on Leishmania tarentolae, a species of Leishmania that is not infectious to humans. Because NLRP3 typically develops in macrophages, in response to the detection and engulfment microorganisms, we performed our experiments on a monocyte-macrophage cell line (THP-1), either wild type or knockout for ASC, a key component of NLRP3 formation, with determination of cytokines and other markers of inflammation. Results: L. tarentolae was shown to possess the capability of dampening the formation of NLRP3 inflammasome and the consequent expression of pro-inflammatory molecules, with minor differences compared to effects of pathogenic Leishmania species. Conclusion: The non-pathogenic L. tarentolae appears a promising pro-biotic microbe with anti-inflammatory properties or a source of immune modulating cellular fractions or molecules, capable of interfering with the formation of the NLRP3 inflammasome.


Inflammasomes , Inflammation , Leishmania , NLR Family, Pyrin Domain-Containing 3 Protein , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Humans , Inflammasomes/metabolism , Inflammasomes/immunology , Leishmania/immunology , Inflammation/immunology , THP-1 Cells , Macrophages/immunology , Macrophages/metabolism , Macrophages/parasitology , Immunity, Innate , Cytokines/metabolism
2.
Exp Biol Med (Maywood) ; 249: 10104, 2024.
Article En | MEDLINE | ID: mdl-38708425

Seawater-drowning-induced acute lung injury (SD-ALI) is a life-threatening disorder characterized by increased alveolar-capillary permeability, an excessive inflammatory response, and refractory hypoxemia. Perfluorocarbons (PFCs) are biocompatible compounds that are chemically and biologically inert and lack toxicity as oxygen carriers, which could reduce lung injury in vitro and in vivo. The aim of our study was to explore whether the vaporization of PFCs could reduce the severity of SD-ALI in canines and investigate the underlying mechanisms. Eighteen beagle dogs were randomly divided into three groups: the seawater drowning (SW), perfluorocarbon (PFC), and control groups. The dogs in the SW group were intratracheally administered seawater to establish the animal model. The dogs in the PFC group were treated with vaporized PFCs. Probe-based confocal laser endomicroscopy (pCLE) was performed at 3 h. The blood gas, volume air index (VAI), pathological changes, and wet-to-dry (W/D) lung tissue ratios were assessed. The expression of heme oxygenase-1 (HO-1), nuclear respiratory factor-1 (NRF1), and NOD-like receptor family pyrin domain containing-3 (NLRP3) inflammasomes was determined by means of quantitative real-time polymerase chain reaction (qRT-PCR) and immunological histological chemistry. The SW group showed higher lung injury scores and W/D ratios, and lower VAI compared to the control group, and treatment with PFCs could reverse the change of lung injury score, W/D ratio and VAI. PFCs deactivated NLRP3 inflammasomes and reduced the release of caspase-1, interleukin-1ß (IL-1ß), and interleukin-18 (IL-18) by enhancing the expression of HO-1 and NRF1. Our results suggest that the vaporization of PFCs could attenuate SD-ALI by deactivating NLRP3 inflammasomes via the HO-1/NRF1 pathway.


Acute Lung Injury , Fluorocarbons , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Fluorocarbons/pharmacology , Dogs , Acute Lung Injury/metabolism , Acute Lung Injury/drug therapy , Acute Lung Injury/pathology , Inflammasomes/metabolism , Inflammasomes/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Seawater , Male , Drowning/metabolism , Disease Models, Animal , Lung/pathology , Lung/metabolism , Lung/drug effects
3.
Int J Biol Sci ; 20(7): 2658-2685, 2024.
Article En | MEDLINE | ID: mdl-38725851

Mucosal epithelial death is an essential pathological characteristic of portal hypertensive gastropathy (PHG). FADDosome can regulate mucosal homeostasis by controlling mitochondrial status and cell death. However, it remains ill-defined whether and how the FADDosome is involved in the epithelial death of PHG. The FADDosome formation, mitochondrial dysfunction, glycolysis process and NLRP3 inflammasome activation in PHG from both human sections and mouse models were investigated. NLRP3 wild-type (NLRP3-WT) and NLRP3 knockout (NLRP3-KO) littermate models, critical element inhibitors and cell experiments were utilized. The mechanism underlying FADDosome-regulated mitochondrial dysfunction and epithelial death in PHG was explored. Here, we found that FADD recruited caspase-8 and receptor-interacting serine/threonine-protein kinase 1 (RIPK1) to form the FADDosome to promote Drp1-dependent mitochondrial fission and dysfunction in PHG. Also, FADDosome modulated NOX2 signaling to strengthen Drp1-dependent mitochondrial fission and alter glycolysis as well as enhance mitochondrial reactive oxygen species (mtROS) production. Moreover, due to the dysfunction of electron transport chain (ETC) and alteration of antioxidant enzymes activity, this altered glycolysis also contributed to mtROS production. Subsequently, the enhanced mtROS production induced NLRP3 inflammasome activation to result in the epithelial pyroptosis and mucosal injury in PHG. Thus, the FADDosome-regulated pathways may provide a potential therapeutic target for PHG.


Fas-Associated Death Domain Protein , Gastric Mucosa , Hypertension, Portal , Mitochondria , Animals , Mice , Mitochondria/metabolism , Fas-Associated Death Domain Protein/metabolism , Gastric Mucosa/metabolism , Gastric Mucosa/pathology , Humans , Hypertension, Portal/metabolism , Hypertension, Portal/pathology , Male , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mice, Knockout , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism , Inflammasomes/metabolism
4.
Front Immunol ; 15: 1364161, 2024.
Article En | MEDLINE | ID: mdl-38803504

Introduction: Atherosclerosis, a leading cause of global cardiovascular mortality, is characterized by chronic inflammation. Central to this process is the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome, which significantly influences atherosclerotic progression. Recent research has identified that the olfactory receptor 2 (Olfr2) in vascular macrophages is instrumental in driving atherosclerosis through NLRP3- dependent IL-1 production. Methods: To investigate the effects of Corilagin, noted for its anti-inflammatory attributes, on atherosclerotic development and the Olfr2 signaling pathway, our study employed an atherosclerosis model in ApoE-/- mice, fed a high-fat, high-cholesterol diet, alongside cellular models in Ana-1 cells and mouse bone marrow-derived macrophages, stimulated with lipopolysaccharides and oxidized low-density lipoprotein. Results: The vivo and vitro experiments indicated that Corilagin could effectively reduce serum lipid levels, alleviate aortic pathological changes, and decrease intimal lipid deposition. Additionally, as results showed, Corilagin was able to cut down expressions of molecules associated with the Olfr2 signaling pathway. Discussion: Our findings indicated that Corilagin effectively inhibited NLRP3 inflammasome activation, consequently diminishing inflammation, macrophage polarization, and pyroptosis in the mouse aorta and cellular models via the Olfr2 pathway. This suggests a novel therapeutic mechanism of Corilagin in the treatment of atherosclerosis.


Atherosclerosis , Glucosides , Hydrolyzable Tannins , Inflammasomes , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein , Signal Transduction , Animals , Hydrolyzable Tannins/pharmacology , Hydrolyzable Tannins/therapeutic use , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Mice , Signal Transduction/drug effects , Inflammasomes/metabolism , Glucosides/pharmacology , Glucosides/therapeutic use , Macrophages/metabolism , Macrophages/immunology , Macrophages/drug effects , Male , Disease Models, Animal , Mice, Inbred C57BL , Mice, Knockout, ApoE
5.
Drug Des Devel Ther ; 18: 1755-1770, 2024.
Article En | MEDLINE | ID: mdl-38808326

Purpose: The aim of this study is to uncover the anti-inflammatory propertity of andrographolide (AGP) in acute exacerbation of chronic obstructive pulmonary disease (AECOPD) and the underlying mechanisms related to the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome pathway. Methods: An in vivo experiment was conducted on murine model of AECOPD through endotracheal atomization of elastase and lipopolysaccharide (LPS). Intraperitoneal AGP was administered four times. NLRP3 inflammasome pathway molecules were examined using real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis. By using enzyme-linked immunosorbent assay (ELISA), we tested interleukin (IL)-1ß levels in bronchoalveolar lavage fluid. An in vitro study was conducted to determine how AGP impacts the NLRP3 inflammasome in THP-1 derived macrophages. The levels of molecules involved in the pathway were measured. Furthermore, molecular docking analyses were carried out to investigate the interactions between AGP and pathway targets. Results: In the in vivo study, NLRP3 inflammasome activation was observed in mice experiencing AECOPD. The administration of high-dose AGP demonstrated a mitigating effect on inflammatory cells infiltration in the lungs. Moreover, AGP administration effectively suppressed the expression of NLRP3, apoptosis associated speck-like protein that contains a CARD (PYCARD), cysteinyl aspartate-specific protease-1 (Caspase-1), IL-1ß, and IL-18 at both the genetic and protein levels. In the in vitro experiment, IL-1ß levels were significantly elevated in THP-1 derived macrophages with activated inflammasome compared to the control group. Furthermore, the downregulation of NLRP3, CASP1, and IL1B genes was observed upon the inhibition of NLRP3 expression through small interfering RNA (siRNA). AGP demonstrated inhibitory effects on the gene expression and protein levels of NLRP3, Caspase-1, and IL-1ß. Additionally, molecular docking analysis confirmed that AGP exhibited a favorable binding affinity with all five targets of the pathway. Conclusion: AGP effectively inhibited NLRP3 inflammasome activation and mitigated the inflammatory reaction of AECOPD both in animal models and in vitro experiments, highlighting the potential of AGP as a treatment for AECOPD with anti-inflammatory properties.


Diterpenes , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Pulmonary Disease, Chronic Obstructive , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/metabolism , Animals , Diterpenes/pharmacology , Diterpenes/chemistry , Diterpenes/administration & dosage , Mice , Inflammasomes/metabolism , Inflammasomes/drug effects , Humans , Mice, Inbred C57BL , Molecular Docking Simulation , Male , Inflammation/drug therapy , Inflammation/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Lipopolysaccharides/pharmacology , Structure-Activity Relationship
6.
Braz J Med Biol Res ; 57: e13379, 2024.
Article En | MEDLINE | ID: mdl-38808888

Ulcerative colitis (UC) is a difficult intestinal disease characterized by inflammation, and its mechanism is complex and diverse. Angiopoietin-like protein 2 (ANGPT2) plays an important regulatory role in inflammatory diseases. However, the role of ANGPT2 in UC has not been reported so far. After exploring the expression level of ANGPT2 in serum of UC patients, the reaction mechanism of ANGPT2 was investigated in dextran sodium sulfate (DSS)-induced UC mice. After ANGPT2 expression was suppressed, the clinical symptoms and pathological changes of UC mice were detected. Colonic infiltration, oxidative stress, and colonic mucosal barrier in UC mice were evaluated utilizing immunohistochemistry, immunofluorescence, and related kits. Finally, western blot was applied for the estimation of mTOR signaling pathway and NLRP3 inflammasome-related proteins. ANGPT2 silencing improved clinical symptoms and pathological changes, alleviated colonic inflammatory infiltration and oxidative stress, and maintained the colonic mucosal barrier in DSS-induced UC mice. The regulatory effect of ANGPT2 on UC disease might occur by regulating the mTOR signaling pathway and thus affecting autophagy-mediated NLRP3 inflammasome inactivation. ANGPT2 silencing alleviated UC by regulating autophagy-mediated NLRP3 inflammasome inactivation via the mTOR signaling pathway.


Autophagy , Colitis, Ulcerative , Disease Models, Animal , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Signal Transduction , TOR Serine-Threonine Kinases , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/pathology , Colitis, Ulcerative/metabolism , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Autophagy/physiology , TOR Serine-Threonine Kinases/metabolism , Mice , Inflammasomes/metabolism , Humans , Male , Angiopoietin-Like Protein 2 , Mice, Inbred C57BL , Female , Angiopoietin-2/metabolism , Dextran Sulfate , Oxidative Stress , Immunohistochemistry , Blotting, Western
7.
Front Cell Infect Microbiol ; 14: 1374817, 2024.
Article En | MEDLINE | ID: mdl-38779563

Introduction: Periodontal diseases are known to be associated with polymicrobial biofilms and inflammasome activation. A deeper understanding of the subgingival cytological (micro) landscape, the role of extracellular DNA (eDNA) during periodontitis, and contribution of the host immune eDNA to inflammasome persistence, may improve our understanding of the mechanisms underlaying severe forms of periodontitis. Methods: In this work, subgingival biolfilms developing on biologically neutral polyethylene terephthalate films placed in gingival cavities of patients with chronic periodontitis were investigated by confocal laser scanning microscopy (CLSM). This allowed examination of realistic cytological landscapes and visualization of extracellular polymeric substances (EPS) including amyloids, total proteins, carbohydrates and eDNA, as well as comparison with several single-strain in vitro model biofilms produced by oral pathogens such as Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus gordonii, S. sanguinis and S. mitis. Fluorescence in situ hybridization (FISH) analysis was also used to identify eDNA derived from eubacteria, streptococci and members of the Bacteroides-Porphyromonas-Prevotella (BPP) group associated with periodontitis. Results: Analysis of subgingival biofilm EPS revealed low levels of amyloids and high levels of eDNA which appears to be the main matrix component. However, bacterial eDNA contributed less than a third of the total eDNA observed, suggesting that host-derived eDNA released in neutrophil extracellular traps may be of more importance in the development of biofilms causing periodontitis. Discussion: eDNA derived from host immunocompetent cells activated at the onset of periodontitis may therefore be a major driver of bacterial persistence and pathogenesis.


Biofilms , Periodontitis , Biofilms/growth & development , Humans , Periodontitis/microbiology , Microscopy, Confocal , DNA , In Situ Hybridization, Fluorescence , Bacteria/genetics , DNA, Bacterial/genetics , Inflammasomes/metabolism , Extracellular Polymeric Substance Matrix/metabolism , Gingiva/microbiology , Chronic Periodontitis/microbiology , Chronic Periodontitis/immunology
8.
Biomolecules ; 14(5)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38785927

Caspase-5 is a protease that induces inflammation in response to lipopolysaccharide (LPS), a component of the cell envelope of Gram-negative bacteria. The expression level of the CASP5 gene is very low in the basal state, but strongly increases in the presence of LPS. Intracellular LPS binds to the caspase activation and recruitment domain (CARD) of caspase-5, leading to the formation of a non-canonical inflammasome. Subsequently, the catalytic domain of caspase-5 cleaves gasdermin D and thereby facilitates the formation of cell membrane pores through which pro-inflammatory cytokines of the interleukin-1 family are released. Caspase-4 is also able to form a non-canonical inflammasome upon binding to LPS, but its expression is less dependent on LPS than the expression of caspase-5. Caspase-4 and caspase-5 have evolved via the duplication of a single ancestral gene in a subclade of primates, including humans. Notably, the main biomedical model species, the mouse, has only one ortholog, namely caspase-11. Here, we review the structural features and the mechanisms of regulation that are important for the pro-inflammatory roles of caspase-5. We summarize the interspecies differences and the evolution of pro-inflammatory caspases in mammals and discuss the potential roles of caspase-5 in the defense against Gram-negative bacteria and in sepsis.


Caspases , Inflammation , Humans , Animals , Inflammation/metabolism , Inflammation/genetics , Caspases/metabolism , Caspases/genetics , Caspases/chemistry , Evolution, Molecular , Lipopolysaccharides , Caspases, Initiator/metabolism , Caspases, Initiator/genetics , Inflammasomes/metabolism , Gram-Negative Bacteria
9.
Gen Physiol Biophys ; 43(3): 185-196, 2024 May.
Article En | MEDLINE | ID: mdl-38774919

Ampelopsin (AMP) had a wound-healing effect in rat skin wounds with or without purulent infection. However, the role of AMP in diabetic wound healing remains poorly defined. Wounds were created on the dorsal skin of type 2 diabetic mouse model, and the histological features of wounds were examined by hematoxylin and eosin (HE) staining. Caspase-1 activity and the secretion of inflammatory cytokines were detected by enzyme-linked immunosorbent assay (ELISA). Cell viability and migration were examined through cell counting kit-8 (CCK-8) and wound healing assays, respectively. AMP facilitated wound healing in vivo. AMP notably facilitated platelet endothelial cell adhesion molecule-31 (CD31), collagen type I alpha 1 chain (COL1A1), and alpha-smooth muscle actin (α-SMA), and inhibited matrix metallopeptidase 9 (MMP9) and cyclooxygenase 2 (Cox2) expression in diabetic wounds. The inflammasome pathway was implicated in skin injury. AMP inhibited pro-inflammatory factor secretions and NLR family pyrin domain containing 3 (NLRP3) inflammasome pathway in diabetic wounds and high glucose-treated THP-1 macrophages. AMP-mediated NLRP3 inflammasome inhibition in THP-1 macrophages increased cell viability and migratory capacity in HaCaT cells. AMP facilitated diabetic wound healing and increased keratinocyte cell viability and migratory ability by inhibiting the NLRP3 inflammasome pathway in macrophages.


Inflammasomes , Keratinocytes , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein , Wound Healing , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Wound Healing/drug effects , Keratinocytes/metabolism , Keratinocytes/drug effects , Mice , Humans , Macrophages/metabolism , Macrophages/drug effects , Inflammasomes/metabolism , Inflammasomes/drug effects , Male , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Signal Transduction/drug effects , Mice, Inbred C57BL , Cell Movement/drug effects , Cell Survival/drug effects , THP-1 Cells , HaCaT Cells , Flavonoids
10.
J Cell Mol Med ; 28(10): e18239, 2024 May.
Article En | MEDLINE | ID: mdl-38774996

The occurrence and development of diabetic vascular diseases are closely linked to inflammation-induced endothelial dysfunction. Puerarin (Pue), the primary component of Pueraria lobata, possesses potent anti-inflammatory properties. However, its vasoprotective role remains elusive. Therefore, we investigated whether Pue can effectively protect against vascular damage induced by diabetes. In the study, Pue ameliorated lipopolysaccharide-adenosine triphosphate (LPS-ATP) or HG-primed cytotoxicity and apoptosis, while inhibited reactive oxygen species (ROS)-mediated NLR family pyrin domain containing 3 (NLRP3) inflammasome in HUVECs, as evidenced by significantly decreased ROS level, NOX4, Caspase-1 activity and expression of NLRP3, GSDMD, cleaved caspase-1, IL-1ß and IL-18. Meanwhile, ROS inducer CoCI2 efficiently weakened the effects of Pue against LPS-ATP-primed pyroptosis. In addition, NLRP3 knockdown notably enhanced Pue's ability to suppress pyroptosis in LPS-ATP-primed HUVECs, whereas overexpression of NLRP3 reversed the inhibitory effects of Pue. Furthermore, Pue inhibited the expression of ROS and NLRP3 inflammasome-associated proteins on the aorta in type 2 diabetes mellitus rats. Our findings indicated that Pue might ameliorate LPS-ATP or HG-primed damage in HUVECs by inactivating the ROS-NLRP3 signalling pathway.


Adenosine Triphosphate , Human Umbilical Vein Endothelial Cells , Inflammasomes , Isoflavones , Lipopolysaccharides , NLR Family, Pyrin Domain-Containing 3 Protein , Reactive Oxygen Species , Signal Transduction , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism , Isoflavones/pharmacology , Isoflavones/therapeutic use , Humans , Animals , Signal Transduction/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Rats , Male , Adenosine Triphosphate/metabolism , Inflammasomes/metabolism , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/etiology , Cardiovascular Diseases/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Pyroptosis/drug effects , Rats, Sprague-Dawley , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Glucose/metabolism , Apoptosis/drug effects
11.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 327-332, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38710517

Objective To investigate the liver injury induced by chronic intermittent hypoxia (CIH) activation of NOD-like receptor pyrin domain containing protein 1 (NLRP1) inflammasome. Methods C57BL/6 male mice were randomly divided into control group and CIH group. Mice in CIH group were put into CIH chamber for molding (8 hours a day for 4 weeks). After 4 weeks of molding, liver tissue cells was observed by HE staining, and the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum of mice were detected by kit. The levels of reactive oxygen species (ROS) in liver tissue were detected by dihydroethidine (DHE). The expression and localization of NLRP1, apoptosis speck-like protein containing a caspase activation and recruiting domain (ASC) and caspase-1 were detected by immunohistochemical staining. The protein expressions of NLRP1, ASC, caspase-1, interleukin 1ß (IL-1ß) and tumor necrosis factor α (TNF-α) were detected by Western blot analysis. The serum levels of IL-1ß and TNF-α were detected by ELISA. Results Compared with the control group, the CIH group exhibited significant pathological changes in hepatocytes. Hepatocytes showed signs of rupture and necrosis, accompanied by inflammatory cell aggregation. Furthermore, the levels of ALT, AST, ROS, IL-1ß and TNF-α were elevated, along with increased protein expressions of NLRP1, ASC, caspase-1, IL-1ß and TNF-α. Conclusion CIH causes liver injury by activating NLRP1 inflammasome.


Caspase 1 , Hypoxia , Inflammasomes , Interleukin-1beta , Liver , Mice, Inbred C57BL , Reactive Oxygen Species , Animals , Male , Inflammasomes/metabolism , Hypoxia/metabolism , Hypoxia/complications , Reactive Oxygen Species/metabolism , Liver/metabolism , Liver/pathology , Caspase 1/metabolism , Interleukin-1beta/metabolism , Mice , Adaptor Proteins, Signal Transducing/metabolism , Tumor Necrosis Factor-alpha/metabolism , Apoptosis Regulatory Proteins/metabolism , Alanine Transaminase/blood , CARD Signaling Adaptor Proteins/metabolism , Aspartate Aminotransferases/blood , Liver Diseases/etiology , Liver Diseases/metabolism , Liver Diseases/pathology
12.
Nat Commun ; 15(1): 4025, 2024 May 13.
Article En | MEDLINE | ID: mdl-38740804

Intracellular membranes composing organelles of eukaryotes include membrane proteins playing crucial roles in physiological functions. However, a comprehensive understanding of the cellular responses triggered by intracellular membrane-focused oxidative stress remains elusive. Herein, we report an amphiphilic photocatalyst localised in intracellular membranes to damage membrane proteins oxidatively, resulting in non-canonical pyroptosis. Our developed photocatalysis generates hydroxyl radicals and hydrogen peroxides via water oxidation, which is accelerated under hypoxia. Single-molecule magnetic tweezers reveal that photocatalysis-induced oxidation markedly destabilised membrane protein folding. In cell environment, label-free quantification reveals that oxidative damage occurs primarily in membrane proteins related to protein quality control, thereby aggravating mitochondrial and endoplasmic reticulum stress and inducing lytic cell death. Notably, the photocatalysis activates non-canonical inflammasome caspases, resulting in gasdermin D cleavage to its pore-forming fragment and subsequent pyroptosis. These findings suggest that the oxidation of intracellular membrane proteins triggers non-canonical pyroptosis.


Inflammasomes , Membrane Proteins , Oxidation-Reduction , Pyroptosis , Humans , Inflammasomes/metabolism , Membrane Proteins/metabolism , Oxidative Stress , Catalysis , Endoplasmic Reticulum Stress , Hydrogen Peroxide/metabolism , Phosphate-Binding Proteins/metabolism , Hydroxyl Radical/metabolism , Mitochondria/metabolism , Intracellular Membranes/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Animals , Photochemical Processes , Protein Folding , Caspases/metabolism , Gasdermins
13.
Front Immunol ; 15: 1397432, 2024.
Article En | MEDLINE | ID: mdl-38751427

Introduction: The release of mature interleukin (IL-) 1ß from osteoblasts in response to danger signals is tightly regulated by the nucleotide-binding oligomerization domain leucine-rich repeat and pyrin-containing protein 3 (NLRP3) inflammasome. These danger signals include wear products resulting from aseptic loosening of joint arthroplasty. However, inflammasome activation requires two different signals: a nuclear factor-kappa B (NF-κB)-activating priming signal and an actual inflammasome-activating signal. Since human osteoblasts react to wear particles via Toll-like receptors (TLR), particles may represent an inflammasome activator that can induce both signals. Methods: Temporal gene expression profiles of TLRs and associated intracellular signaling pathways were determined to investigate the period when human osteoblasts take up metallic wear particles after initial contact and initiate a molecular response. For this purpose, human osteoblasts were treated with metallic particles derived from cobalt-chromium alloy (CoCr), lipopolysaccharides (LPS), and tumor necrosis factor-alpha (TNF) alone or in combination for incubation times ranging from one hour to three days. Shortly after adding the particles, their uptake was observed by the change in cell morphology and spectral data. Results: Exposure of osteoblasts to particles alone increased NLRP3 inflammasome-associated genes. The response was not significantly enhanced when cells were treated with CoCr + LPS or CoCr + TNF, whereas inflammation markers were induced. Despite an increase in genes related to the NLRP3 inflammasome, the release of IL-1ß was unaffected after contact with CoCr particles. Discussion: Although CoCr particles affect the expression of NLRP3 inflammasome-associated genes, a single stimulus was not sufficient to prime and activate the inflammasome. TNF was able to prime the NLRP3 inflammasome of human osteoblasts.


Gene Expression Regulation , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Osteoblasts , Tumor Necrosis Factor-alpha , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Osteoblasts/metabolism , Osteoblasts/drug effects , Osteoblasts/immunology , Inflammasomes/metabolism , Tumor Necrosis Factor-alpha/metabolism , Gene Expression Regulation/drug effects , Cells, Cultured , Signal Transduction/drug effects
14.
Cell Chem Biol ; 31(5): 821-822, 2024 May 16.
Article En | MEDLINE | ID: mdl-38759612

In an interview with Dr. Samantha Nelson, a scientific editor for Cell Chemical Biology, the authors of the Perspective "Strategies of bacterial detection by inflammasomes" share their views on the field and their lives as scientists.


Inflammasomes , Humans , Inflammasomes/metabolism , History, 21st Century , History, 20th Century , Bacteria/metabolism
15.
Cell Chem Biol ; 31(5): 962-972.e4, 2024 May 16.
Article En | MEDLINE | ID: mdl-38759620

The Nod-like receptor protein 3 (NLRP3) inflammasome is activated by stimuli that induce perturbations in cell homeostasis, which commonly converge on cellular potassium efflux. NLRP3 has thus emerged as a sensor for ionic flux. Here, we identify forchlorfenuron (FCF) as an inflammasome activator that triggers NLRP3 signaling independently of potassium efflux. FCF triggers the rearrangement of septins, key cytoskeletal proteins that regulate mitochondrial function. We report that FCF triggered the rearrangement of SEPT2 into tubular aggregates and stimulated SEPT2-independent NLRP3 inflammasome signaling. Similar to imiquimod, FCF induced the collapse of the mitochondrial membrane potential and mitochondrial respiration. FCF thereby joins the imidazoquinolines as a structurally distinct class of molecules that triggers NLRP3 inflammasome signaling independent of potassium efflux, likely by inducing mitochondrial damage.


Mitochondria , NLR Family, Pyrin Domain-Containing 3 Protein , Phenylurea Compounds , Potassium , Mitochondria/metabolism , Mitochondria/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Potassium/metabolism , Humans , Phenylurea Compounds/pharmacology , Phenylurea Compounds/chemistry , Animals , Mice , Septins/metabolism , Inflammasomes/metabolism , Pyridines/pharmacology , Pyridines/chemistry , Mice, Inbred C57BL , Membrane Potential, Mitochondrial/drug effects , Signal Transduction/drug effects
16.
J Cell Mol Med ; 28(9): e18286, 2024 May.
Article En | MEDLINE | ID: mdl-38742843

Osteosarcoma, the primary bone cancer in adolescents and young adults, is notorious for its aggressive growth and metastatic potential. Our study delved into the prognostic impact of inflammasome-related gene signatures in osteosarcoma patients, employing comprehensive genetic profiling to uncover signatures linked with patient outcomes. We identified three patient subgroups through consensus clustering, with one showing worse survival rates correlated with high FGFR3 and RARB expressions. Immune profiling revealed significant immune cell infiltration differences among these subgroups, affecting survival. Utilising advanced machine learning, including StepCox and gradient boosting machine algorithms, we developed a prognostic model with a notable c-index of 0.706, highlighting CD36 and MYD88 as key genes. Higher inflammasome risk scores from our model were associated with poorer survival, corroborated across datasets. In vitro experiments validated CD36 and MYD88's roles in promoting osteosarcoma cell proliferation, invasion and migration, emphasising their therapeutic potential. This research offers new insights into inflammasomes' role in osteosarcoma, introducing novel biomarkers for risk assessment and potential therapeutic targets. Our findings suggest a pathway towards personalised treatment strategies, potentially improving patient outcomes in osteosarcoma.


Biomarkers, Tumor , Bone Neoplasms , Gene Expression Regulation, Neoplastic , Inflammasomes , Osteosarcoma , Humans , Osteosarcoma/genetics , Osteosarcoma/pathology , Osteosarcoma/immunology , Osteosarcoma/mortality , Inflammasomes/metabolism , Inflammasomes/genetics , Biomarkers, Tumor/genetics , Prognosis , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/mortality , Bone Neoplasms/immunology , Bone Neoplasms/diagnosis , Gene Expression Profiling , Female , Male , Transcriptome/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Adolescent , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism
17.
PLoS One ; 19(5): e0302818, 2024.
Article En | MEDLINE | ID: mdl-38748756

BACKGROUND: The role of vitamin D3 (VitD3) in modulating innate and adaptive immunity has been reported in different disease contexts. Since the start of the coronavirus disease-2019 (COVID-19) pandemic, the role of VitD3 has been highlighted in many correlational and observational studies. However, the exact mechanisms of action are not well identified. One of the mechanisms via which VitD3 modulates innate immunity is by regulating the NLRP3-inflammasome pathway, being a main underlying cause of SARS-CoV-2-induced hyperinflammation. AIMS AND MAIN METHODS: Blood specimens of severe COVID-19 patients with or without VitD3 treatment were collected during their stay in the intensive care unit and patients were followed up for 29 days. qPCR, western blot, and ELISA were done to investigate the mechanism of action of VitD3 on the NLRP3 inflammasome activation. KEY FINDINGS: We here report the ability of VitD3 to downregulate the NLRP3-inflammsome pathway in severe COVID-19 patients. Lower inflammasome pathway activation was observed with significantly lower gene and protein expression of NLRP3, cleaved caspase-1, ASC and IL-1ß among severe COVID-19 patients treated with VitD3. The reduction of the inflammasome pathway was associated with a reduction in disease severity markers and enhancement of type I IFN pathway. SIGNIFICANCE: Our data reveals an important anti-inflammatory effect of VitD3 during SARS-CoV-2 infection. Further investigations are warranted to better characterize the ability of VitD3 to control disease pathogenesis and prevent progression to severe states. This will allow for a more efficient use of a low cost and accessible treatment like VitD3.


COVID-19 , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , SARS-CoV-2 , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Humans , COVID-19/immunology , COVID-19/virology , Inflammasomes/metabolism , Male , Female , Middle Aged , Cholecalciferol/pharmacology , Cholecalciferol/therapeutic use , Severity of Illness Index , Aged , Adult , Signal Transduction/drug effects , Interleukin-1beta/metabolism , COVID-19 Drug Treatment , Vitamin D/pharmacology
18.
Arch Dermatol Res ; 316(5): 156, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734816

Atopic dermatitis (AD) is an inflammatory skin disease with intense pruritus, and chronic skin colonization by Staphylococcus aureus. To understand the inflammatory status in AD, we investigated the inflammasome complex, that activates ASC (Apoptosis-associated speck-like protein containing a CARD), caspase-1 and GSDMD (gasdermin-D), and production of IL-1ß and IL-18. We aimed to evaluate the expression of the inflammasome pathway in the skin of adults with AD. Thirty patients with moderate to severe AD and 20 healthy controls were enrolled in the study. We performed the analysis of the inflammasome components NLRP1, NLRP3, AIM-2, IL-1ß, IL-18, Caspase-1, ASC, GSDMD, and CD68 expression (macrophage marker) by immunohistochemistry and immunofluorescence. The main findings included increased expression of NLRP3, NLRP1 and AIM-2 at dermal level of severe AD; augmented IL-18 and IL-1ß expression at epidermis of moderate and severe patients, and in the dermis of severe AD; augmented expression of ASC, caspase-1 and GSDMD in both epidermis and dermis of moderate and severe AD. We detected positive correlation between caspase-1, GSDMD and IL-1ß (epidermis) and caspase-1 (dermis) and AD severity; NLRP3, AIM-2 and IL-1ß, and NLRP3 with IL-18 in the epidermis; ASC, GSDMD and IL-1ß, and NLRP3, AIM-2, caspase-1, and IL-18 in the dermis. We also evidenced the presence of CD68+ macrophages secreting GSDMD, ASC and IL-1ß in moderate and severe AD. Cutaneous macrophages, early detected in moderate AD, have its role in the disease inflammatory mechanisms. Our study indicates a canonical activation pathway of inflammasomes, reinforced by the chronic status of inflammation in AD. The analysis of the inflammasome complex evidenced an imbalance in its regulation, with increased expression of the evaluated components, which is remarkably in severe AD, emphasizing its relevance as potential disease biomarkers and targets for immunomodulatory interventions.


CARD Signaling Adaptor Proteins , Caspase 1 , Dermatitis, Atopic , Inflammasomes , Interleukin-18 , Interleukin-1beta , Intracellular Signaling Peptides and Proteins , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein , Phosphate-Binding Proteins , Humans , Inflammasomes/metabolism , Inflammasomes/immunology , CARD Signaling Adaptor Proteins/metabolism , Dermatitis, Atopic/immunology , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/pathology , Macrophages/metabolism , Macrophages/immunology , Interleukin-1beta/metabolism , Male , Female , Intracellular Signaling Peptides and Proteins/metabolism , Phosphate-Binding Proteins/metabolism , Adult , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Interleukin-18/metabolism , Caspase 1/metabolism , Skin/pathology , Skin/immunology , Skin/metabolism , Severity of Illness Index , Middle Aged , Antigens, Differentiation, Myelomonocytic/metabolism , Young Adult , Apoptosis Regulatory Proteins/metabolism , Antigens, CD/metabolism , NLR Proteins/metabolism , Case-Control Studies , Epidermis/immunology , Epidermis/metabolism , Epidermis/pathology , Gasdermins , CD68 Molecule , DNA-Binding Proteins
19.
ACS Appl Mater Interfaces ; 16(19): 24295-24307, 2024 May 15.
Article En | MEDLINE | ID: mdl-38697643

Pyroptosis has garnered increasing attention because of its ability to trigger robust antitumor immunity. Pyroptosis is initiated by the activation of inflammasomes, which are regulated by various organelles. The collaboration among organelles offers several protective mechanisms to prevent activation of the inflammasome, thereby limiting the induction of efficient pyroptosis. Herein, a multiorganelle homeostasis disruptor (denoted BLL) is constructed by encapsulating liposomes and bortezomib (BTZ) within a layered double hydroxide (LDH) nanocage to continuously activate inflammasomes for inducing efficient pyroptosis. In lysosomes, the negatively charged liposomes are released to recruit the NLRP3 inflammasomes through electrostatic interactions. ER stress is induced by BTZ to enhance the activation of the NLRP3 inflammasome. Meanwhile, the BLL nanocage exhibited H+-scavenging ability due to the weak alkalinity of LDH, thus disrupting the homeostasis of the lysosome and alleviating the degradation of the NLRP3 inflammasome by lysosomal-associated autophagy. Our results suggest that the BLL nanocage induces homeostatic imbalance in various organelles and efficient pyroptosis. We hope this work can provide new insights into the design of an efficient pyroptosis inducer by disrupting the homeostatic balance of multiple organelles and promote the development of novel antineoplastic platforms.


Homeostasis , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Pyroptosis/drug effects , Inflammasomes/metabolism , Inflammasomes/drug effects , Homeostasis/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Humans , Mice , Bortezomib/pharmacology , Bortezomib/chemistry , Liposomes/chemistry , Animals , Lysosomes/metabolism , Lysosomes/drug effects , Hydroxides/chemistry , Hydroxides/pharmacology , Nanostructures/chemistry , Nanoparticles/chemistry
20.
Mol Biol Rep ; 51(1): 655, 2024 May 13.
Article En | MEDLINE | ID: mdl-38739285

BACKGROUND: There is limited data regarding the hazardous effect of gentamicin (GM) on the uterus and whether or not vinpocetine (Vinpo) ameliorates it. The present study aimed to identify the possible protective effect of Vinpo in GM-induced uterine injury in rats. METHODS: Female rats were assorted in control-group, Vinpo-group, GM-group, and Vinpo plus GM group. Serum and uterine GM concentration were measured. Uterine oxidative stress parameters besides inflammatory and apoptotic biomarkers were evaluated. Uterine histopathological examination and interlukin-1beta (IL-1ß) immune-histochemical study were detected. RESULTS: GM significantly increased uterine oxidative stress, inflammatory and apoptotic biomarkers. Histopathological picture of uterine damage and increased IL-1ß immunoexpression were detected. Vinpo significantly ameliorated the distributed GM concentration, oxidative stress, inflammatory and apoptotic biomarkers with a prompt improvement in histopathological picture and a decrease in IL-1ß immunoexpression. CONCLUSION: Vinpo protective effect against GM-induced uterine injury involves modulation of inflammasome/caspase-1/IL-1ß signaling pathway.


Caspase 1 , Gentamicins , Inflammasomes , Interleukin-1beta , Oxidative Stress , Signal Transduction , Uterus , Vinca Alkaloids , Animals , Female , Interleukin-1beta/metabolism , Vinca Alkaloids/pharmacology , Rats , Caspase 1/metabolism , Gentamicins/adverse effects , Inflammasomes/metabolism , Inflammasomes/drug effects , Uterus/drug effects , Uterus/metabolism , Uterus/pathology , Oxidative Stress/drug effects , Signal Transduction/drug effects , Apoptosis/drug effects
...