Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 304
Filter
1.
Emerg Microbes Infect ; 13(1): 2348521, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38686548

ABSTRACT

A free-range organic broiler (Gallus gallus domesticus) premises in Staffordshire was infected by high pathogenicity avian influenza virus (HPAIV) H5N8 during the 2020-2021 epizootic in the United Kingdom (UK). Following initial confirmation of the infection in poultry, multiple wild bird species were seen scavenging on chicken carcasses. Detected dead wild birds were subsequently demonstrated to have been infected and succumbed to HPAIV H5N8. Initially, scavenging species, magpie (Pica pica) and raven (Corvus corax) were found dead on the premises but over the following days, buzzards (Buteo buteo) were also found dead within the local area with positive detection of HPAIV in submitted carcasses. The subacute nature of microscopic lesions within a buzzard was consistent with the timeframe of infection. Finally, a considerable number of free-living pheasants (Phasianus colchicus) were also found dead in the surrounding area, with carcasses having higher viral antigen loads compared to infected chickens. Limited virus dissemination was observed in the carcasses of the magpie, raven, and buzzard. Further, an avirulent avian paramyxovirus type 1 (APMV-1) was detected within poultry samples as well as in the viscera of a magpie infected with HPAIV. Immunohistochemistry did not reveal colocalization of avian paramyxovirus antigens with lesions, supporting an avirulent APMV-1 infection. Overall, this case highlights scenarios in which bi-directional transmission of avian viral diseases between commercial and wild bird species may occur. It also underlines the importance of bio separation and reduced access when infection pressure from HPAIV is high.


Subject(s)
Animals, Wild , Chickens , Disease Outbreaks , Influenza A Virus, H5N8 Subtype , Influenza in Birds , Poultry Diseases , Animals , Influenza in Birds/transmission , Influenza in Birds/virology , Influenza in Birds/epidemiology , Chickens/virology , Animals, Wild/virology , Disease Outbreaks/veterinary , Influenza A Virus, H5N8 Subtype/isolation & purification , Influenza A Virus, H5N8 Subtype/pathogenicity , Influenza A Virus, H5N8 Subtype/genetics , United Kingdom/epidemiology , Poultry Diseases/virology , Poultry Diseases/transmission , Poultry Diseases/epidemiology , Poultry/virology , Crows/virology , Birds/virology
2.
Virol Sin ; 39(3): 358-368, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679333

ABSTRACT

The recent concurrent emergence of H5N1, H5N6, and H5N8 avian influenza viruses (AIVs) has led to significant avian mortality globally. Since 2020, frequent human-animal interactions have been documented. To gain insight into the novel H5 subtype AIVs (i.e., H5N1, H5N6 and H5N8), we collected 6102 samples from various regions of China between January 2021 and September 2022, and identified 41 H5Nx strains. Comparative analyses on the evolution and biological properties of these isolates were conducted. Phylogenetic analysis revealed that the 41 H5Nx strains belonged to clade 2.3.4.4b, with 13 related to H5N1, 19 to H5N6, and 9 to H5N8. Analysis based on global 2.3.4.4b viruses showed that all the viruses described in this study were likely originated from H5N8, exhibiting a heterogeneous evolutionary history between H5N1 and H5N6 during 2015-2022 worldwide. H5N1 showed a higher rate of evolution in 2021-2022 and more sites under positive selection pressure in 2015-2022. The antigenic profiles of the novel H5N1 and H5N6 exhibited notable variations. Further hemagglutination inhibition assay suggested that some A(H5N1) viruses may be antigenically distinct from the circulating H5N6 and H5N8 strains. Mammalian challenge assays demonstrated that the H5N8 virus (21GD001_H5N8) displayed the highest pathogenicity in mice, followed by the H5N1 virus (B1557_H5N1) and then the H5N6 virus (220086_H5N6), suggesting a heterogeneous virulence profile of H5 AIVs in the mammalian hosts. Based on the above results, we speculate that A(H5N1) viruses have a higher risk of emergence in the future. Collectively, these findings unveil a new landscape of different evolutionary history and biological characteristics of novel H5 AIVs in clade 2.3.4.4b, contributing to a better understanding of designing more effective strategies for the prevention and control of novel H5 AIVs.


Subject(s)
Evolution, Molecular , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Phylogeny , Animals , China/epidemiology , Influenza in Birds/virology , Influenza in Birds/epidemiology , Mice , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/classification , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza A Virus, H5N8 Subtype/genetics , Influenza A Virus, H5N8 Subtype/pathogenicity , Influenza A Virus, H5N8 Subtype/classification , Influenza A Virus, H5N8 Subtype/isolation & purification , Virulence , Influenza A virus/genetics , Influenza A virus/pathogenicity , Influenza A virus/classification , Chickens/virology , Mice, Inbred BALB C , Female , Birds/virology , Humans
3.
J Vet Sci ; 25(2): e20, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38568822

ABSTRACT

BACKGROUND: Avian influenza (AI) is a contagious disease that causes illness and death in poultry and humans. High pathogenicity AI (HPAI) H5N6 outbreaks commonly occur in Quang Ninh province bordering China. In June 2021, the first HPAI H5N8 outbreak occurred at a Quang Ninh chicken farm. OBJECTIVES: This study examined the risk factors associated with HPAI H5N6 and H5N8 outbreaks in Quang Ninh. METHODS: A retrospective case-control study was conducted in Quang Ninh from Nov 2021 to Jan 2022. The cases were households with susceptible poultry with two or more clinical signs and tested positive by real-time reverse transcription polymerase chain reaction. The controls were households in the same village as the cases but did not show clinical symptoms of the disease. Logistic regression models were constructed to assess the risk factors associated with HPAI outbreaks at the household level. RESULTS: There were 38 cases with H5N6 clade 2.3.4.4h viruses (n = 35) and H5N8 clade 2.3.4.4b viruses (n = 3). Compared to the 112 controls, raising poultry in uncovered or partially covered ponds (odds ratio [OR], 7.52; 95% confidence interval [CI], 1.44-39.27), poultry traders visiting the farm (OR, 8.66; 95% CI, 2.7-27.69), farms with 50-2,000 birds (OR, 3.00; 95% CI, 1.06-8-51), and farms with ≥ 2,000 birds (OR, 11.35; 95% CI, 3.07-41.94) were significantly associated with HPAI outbreaks. CONCLUSIONS: Combining biosecurity measures, such as restricting visitor entry and vaccination in farms with more than 50 birds, can enhance the control and prevention of HPAI in Quang Ninh and its spread across borders.


Subject(s)
Influenza A Virus, H5N8 Subtype , Influenza in Birds , Poultry Diseases , Animals , Humans , Influenza in Birds/epidemiology , Retrospective Studies , Case-Control Studies , Vietnam/epidemiology , Disease Outbreaks/veterinary , Disease Outbreaks/prevention & control , Poultry , Chickens
4.
Emerg Microbes Infect ; 13(1): 2339949, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38572657

ABSTRACT

Understanding the mammalian pathogenesis and interspecies transmission of HPAI H5N8 virus hinges on mapping its adaptive markers. We used deep sequencing to track these markers over five passages in murine lung tissue. Subsequently, we evaluated the growth, selection, and RNA load of eight recombinant viruses with mammalian adaptive markers. By leveraging an integrated non-linear regression model, we quantitatively determined the influence of these markers on growth, adaptation, and RNA expression in mammalian hosts. Furthermore, our findings revealed that the interplay of these markers can lead to synergistic, additive, or antagonistic effects when combined. The elucidation distance method then transformed these results into distinct values, facilitating the derivation of a risk score for each marker. In vivo tests affirmed the accuracy of scores. As more mutations were incorporated, the overall risk score of virus heightened, and the optimal interplay between markers became essential for risk augmentation. Our study provides a robust model to assess risk from adaptive markers of HPAI H5N8, guiding strategies against future influenza threats.


Subject(s)
Influenza A Virus, H5N8 Subtype , Influenza in Birds , Influenza, Human , Animals , Humans , Mice , Influenza A Virus, H5N8 Subtype/genetics , Lung , RNA , Mammals
5.
Avian Dis ; 68(1): 72-79, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38687111

ABSTRACT

We isolated a high pathogenicity avian influenza (HPAI) virus from a common pochard (Aythya ferina) that was being attacked by a bird of prey in South Korea in December 2020. Genetic analyses indicated that the isolate was closely related to the clade 2.3.4.4b H5N8 HPAI viruses found in South Korea and Japan during the winter season of 2020-2021. The histopathological examination revealed multifocal necrotizing inflammation in the liver, kidney, and spleen. Viral antigens were detected in the liver, kidney, spleen, trachea, intestine, and pancreas, indicating the HPAI virus caused a systemic infection. The presence of immunoreactivity for the viral antigen was observed in the cells involved in multifocal necrotic inflammation. Notably, epitheliotropic-positive patterns were identified in the epithelial cells of the trachea, mucosal epithelium of the intestine, and ductular epithelium of the pancreas. These findings provide direct evidence supporting the possibility of HPAI transmission from infected waterfowl to predators.


Detectado en el acto: Aislamiento y caracterización de un virus de la influenza aviar de alta patogenicidad del clado 2.3.4.4b H5N8 de un porrón común (Aythya ferina) atacado por un halcón peregrino (Falco peregrinus). Se aisló un virus de la influenza aviar (HPAI) de alta patogenicidad de un porrón común (Aythya ferina) que estaba siendo atacado por un ave rapaz en Corea del Sur en diciembre de 2020. Los análisis genéticos indicaron que el aislado estaba estrechamente relacionado con virus de influenza aviar de alta patogenicidad H5N8, clado 2.3.4.4 b encontrados en Corea del Sur y Japón durante la temporada de invierno de 2020­2021. El examen histopatológico reveló inflamación necrotizante multifocal en hígado, riñón y bazo. Se detectaron antígenos virales en el hígado, el riñón, el bazo, la tráquea, el intestino y el páncreas, lo que indica que este virus de alta patogenicidad causó una infección sistémica. Se observó la presencia de inmunorreactividad para el antígeno viral en las células involucradas en la inflamación necrótica multifocal. En particular, se identificaron patrones epiteliotrópicos positivos en las células epiteliales de la tráquea, el epitelio mucoso del intestino y el epitelio ductular del páncreas. Estos hallazgos proporcionan evidencia directa que respalda la posibilidad de transmisión de HPAI de aves acuáticas infectadas a especies depredadoras.


Subject(s)
Falconiformes , Influenza A Virus, H5N8 Subtype , Influenza in Birds , Animals , Influenza in Birds/virology , Influenza A Virus, H5N8 Subtype/pathogenicity , Influenza A Virus, H5N8 Subtype/physiology , Influenza A Virus, H5N8 Subtype/genetics , Falconiformes/virology , Republic of Korea , Phylogeny , Galliformes
6.
Comp Immunol Microbiol Infect Dis ; 109: 102182, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38640701

ABSTRACT

In the 2021/22 winter, one H5N1 and nine H5N8 high pathogenicity avian influenza viruses (HPAIVs) of clade 2.3.3.4b were isolated from the water in crane roosts on the Izumi plain, Japan. Additionally, we isolated low pathogenicity avian influenza viruses (LPAIVs) of five subtypes: H1N1, H4N2, H4N6, H7N7, and H10N4. H5N8 HPAIVs belonging to the G2a group were isolated throughout winter, whereas H5N1 HPAIV belonging to the G2b group were isolated only in early winter. These findings suggest co-circulation of both G2a and G2b HPAIVs in early winter. Although two H7N7 LPAIVs were isolated from cranes' roost water collected on the same day, the gene constellations of the two isolates were clearly different, indicating the contemporary invasion of at least two different genotypes of H7N7 LPAIVs in the Izumi plain. This study underscores the importance of monitoring both HPAIVs and LPAIVs to understand avian influenza virus ecology in migratory waterfowl populations.


Subject(s)
Birds , Genotype , Influenza in Birds , Phylogeny , Seasons , Japan , Animals , Influenza in Birds/virology , Influenza in Birds/epidemiology , Birds/virology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/classification , Water Microbiology , Influenza A virus/genetics , Influenza A virus/isolation & purification , Influenza A virus/classification , Influenza A Virus, H5N8 Subtype/genetics , Influenza A Virus, H5N8 Subtype/pathogenicity , Influenza A Virus, H5N8 Subtype/isolation & purification , Influenza A Virus, H5N8 Subtype/classification , Influenza A Virus, H7N7 Subtype/genetics , Influenza A Virus, H7N7 Subtype/pathogenicity , Influenza A Virus, H7N7 Subtype/isolation & purification
7.
Vet Microbiol ; 292: 110052, 2024 May.
Article in English | MEDLINE | ID: mdl-38492531

ABSTRACT

H5N8 highly pathogenic avian influenza virus (HPAIV) has caused huge losses to the global poultry industry and critically threatens public health. Chickens are the important host for the transmission. However, the distribution of H5N8 avian influenza virus (AIV) in chicken and the infected cell types are limitedly studied. Therefore, in this study, we detected viral replication and infection by generating recombinant H5N8 AIV expressing an easily tracked mApple fluorescent reporter. The results showed that recombinant viruses passaged four times in chicken embryos successfully expressed mApple proteins detected by fluorescence microscopy and WB, which verified that the constructed recombinant viruses were stable. Compared to parental virus, although recombinant virus attenuated for replication in MDCK cells, it can still replicate effectively, and form visible plaques. Importantly, the experiments on infection of chicken PBMCs in vitro showed a strong correlation between mApple positivity rate and NP positivity rate (r = 0.7594, P =0.0176), demonstrating that mApple reporter could be used as an indicator to accurately reflect AIV infection. Then we infected monocytes/macrophages in PBMCs in vitro and detected the mApple positive percentage was 55.1%-80.4%, which confirmed the chicken primary monocytic/macrophages are important target cells for avian influenza virus infection. In chicken, compared with parental virus, the recombinant virus-infected chickens had lower viral titers in oropharyngeal cloacal and organs, but it can cause significant pathogenicity in chicken and the mortality rate was approximately 66%. In addition, the results of bioluminescent imaging showed that the fluorescence in the lungs was strongest at 5 days post-infection (DPI). Finally, we discovered the mApple positive expression in chicken lung immune cells (CD45+ cells), especially some T cells (CD4 and CD8 T cells) also carrying mApple, which indicates that the H5N8 AIV showed a tropism for immune cells including chicken T cells causing potentially aggressive against cellular immunity. We have provided a simple visualization for further exploration of H5N8 AIV infected chicken immune cells, which contributes to further understanding pathogenic mechanism of H5N8 AIV infection in chicken.


Subject(s)
Communicable Diseases , Influenza A Virus, H5N8 Subtype , Influenza A virus , Influenza in Birds , Influenza, Human , Orthomyxoviridae Infections , Chick Embryo , Animals , Humans , Chickens/genetics , Genes, Reporter , Orthomyxoviridae Infections/veterinary , Influenza A virus/genetics , Communicable Diseases/veterinary
8.
Viruses ; 16(3)2024 02 26.
Article in English | MEDLINE | ID: mdl-38543724

ABSTRACT

In winter 2021-2022, H5N1 and H5N8 high-pathogenicity avian influenza (HPAI) viruses (HPAIVs) caused serious outbreaks in Japan: 25 outbreaks of HPAI at poultry farms and 107 cases in wild birds or in the environment. Phylogenetic analyses divided H5 HPAIVs isolated in Japan in the winter of 2021-2022 into three groups-G2a, G2b, and G2d-which were disseminated at different locations and times. Full-genome sequencing analyses of these HPAIVs revealed a strong relationship of multiple genes between Japan and Siberia, suggesting that they arose from reassortment events with avian influenza viruses (AIVs) in Siberia. The results emphasize the complex of dissemination and reassortment events with the movement of migratory birds, and the importance of continual monitoring of AIVs in Japan and Siberia for early alerts to the intrusion of HPAIVs.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A Virus, H5N8 Subtype , Influenza A virus , Influenza in Birds , Animals , Influenza in Birds/epidemiology , Influenza A Virus, H5N1 Subtype/genetics , Japan/epidemiology , Phylogeny , Virulence , Birds , Animals, Wild , Influenza A virus/genetics
9.
Sci Rep ; 14(1): 4235, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38378877

ABSTRACT

At the end of 2020, an outbreak of HPAI H5N8 was registered in captive African houbara bustards (Chlamydotis undulata) in the United Arab Emirates. In order to better understand the pathobiology of this viral infection in bustards, a comprehensive pathological characterization was performed. A total of six birds were selected for necropsy, histopathology, immunohistochemistry, RNAscope in situ hybridization and RT-qPCR and nanopore sequencing on formalin-fixed and paraffin-embedded (FFPE) tissue blocks. Gross lesions included mottled and/or hemorrhagic pancreas, spleen and liver and fibrinous deposits on air sacs and intestine. Necrotizing pancreatitis, splenitis and concurrent vasculitis, hepatitis and fibrino-heterophilic peritonitis were identified, microscopically. Viral antigens (nucleoprotein) and RNAs (matrix gene) were both detected within necro-inflammatory foci, parenchymal cells, stromal cells and endothelial cells of affected organs, including the myenteric plexus. Molecular analysis of FFPE blocks successfully detected HPAI H5N8, further confirming its involvement in the lesions observed. In conclusion, HPAI H5N8 in African houbara bustards results in hyperacute/acute forms exhibiting marked pantropism, endotheliotropism and neurotropism. In addition, our findings support the use of FFPE tissues for molecular studies of poorly characterized pathogens in exotic and endangered species, when availability of samples is limited.


Subject(s)
Influenza A Virus, H5N8 Subtype , Influenza in Birds , Animals , United Arab Emirates/epidemiology , Endothelial Cells , Virulence , Birds
10.
J Virol ; 98(3): e0140123, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38358287

ABSTRACT

Since 2020, clade 2.3.4.4b highly pathogenic avian influenza H5N8 and H5N1 viruses have swept through continents, posing serious threats to the world. Through comprehensive analyses of epidemiological, genetic, and bird migration data, we found that the dominant genotype replacement of the H5N8 viruses in 2020 contributed to the H5N1 outbreak in the 2021/2022 wave. The 2020 outbreak of the H5N8 G1 genotype instead of the G0 genotype produced reassortment opportunities and led to the emergence of a new H5N1 virus with G1's HA and MP genes. Despite extensive reassortments in the 2021/2022 wave, the H5N1 virus retained the HA and MP genes, causing a significant outbreak in Europe and North America. Furtherly, through the wild bird migration flyways investigation, we found that the temporal-spatial coincidence between the outbreak of the H5N8 G1 virus and the bird autumn migration may have expanded the H5 viral spread, which may be one of the main drivers of the emergence of the 2020-2022 H5 panzootic.IMPORTANCESince 2020, highly pathogenic avian influenza (HPAI) H5 subtype variants of clade 2.3.4.4b have spread across continents, posing unprecedented threats globally. However, the factors promoting the genesis and spread of H5 HPAI viruses remain unclear. Here, we found that the spatiotemporal genotype replacement of H5N8 HPAI viruses contributed to the emergence of the H5N1 variant that caused the 2021/2022 panzootic, and the viral evolution in poultry of Egypt and surrounding area and autumn bird migration from the Russia-Kazakhstan region to Europe are important drivers of the emergence of the 2020-2022 H5 panzootic. These findings provide important targets for early warning and could help control the current and future HPAI epidemics.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A Virus, H5N8 Subtype , Influenza in Birds , Animals , Birds , Genotype , Influenza A virus/physiology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/physiology , Influenza A Virus, H5N8 Subtype/genetics , Influenza A Virus, H5N8 Subtype/physiology , Influenza in Birds/epidemiology , Influenza in Birds/virology , Phylogeny , Poultry
11.
Res Vet Sci ; 168: 105149, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38218062

ABSTRACT

In Japan, outbreaks of H5N8 highly pathogenic avian influenza (HPAI) were reported between November 2020 and March 2021 in 52 poultry farms. Understanding HPAI epidemiology would help poultry industries improve their awareness of the disease and enhance the immediate implementation of biosecurity measures. This study was a simulation-based matched case-control study to elucidate the risk factors associated with HPAI outbreaks in chicken farms in Japan. Data were collected from 42 HPAI-affected farms and 463 control farms that were within a 5-km radius of each case farm but remained uninfected. When infected farms were detected as clusters, one farm was randomly selected from each cluster, considering the possibility that the cluster was formed by farm-to-farm transmission within an epidemic area. For each case farm, up to three control farms were selected within a 5-km radius. Overall, 26 case farms (16 layer and 10 broiler farms) and 75 control farms (45 layer and 30 broiler farms) were resampled 1000 times for the conditional logistic regression model with explanatory variables comprising geographical factors and farm flock size. A larger flock size and shorter distance to water bodies from the farm were found to increase infection risk in layer farms. Similarly, in broiler farms, a shorter distance to water bodies increased infection risk. On larger farms, frequent access of farm staff and instrument carriages to premises could lead to increased infection risk. Waterfowl visiting water bodies around farms may also be associated with infection risk.


Subject(s)
Influenza A Virus, H5N8 Subtype , Influenza in Birds , Poultry Diseases , Humans , Animals , Influenza in Birds/epidemiology , Influenza in Birds/prevention & control , Case-Control Studies , Japan/epidemiology , Chickens , Poultry Diseases/epidemiology , Disease Outbreaks/veterinary , Disease Outbreaks/prevention & control , Poultry , Farms , Water
12.
J Gen Virol ; 105(1)2024 01.
Article in English | MEDLINE | ID: mdl-38289661

ABSTRACT

During the UK 2020-2021 epizootic of H5Nx clade 2.3.4.4b high-pathogenicity avian influenza viruses (HPAIVs), high mortality occurred during incursions in commercially farmed common pheasants (Phasianus colchicus). Two pheasant farms, affected separately by H5N8 and H5N1 subtypes, included adjacently housed red-legged partridges (Alectoris rufa), which appeared to be unaffected. Despite extensive ongoing epizootics, H5Nx HPAIV partridge outbreaks were not reported during 2020-2021 and 2021-2022 in the UK, so it is postulated that partridges are more resistant to HPAIV infection than other gamebirds. To assess this, pathogenesis and both intra- and inter-species transmission of UK pheasant-origin H5N8-2021 and H5N1-2021 HPAIVs were investigated. Onward transmission to chickens was also assessed to better understand the risk of spread from gamebirds to other commercial poultry sectors. A lower infectious dose was required to infect pheasants with H5N8-2021 compared to H5N1-2021. However, HPAIV systemic dissemination to multiple organs within pheasants was more rapid following infection with H5N1-2021 than H5N8-2021, with the former attaining generally higher viral RNA levels in tissues. Intraspecies transmission to contact pheasants was successful for both viruses and associated with viral environmental contamination, while interspecies transmission to a first chicken-contact group was also efficient. However, further onward transmission to additional chicken contacts was only achieved with H5N1-2021. Intra-partridge transmission was only successful when high-dose H5N1-2021 was administered, while partridges inoculated with H5N8-2021 failed to shed and transmit, although extensive tissue tropism was observed for both viruses. Mortalities among infected partridges featured a longer incubation period compared to that in pheasants, for both viruses. Therefore, the susceptibility of different gamebird species and pathogenicity outcomes to the ongoing H5Nx clade 2.3.4.4b HPAIVs varies, but pheasants represent a greater likelihood of H5Nx HPAIV introduction into galliforme poultry settings. Consequently, viral maintenance within gamebird populations and risks to poultry species warrant enhanced investigation.


Subject(s)
Galliformes , Influenza A Virus, H5N1 Subtype , Influenza A Virus, H5N8 Subtype , Influenza A virus , Animals , Virulence , Chickens
13.
Vet Rec ; 194(2): e3616, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38012027

ABSTRACT

BACKGROUND: High-pathogenicity avian influenza (HPAI) has become a conservation threat to wild birds. Therefore, suitable vaccine technology and practical application methods require investigation. METHODS: Twenty-four African penguins (Spheniscus demersus) were vaccinated with either a conventional inactivated clade 2.3.4.4b H5N8 HPAI whole virus or a tobacco leaf-produced H5 haemagglutinin-based virus-like particle (VLP). Six birds received a second dose of the inactivated vaccine. Antibody responses were assessed and compared by employing haemagglutination inhibition tests. RESULTS: A second dose of inactivated vaccine was required to induce antibody titres above the level required to suppress virus shedding, while a single dose of VLP vaccine produced these levels by day 14, and one bird still had antibodies on day 430. LIMITATIONS: Bacterial contamination of the VLP vaccine limited the monitoring period and sample size in that treatment group, and it was not possible to perform a challenge study with field virus. CONCLUSION: VLP vaccines offer a more practical option than inactivated whole viruses, especially in logistically challenging situations involving wild birds.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A Virus, H5N8 Subtype , Influenza Vaccines , Influenza in Birds , Spheniscidae , Animals , Influenza in Birds/prevention & control , Virulence , Chickens , Vaccination/veterinary , Vaccines, Inactivated
14.
Viruses ; 15(12)2023 11 23.
Article in English | MEDLINE | ID: mdl-38140534

ABSTRACT

During the winter of 2020-2021, numerous outbreaks of high pathogenicity avian influenza (HPAI) were caused by viruses of the subtype H5N8 in poultry over a wide region in Japan. The virus can be divided into five genotypes-E1, E2, E3, E5, and E7. The major genotype responsible for the outbreaks was E3, followed by E2. To investigate the cause of these outbreaks, we experimentally infected chickens with five representative strains of each genotype. We found that the 50% chicken infectious dose differed by up to 75 times among the five strains, and the titer of the E3 strains (102.75 50% egg infectious dose (EID50)) was the lowest, followed by that of the E2 strains (103.50 EID50). In viral transmission experiments, in addition to the E3 and E2 strains, the E5 strain was transmitted to naïve chickens with high efficiency (>80%), whereas the other strains had low efficiencies (<20%). We observed a clear difference in the virological characteristics among the five strains isolated in the same season. The higher infectivity of the E3 and E2 viruses in chickens may have caused the large number of HPAI outbreaks in Japan during this season.


Subject(s)
Influenza A Virus, H5N8 Subtype , Influenza in Birds , Poultry Diseases , Animals , Chickens , Influenza A Virus, H5N8 Subtype/genetics , Virulence , Japan/epidemiology , Seasons , Disease Outbreaks/veterinary
15.
Influenza Other Respir Viruses ; 17(12): e13245, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38149927

ABSTRACT

BACKGROUND: Highly pathogenic avian influenza A(H5) human infections are a global concern, with many A(H5) human cases detected in Vietnam, including a case in October 2022. Using avian influenza virus surveillance from March 2017-September 2022, we described the percent of pooled samples that were positive for avian influenza A, A(H5), A(H5N1), A(H5N6), and A(H5N8) viruses in live bird markets (LBMs) in Vietnam. METHODS: Monthly at each LBM, 30 poultry oropharyngeal swab specimens and five environmental samples were collected. Samples were pooled in groups of five and tested for influenza A, A(H5), A(H5N1), A(H5N6), and A(H5N8) viruses by real-time reverse-transcription polymerase chain reaction. Trends in the percent of pooled samples that were positive for avian influenza were summarized by LBM characteristics and time and compared with the number of passively detected avian influenza outbreaks using Spearman's rank correlation. RESULTS: A total of 25,774 pooled samples were collected through active surveillance at 167 LBMs in 24 provinces; 36.9% of pooled samples were positive for influenza A, 3.6% A(H5), 1.9% A(H5N1), 1.1% A(H5N6), and 0.2% A(H5N8). Influenza A(H5) viruses were identified January-December and at least once in 91.7% of sampled provinces. In 246 A(H5) outbreaks in poultry; 20.3% were influenza A(H5N1), 60.2% A(H5N6), and 19.5% A(H5N8); outbreaks did not correlate with active surveillance. CONCLUSIONS: In Vietnam, influenza A(H5) viruses were detected by active surveillance in LBMs year-round and in most provinces sampled. In addition to outbreak reporting, active surveillance for A(H5) viruses in settings with high potential for animal-to-human spillover can provide situational awareness.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A Virus, H5N8 Subtype , Influenza A virus , Influenza in Birds , Influenza, Human , Animals , Humans , Influenza, Human/epidemiology , Influenza in Birds/epidemiology , Vietnam/epidemiology , Influenza A Virus, H5N1 Subtype/genetics , Disease Outbreaks , Influenza A virus/genetics
16.
Viruses ; 15(11)2023 Nov 18.
Article in English | MEDLINE | ID: mdl-38005949

ABSTRACT

Highly pathogenic avian influenza viruses (HPAIVs) of subtype H5 of the Gs/GD/96 lineage remain a major threat to poultry due to endemicity in wild birds. H5N1 HPAIVs from this lineage were detected in 2021 in the United States (U.S.) and since then have infected many wild and domestic birds. We evaluated the pathobiology of an early U.S. H5N1 HPAIV (clade 2.3.4.4b, 2021) and two H5N8 HPAIVs from previous outbreaks in the U.S. (clade 2.3.4.4c, 2014) and Europe (clade 2.3.4.4b, 2016) in chickens and turkeys. Differences in clinical signs, mean death times (MDTs), and virus transmissibility were found between chickens and turkeys. The mean bird infective dose (BID50) of the 2021 H5N1 virus was approximately 2.6 log10 50% embryo infective dose (EID50) in chickens and 2.2 log10 EID50 in turkeys, and the virus transmitted to contact-exposed turkeys but not chickens. The BID50 for the 2016 H5N8 virus was also slightly different in chickens and turkeys (4.2 and 4.7 log10 EID50, respectively); however, the BID50 for the 2014 H5N8 virus was higher for chickens than turkeys (3.9 and ~0.9 log10 EID50, respectively). With all viruses, turkeys took longer to die (MDTs of 2.6-8.2 days for turkeys and 1-4 days for chickens), which increased the virus shedding period and facilitated transmission to contacts.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A Virus, H5N8 Subtype , Influenza A virus , Influenza in Birds , Poultry Diseases , Animals , United States/epidemiology , Influenza A Virus, H5N8 Subtype/genetics , Chickens , Influenza A Virus, H5N1 Subtype/genetics , Turkeys , Virulence , Influenza A virus/genetics , Animals, Wild
17.
Nature ; 622(7984): 810-817, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37853121

ABSTRACT

Highly pathogenic avian influenza (HPAI) H5N1 activity has intensified globally since 2021, increasingly causing mass mortality in wild birds and poultry and incidental infections in mammals1-3. However, the ecological and virological properties that underscore future mitigation strategies still remain unclear. Using epidemiological, spatial and genomic approaches, we demonstrate changes in the origins of resurgent HPAI H5 and reveal significant shifts in virus ecology and evolution. Outbreak data show key resurgent events in 2016-2017 and 2020-2021, contributing to the emergence and panzootic spread of H5N1 in 2021-2022. Genomic analysis reveals that the 2016-2017 epizootics originated in Asia, where HPAI H5 reservoirs are endemic. In 2020-2021, 2.3.4.4b H5N8 viruses emerged in African poultry, featuring mutations altering HA structure and receptor binding. In 2021-2022, a new H5N1 virus evolved through reassortment in wild birds in Europe, undergoing further reassortment with low-pathogenic avian influenza in wild and domestic birds during global dissemination. These results highlight a shift in the HPAI H5 epicentre beyond Asia and indicate that increasing persistence of HPAI H5 in wild birds is facilitating geographic and host range expansion, accelerating dispersion velocity and increasing reassortment potential. As earlier outbreaks of H5N1 and H5N8 were caused by more stable genomic constellations, these recent changes reflect adaptation across the domestic-bird-wild-bird interface. Elimination strategies in domestic birds therefore remain a high priority to limit future epizootics.


Subject(s)
Birds , Disease Outbreaks , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Internationality , Animals , Africa/epidemiology , Animals, Wild/virology , Asia/epidemiology , Birds/virology , Disease Outbreaks/prevention & control , Disease Outbreaks/statistics & numerical data , Disease Outbreaks/veterinary , Europe/epidemiology , Evolution, Molecular , Host Specificity , Influenza A Virus, H5N1 Subtype/classification , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N8 Subtype/genetics , Influenza A Virus, H5N8 Subtype/isolation & purification , Influenza in Birds/epidemiology , Influenza in Birds/mortality , Influenza in Birds/transmission , Influenza in Birds/virology , Mammals/virology , Mutation , Phylogeny , Poultry/virology
18.
Indian J Med Res ; 158(2): 113-118, 2023 08.
Article in English | MEDLINE | ID: mdl-37675691

ABSTRACT

Background & objectives: The highly pathogenic avian influenza (HPAI) H5N1 and H5N8 viruses have been one of the leading causes of avian diseases worldwide, resulting in severe economic losses and posing potential zoonotic risk. There are no reports on the correlation of the seasonality of H5N1 and H5N8 viruses with the migratory bird season in India, along with the species affected. The present report describes the distribution and seasonality of HPAI outbreaks in India from 2006 to 2021. Methods: The data on the occurrence and locations of outbreaks in India and affected bird species were collated from the Food and Agriculture Organization of the United Nations database and grouped by month and year. The distribution and seasonality of HPAI H5N1 and H5N8 viruses were analyzed. Results: A total of 284 H5N1 outbreaks were reported since 2006, with a surge in 2021. The initial outbreaks of H5N1 were predominantly in poultry. Since 2016, 57 outbreaks of H5N8 were also reported, predominantly in wild birds. Most of the outbreaks of HPAI were reported from post monsoon onwards till pre-summer season (i.e. between October and March) with their peak in winter, in January. Apart from poultry, the bird species such as owl, Indian peafowl, lesser adjutant, crows and wild migratory birds such as demoiselle crane, northern pintail and bar-headed goose were positive for HPAI. Interpretation & conclusions: Such studies on the seasonality of HPAI outbreaks would help in the development of prevention and control strategies. The recent human infections of H5N1 and H9N2 viruses highlight the need to strengthen surveillance in wild, resident, migratory birds and in poultry along with One Health studies in India.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A Virus, H5N8 Subtype , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Animals , Humans , Influenza in Birds/epidemiology , Disease Outbreaks , Animals, Wild , Birds , Poultry , India/epidemiology
19.
Viruses ; 15(9)2023 09 12.
Article in English | MEDLINE | ID: mdl-37766317

ABSTRACT

Clade 2.3.4.4 H5Nx highly pathogenic avian influenza viruses (HPAIVs) of the "goose/Guangdong" lineage have caused a series of European epizootics since 2014. During autumn/winter 2020-2021, several H5Nx subtypes were detected in the UK, with H5N8 being the dominant subtype in wild birds and poultry. Despite the greater subtype diversity (due to viral neuraminidase gene reassortment) reported in wild birds, only H5N8 and H5N1 subtypes caused clade 2.3.4.4 UK HPAIV poultry outbreaks during this period. The direct inoculation of layer chickens showed that H5N8-2020 was more infectious than H5N1-2020, which supported the European H5N8 dominance during that season. However, the mean death time was longer for H5N8-2020 (3.42 days) than for H5N1-2020 (2.17 days). Transmission from directly infected to naive in-contact chickens was inefficient for both subtypes. Histological lesions, the tissue dissemination of viral antigen, and nucleic acid were more extensive and abundant and accumulated more rapidly for H5N1-2020 compared with H5N8-2020. Although inefficient, H5N1-2020 transmission was faster, with its greater virulence indicating that this subtype posed a major concern, as subsequently shown during H5N1 dominance of the clade 2.3.4.4 epizootic since autumn 2021. An evaluation of these in vivo viral characteristics is key to understanding the continuing poultry threats posed by clade 2.3.4.4 H5Nx HPAIVs.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A Virus, H5N8 Subtype , Influenza A virus , Animals , Chickens , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N8 Subtype/genetics , Virulence , Influenza A virus/genetics , United Kingdom/epidemiology
20.
J Vet Med Sci ; 85(11): 1180-1189, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37766550

ABSTRACT

In the winter of 2021-2022, multiple subtypes (H5N8 and H5N1) of high pathogenicity avian influenza viruses (HPAIVs) were confirmed to be circulating simultaneously in Japan. Here, we phylogenetically and antigenically analyzed HPAIVs that were isolated from infected wild birds, an epidemiological investigation of affected poultry farms, and our own active surveillance study. H5 subtype hemagglutinin (HA) genes of 32 representative HPAIV isolates were classified into clade 2.3.4.4b lineage and subsequently divided into three groups (G2a, G2b, and G2d). All H5N8 HPAIVs were isolated in early winter and had HA genes belonging to the G2a group. H5N1 HPAIVs belong to the G2b and G2d groups. Although G2b viruses were widespread throughout the season, G2d viruses endemically circulated in Northeast Japan after January 2022. Deep sequence analysis showed that the four HPAIVs isolated at the beginning of winter had both N8 and N1 subtypes of neuraminidase genes. Environmental water-derived G2a HPAIV, A/water/Tottori/NK1201-2/2021 (H5N8), has unique polymerase basic protein 1 and nucleoprotein genes, similar to those of low pathogenicity avian influenza viruses (LPAIVs). These results indicate that multiple H5 HPAIVs and LPAIVs disseminated to Japan via transboundary winter migration of wild birds, and HPAIVs with novel gene constellations could emerge in these populations. Cross-neutralization test revealed that G2a H5N8 HPAIVs were antigenically distinct from a G2b H5N1 HPAIV, suggesting that antibody pressure in wild birds was involved in the transition of the HPAIV groups during the season.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A Virus, H5N8 Subtype , Influenza A virus , Influenza in Birds , Animals , Poultry , Influenza A Virus, H5N8 Subtype/genetics , Japan/epidemiology , Virulence , Farms , Seasons , Birds , Animals, Wild , Influenza in Birds/epidemiology , Influenza A virus/genetics , Water , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL