Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.043
1.
Respir Res ; 25(1): 234, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38840154

BACKGROUND: The concurrent circulation of SARS-CoV-2 with other respiratory viruses is unstoppable and represents a new diagnostic reality for clinicians and clinical microbiology laboratories. Multiplexed molecular testing on automated platforms that focus on the simultaneous detection of multiple respiratory viruses in a single tube is a useful approach for current and future diagnosis of respiratory infections in the clinical setting. METHODS: Two time periods were included in the study: from February to April 2022, an early 2022 period, during the gradual lifting of COVID-19 prevention measures in the country, and from October 2022 to April 2023, the 2022/23 respiratory infections season. We analysed a total of 1,918 samples in the first period and 18,131 respiratory samples in the second period using a multiplex molecular assay for the simultaneous detection of Influenza A (Flu-A), Influenza B (Flu-B), Human Respiratory Syncytial Virus (HRSV) and SARS-CoV-2. RESULTS: The results from early 2022 showed a strong dominance of SARS-CoV-2 infections with 1,267/1,918 (66.1%) cases. Flu-A was detected in 30/1,918 (1.6%) samples, HRSV in 14/1,918 (0.7%) samples, and Flu-B in 2/1,918 (0.1%) samples. Flu-A/SARS-CoV-2 co-detections were observed in 11/1,267 (0.9%) samples, and HRSV/SARS-CoV-2 co-detection in 5/1,267 (0.4%) samples. During the 2022/23 winter respiratory season, SARS-CoV-2 was detected in 1,738/18,131 (9.6%), Flu-A in 628/18,131 (3.5%), Flu-B in 106/18,131 (0.6%), and HRSV in 505/18,131 (2.8%) samples. Interestingly, co-detections were present to a similar extent as in early 2022. CONCLUSION: The results show that the multiplex molecular approach is a valuable tool for the simultaneous laboratory diagnosis of SARS-CoV-2, Flu-A/B, and HRSV in hospitalized and outpatients. Infections with Flu-A/B, and HRSV occurred shortly after the COVID-19 control measures were lifted, so a strong reoccurrence of various respiratory infections and co-detections in the post COVID-19 period was to be expected.


COVID-19 , Influenza A virus , Influenza B virus , Influenza, Human , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , SARS-CoV-2 , Humans , COVID-19/epidemiology , COVID-19/diagnosis , Influenza B virus/isolation & purification , Influenza B virus/genetics , Influenza, Human/epidemiology , Influenza, Human/diagnosis , Influenza, Human/virology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/diagnosis , Respiratory Syncytial Virus, Human/isolation & purification , Respiratory Syncytial Virus, Human/genetics , Influenza A virus/isolation & purification , Influenza A virus/genetics , Male , Female , Coinfection/epidemiology , Coinfection/diagnosis , Middle Aged , Adult , Molecular Diagnostic Techniques/methods , Seasons , Aged
2.
Hum Vaccin Immunother ; 20(1): 2363076, 2024 Dec 31.
Article En | MEDLINE | ID: mdl-38847280

To optimize seasonal influenza control and prevention programs in regions with potentially complicated seasonal patterns. Descriptive epidemiology was used to analyze the etiology of influenza, and chi-square tests were used to compare the epidemic patterns among different influenza virus types and subtypes/lineages. From January 2010 to December 2019, a total of 63,626 ILI cases were reported in Chongqing and 14,136 (22.22%) were laboratory-confirmed influenza cases. The proportions of specimens positive for influenza A and influenza B were 13.32% (8,478/63,626) and 8.86% (5,639/63,626), respectively. The proportion of positive specimens for influenza A reached the highest in winter (23.33%), while the proportion of positive specimens for influenza B reached the highest in spring (11.88%). Children aged 5-14 years old had the highest proportion of positive specimens for influenza. The influenza virus types/subtypes positive was significantly different by seasons and age groups (P<.001), but not by gender (p = .436). The vaccine strains were matched to the circulating influenza virus strains in all other years except for 2018 (vaccine strain was B/Colorado/06/2017; circulating strain was B/Yamagata). The study showed significant variations in epidemic patterns, including seasonal epidemic period and age distributions, among different influenza types, subtypes/lineages in Chongqing. Influenza vaccines matched to the circulating influenza virus strain in nine of the ten years. To prevent and mitigate the influenza outbreaks in this area, high risk population, especially children aged 5-14 years, are encouraged to get vaccinated against influenza before the epidemic seasons.


Influenza B virus , Influenza, Human , Seasons , Humans , Child , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Influenza, Human/virology , China/epidemiology , Adolescent , Child, Preschool , Male , Female , Influenza B virus/classification , Influenza B virus/isolation & purification , Infant , Young Adult , Middle Aged , Adult , Aged , Influenza A virus/classification , Influenza A virus/isolation & purification , Influenza Vaccines/administration & dosage , Epidemics , Infant, Newborn
3.
Sci Rep ; 14(1): 10436, 2024 05 07.
Article En | MEDLINE | ID: mdl-38714669

Influenza (sometimes referred to as "flu") is a contagious viral infection of the airways in the lungs that affects a significant portion of the world's population. Clinical symptoms of influenza virus infections can range widely, from severe pneumonia to moderate or even asymptomatic sickness. If left untreated, influenza can have more severe effects on the heart, brain, and lungs than on the respiratory tract and can necessitate hospitalization. This study was aimed to investigate and characterize all types of influenza cases prevailing in Nepal and to analyze seasonal occurrence of Influenza in Nepal in the year 2019. A cross sectional, retrospective and descriptive study was carried out at National Influenza Center (NIC), National Public Health Laboratory Kathmandu Nepal for the period of one year (Jan-Dec 2019). A total of 3606 throat swab samples from various age groups and sexes were processed at the NIC. The specimens were primarily stored at 4 °C and processed using ABI 7500 RT PCR system for the identification of Influenza virus types and subtypes. Data accessed for research purpose were retrieved from National Influenza Centre (NIC) on 1st Jan 2020. Of the total 3606 patients suspected of having influenza infection, influenza viruses were isolated from 1213 (33.6%) patients with male predominance. The highest number of infection was caused by Influenza A/Pdm09 strain 739 (60.9%) followed by Influenza B 304 (25.1%) and Influenza A/H3 169 (13.9%) and most remarkable finding of this study was the detection of H5N1 in human which is the first ever case of such infection in human from Nepal. Similar to other tropical nations, influenza viruses were detected year-round in various geographical locations of Nepal. The influenza virus type and subtypes that were in circulation in Nepal were comparable to vaccine candidate viruses, which the currently available influenza vaccine may prevent.


Influenza, Human , Humans , Nepal/epidemiology , Influenza, Human/epidemiology , Influenza, Human/virology , Female , Male , Child , Adult , Adolescent , Middle Aged , Child, Preschool , Infant , Retrospective Studies , Young Adult , Cross-Sectional Studies , Aged , Influenza B virus/genetics , Influenza B virus/isolation & purification , Seasons , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/isolation & purification
4.
Influenza Other Respir Viruses ; 18(5): e13295, 2024 May.
Article En | MEDLINE | ID: mdl-38744684

BACKGROUND: The 2022/23 influenza season in the United Kingdom saw the return of influenza to prepandemic levels following two seasons with low influenza activity. The early season was dominated by A(H3N2), with cocirculation of A(H1N1), reaching a peak late December 2022, while influenza B circulated at low levels during the latter part of the season. From September to March 2022/23, influenza vaccines were offered, free of charge, to all aged 2-13 (and 14-15 in Scotland and Wales), adults up to 49 years of age with clinical risk conditions and adults aged 50 and above across the mainland United Kingdom. METHODS: End-of-season adjusted vaccine effectiveness (VE) estimates against sentinel primary-care attendance for influenza-like illness, where influenza infection was laboratory confirmed, were calculated using the test negative design, adjusting for potential confounders. METHODS: Results In the mainland United Kingdom, end-of-season VE against all laboratory-confirmed influenza for all those > 65 years of age, most of whom received adjuvanted quadrivalent vaccines, was 30% (95% CI: -6% to 54%). VE for those aged 18-64, who largely received cell-based vaccines, was 47% (95% CI: 37%-56%). Overall VE for 2-17 year olds, predominantly receiving live attenuated vaccines, was 66% (95% CI: 53%-76%). CONCLUSION: The paper provides evidence of moderate influenza VE in 2022/23.


Influenza A Virus, H3N2 Subtype , Influenza B virus , Influenza Vaccines , Influenza, Human , Primary Health Care , Vaccine Efficacy , Humans , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza, Human/prevention & control , Influenza, Human/epidemiology , Middle Aged , Adolescent , Adult , Primary Health Care/statistics & numerical data , United Kingdom/epidemiology , Aged , Young Adult , Child , Female , Male , Child, Preschool , Influenza A Virus, H3N2 Subtype/immunology , Influenza B virus/immunology , Influenza A Virus, H1N1 Subtype/immunology , Seasons , Vaccination/statistics & numerical data
5.
Hum Genomics ; 18(1): 48, 2024 May 20.
Article En | MEDLINE | ID: mdl-38769549

BACKGROUND: After the occurrence of the COVID-19 pandemic, detection of other disseminated respiratory viruses using highly sensitive molecular methods was declared essential for monitoring the spread of health-threatening viruses in communities. The development of multiplex molecular assays are essential for the simultaneous detection of such viruses even at low concentrations. In the present study, a highly sensitive and specific multiplex one-step droplet digital PCR (RT-ddPCR) assay was developed for the simultaneous detection and absolute quantification of influenza A (IAV), influenza B (IBV), respiratory syncytial virus (RSV), and beta-2-microglobulin transcript as an endogenous internal control (IC B2M). RESULTS: The assay was first evaluated for analytical sensitivity and specificity, linearity, reproducibility, and recovery rates with excellent performance characteristics and then applied to 37 wastewater samples previously evaluated with commercially available and in-house quantitative real-time reverse transcription PCR (RT-qPCR) assays. IAV was detected in 16/37 (43%), IBV in 19/37 (51%), and RSV in 10/37 (27%) of the wastewater samples. Direct comparison of the developed assay with real-time RT-qPCR assays showed statistically significant high agreement in the detection of IAV (kappa Cohen's correlation coefficient: 0.834, p = 0.001) and RSV (kappa: 0.773, p = 0.001) viruses between the two assays, while the results for the detection of IBV (kappa: 0.355, p = 0.27) showed good agreement without statistical significance. CONCLUSIONS: Overall, the developed one-step multiplex ddPCR assay is cost-effective, highly sensitive and specific, and can simultaneously detect three common respiratory viruses in the complex matrix of wastewater samples even at low concentrations. Due to its high sensitivity and resistance to PCR inhibitors, the developed assay could be further used as an early warning system for wastewater monitoring.


Influenza A virus , Influenza B virus , Multiplex Polymerase Chain Reaction , Wastewater , Wastewater/virology , Influenza A virus/genetics , Influenza A virus/isolation & purification , Humans , Influenza B virus/genetics , Influenza B virus/isolation & purification , Multiplex Polymerase Chain Reaction/methods , Sensitivity and Specificity , Respiratory Syncytial Viruses/genetics , Respiratory Syncytial Viruses/isolation & purification , Reproducibility of Results , Influenza, Human/diagnosis , Influenza, Human/virology , Influenza, Human/genetics , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/isolation & purification , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification
6.
Acta Biochim Pol ; 71: 12289, 2024.
Article En | MEDLINE | ID: mdl-38721309

The aim of the study was to determine the level of anti-hemagglutinin antibodies in the serum of patients during the 2021/2022 epidemic season in Poland. A total of 700 sera samples were tested, divided according to the age of the patients into 7 age groups: 0-4 years of age, 5-9 years of age, 10-14 years of age, 15-25 years of age, 26-44 years of age, 45-64 years of age and ≥65 years of age, 100 samples were collected from each age group. Anti-hemagglutinin antibody levels was determined using the haemagglutination inhibition assay (OZHA). The results obtained confirm the presence of anti-hemagglutinin antibodies for the antigens A/Victoria/2570/2019 (H1N1) pdm09, A/Cambodia/e0826360/2020 (H3N2), B/Washington/02/2019 and B/Phuket/3073/2013 recommended by World Health Organization (WHO) for the 2021/2022 epidemic season. The analysis of the results shows differences in the levels of individual anti-hemagglutinin antibodies in the considered age groups. In view of very low percentage of the vaccinated population in Poland, which was 6.90% in the 2021/2022 epidemic season, the results obtained in the study would have to be interpreted as the immune system response in patients after a previous influenza virus infection.


Antibodies, Viral , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N2 Subtype , Influenza, Human , Humans , Poland/epidemiology , Adult , Middle Aged , Adolescent , Influenza, Human/immunology , Influenza, Human/epidemiology , Influenza, Human/blood , Influenza, Human/virology , Child , Aged , Child, Preschool , Antibodies, Viral/blood , Antibodies, Viral/immunology , Young Adult , Infant , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Male , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Female , Infant, Newborn , Hemagglutination Inhibition Tests , Influenza B virus/immunology , Seasons , Epidemics , Prevalence
7.
J Infect ; 88(6): 106164, 2024 Jun.
Article En | MEDLINE | ID: mdl-38692359

OBJECTIVES: We evaluated Nanopore sequencing for influenza surveillance. METHODS: Influenza A and B PCR-positive samples from hospital patients in Oxfordshire, UK, and a UK-wide population survey from winter 2022-23 underwent Nanopore sequencing following targeted rt-PCR amplification. RESULTS: From 941 infections, successful sequencing was achieved in 292/388 (75 %) available Oxfordshire samples: 231 (79 %) A/H3N2, 53 (18 %) A/H1N1, and 8 (3 %) B/Victoria and in 53/113 (47 %) UK-wide samples. Sequencing was more successful at lower Ct values. Most same-sample replicate sequences had identical haemagglutinin segments (124/141, 88 %); 36/39 (92 %) Illumina vs. Nanopore comparisons were identical, and 3 (8 %) differed by 1 variant. Comparison of Oxfordshire and UK-wide sequences showed frequent inter-regional transmission. Infections were closely-related to 2022-23 vaccine strains. Only one sample had a neuraminidase inhibitor resistance mutation. 849/941 (90 %) Oxfordshire infections were community-acquired. 63/88 (72 %) potentially healthcare-associated cases shared a hospital ward with ≥ 1 known infectious case. 33 epidemiologically-plausible transmission links had sequencing data for both source and recipient: 8 were within ≤ 5 SNPs, of these, 5 (63 %) involved potential sources that were also hospital-acquired. CONCLUSIONS: Nanopore influenza sequencing was reproducible and antiviral resistance rare. Inter-regional transmission was common; most infections were genomically similar. Hospital-acquired infections are likely an important source of nosocomial transmission and should be prioritised for infection prevention and control.


Influenza B virus , Influenza, Human , Nanopore Sequencing , Humans , Influenza, Human/epidemiology , Influenza, Human/virology , United Kingdom/epidemiology , Nanopore Sequencing/methods , Influenza B virus/genetics , Influenza B virus/isolation & purification , Influenza B virus/classification , Female , Male , Influenza A virus/genetics , Influenza A virus/classification , Influenza A virus/isolation & purification , Adult , Middle Aged , Adolescent , Aged , Young Adult , Child , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/classification
8.
J Infect Public Health ; 17(6): 1086-1094, 2024 Jun.
Article En | MEDLINE | ID: mdl-38705061

BACKGROUND: The prevalence of different types/subtypes varies across seasons and countries for seasonal influenza viruses, indicating underlying interactions between types/subtypes. The global interaction patterns and determinants for seasonal influenza types/subtypes need to be explored. METHODS: Influenza epidemiological surveillance data, as well as multidimensional data that include population-related, environment-related, and virus-related factors from 55 countries worldwide were used to explore type/subtype interactions based on Spearman correlation coefficient. The machine learning method Extreme Gradient Boosting (XGBoost) and interpretable framework SHapley Additive exPlanation (SHAP) were utilized to quantify contributing factors and their effects on interactions among influenza types/subtypes. Additionally, causal relationships between types/subtypes were also explored based on Convergent Cross-mapping (CCM). RESULTS: A consistent globally negative correlation exists between influenza A/H3N2 and A/H1N1. Meanwhile, interactions between influenza A (A/H3N2, A/H1N1) and B show significant differences across countries, primarily influenced by population-related factors. Influenza A has a stronger driving force than influenza B, and A/H3N2 has a stronger driving force than A/H1N1. CONCLUSION: The research elucidated the globally complex and heterogeneous interaction patterns among influenza type/subtypes, identifying key factors shaping their interactions. This sheds light on better seasonal influenza prediction and model construction, informing targeted prevention strategies and ultimately reducing the global burden of seasonal influenza.


Global Health , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N2 Subtype , Influenza B virus , Influenza, Human , Seasons , Humans , Influenza, Human/epidemiology , Influenza, Human/virology , Machine Learning , Epidemiological Monitoring , Prevalence
9.
Viruses ; 16(5)2024 04 27.
Article En | MEDLINE | ID: mdl-38793574

Influenza viruses are constantly evolving and are therefore monitored worldwide in the hope to reduce the burden of disease by annual updates to vaccine recommendations. We conducted genomic sequencing of 110 influenza A and 30 influenza B viruses from specimens collected between October 2023 and February 2024 in Arizona, USA. We identified mutations in the hemagglutinin (HA) antigenic sites as well as the neuraminidase (NA) gene in our samples. We also found no unique HA and NA mutations in vaccinated yet influenza-infected individuals. Real-time genomic sequencing surveillance is important to ensure influenza vaccine effectiveness.


Genome, Viral , Influenza A virus , Influenza B virus , Influenza, Human , Mutation , Neuraminidase , Arizona/epidemiology , Humans , Influenza, Human/epidemiology , Influenza, Human/virology , Neuraminidase/genetics , Influenza B virus/genetics , Influenza A virus/genetics , Influenza A virus/classification , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Genomics/methods , Phylogeny , Adult , Epidemiological Monitoring , Child , Adolescent , Middle Aged , Male , Female , Child, Preschool , Aged , Influenza Vaccines/immunology , Influenza Vaccines/genetics , Young Adult , Whole Genome Sequencing
10.
Influenza Other Respir Viruses ; 18(5): e13307, 2024 May.
Article En | MEDLINE | ID: mdl-38798072

BACKGROUND: Seroepidemiological studies provide estimates of population-level immunity, prevalence/incidence of infections, and evaluation of vaccination programs. We assessed the seroprevalence of protective antibodies against influenza and evaluated the correlation of seroprevalence with the cumulative annual influenza incidence rate. METHODS: We conducted an annual repeated cross-sectional seroepidemiological survey, during June-August, from 2014 to 2019, in Portugal. A total of 4326 sera from all age groups, sex, and regions was tested by hemagglutination inhibition assay. Seroprevalence and geometric mean titers (GMT) of protective antibodies against influenza were assessed by age group, sex, and vaccine status (65+ years old). The association between summer annual seroprevalence and the difference of influenza incidence rates between one season and the previous one was measured by Pearson correlation coefficient (r). RESULTS: Significant differences in seroprevalence of protective antibodies against influenza were observed in the population. Higher seroprevalence and GMT for A(H1N1)pdm09 and A(H3N2) were observed in children (5-14); influenza B seroprevalence in adults 65+ was 1.6-4.4 times than in children (0-4). Vaccinated participants (65+) showed significant higher seroprevalence/GMT for influenza. A strong negative and significant correlation was found between seroprevalence and ILI incidence rate for A(H1N1)pdm09 in children between 5 and 14 (r = -0.84; 95% CI, -0.98 to -0.07); a weak negative correlation was observed for A(H3N2) and B/Yamagata (r ≤ -0.1). CONCLUSIONS: The study provides new insight into the anti-influenza antibodies seroprevalence measured in summer on the ILI incidence rate in the next season and the need for adjusted preventive health care measures to prevent influenza infection and transmission.


Antibodies, Viral , Influenza, Human , Humans , Seroepidemiologic Studies , Cross-Sectional Studies , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Influenza, Human/immunology , Female , Male , Adult , Incidence , Antibodies, Viral/blood , Child, Preschool , Child , Middle Aged , Adolescent , Young Adult , Aged , Portugal/epidemiology , Infant , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Hemagglutination Inhibition Tests , Influenza B virus/immunology , Seasons , Infant, Newborn , Aged, 80 and over
11.
Open Vet J ; 14(3): 913-918, 2024 Mar.
Article En | MEDLINE | ID: mdl-38682131

Background: Salmonella is a major food-borne bacterial pathogen that causes food poisoning related to the consumption of eggs, milk, and meat. Food safety in relation to Salmonella is particularly important for eggs because their shells as well as their contents can be a source of contamination. Chicken can also be infected with influenza virus, but it remains unclear how co-infection of Salmonella and influenza virus affect each other. Aim: The potential influence of co-infection of Salmonella and influenza virus was examined. Methods: Salmonella Abony and influenza virus were injected into chicken embryonated eggs. After incubation, proliferation of Salmonella and influenza virus was measured using a direct culture assay for bacteria and an enzyme-linked immunosorbent assay for influenza virus, respectively. Results: Our findings indicate that the number of colony-forming units (CFUs) of Salmonella did not vary between chicken embryonated eggs co-infected with influenza A virus and Salmonella-only infected eggs. Furthermore, we found the proliferation of influenza A or B virus was not significantly influenced by co-infection of the eggs with Salmonella. Conclusion: These results suggest that combined infection of Salmonella with influenza virus does not affect each other, at least in terms of their proliferation.


Coinfection , Influenza in Birds , Salmonella , Animals , Chick Embryo , Influenza in Birds/virology , Coinfection/veterinary , Coinfection/microbiology , Coinfection/virology , Salmonella/isolation & purification , Salmonella/physiology , Chickens , Salmonella Infections, Animal/microbiology , Poultry Diseases/microbiology , Poultry Diseases/virology , Influenza A virus/physiology , Influenza B virus/physiology , Influenza B virus/isolation & purification
12.
Epidemiol Infect ; 152: e60, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38584132

Previous studies suggest that influenza virus infection may provide temporary non-specific immunity and hence lower the risk of non-influenza respiratory virus infection. In a randomized controlled trial of influenza vaccination, 1 330 children were followed-up in 2009-2011. Respiratory swabs were collected when they reported acute respiratory illness and tested against influenza and other respiratory viruses. We used Poisson regression to compare the incidence of non-influenza respiratory virus infection before and after influenza virus infection. Based on 52 children with influenza B virus infection, the incidence rate ratio (IRR) of non-influenza respiratory virus infection after influenza virus infection was 0.47 (95% confidence interval: 0.27-0.82) compared with before infection. Simulation suggested that this IRR was 0.87 if the temporary protection did not exist. We identified a decreased risk of non-influenza respiratory virus infection after influenza B virus infection in children. Further investigation is needed to determine if this decreased risk could be attributed to temporary non-specific immunity acquired from influenza virus infection.


Herpesviridae Infections , Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Orthomyxoviridae , Respiratory Tract Infections , Child , Humans , Influenza, Human/epidemiology , Influenza B virus , Respiratory Tract Infections/epidemiology
13.
Nat Commun ; 15(1): 3387, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38684663

Influenza B viruses (IBVs) cause substantive morbidity and mortality, and yet immunity towards IBVs remains understudied. CD8+ T-cells provide broadly cross-reactive immunity and alleviate disease severity by recognizing conserved epitopes. Despite the IBV burden, only 18 IBV-specific T-cell epitopes restricted by 5 HLAs have been identified currently. A broader array of conserved IBV T-cell epitopes is needed to develop effective cross-reactive T-cell based IBV vaccines. Here we identify 9 highly conserved IBV CD8+ T-cell epitopes restricted to HLA-B*07:02, HLA-B*08:01 and HLA-B*35:01. Memory IBV-specific tetramer+CD8+ T-cells are present within blood and tissues. Frequencies of IBV-specific CD8+ T-cells decline with age, but maintain a central memory phenotype. HLA-B*07:02 and HLA-B*08:01-restricted NP30-38 epitope-specific T-cells have distinct T-cell receptor repertoires. We provide structural basis for the IBV HLA-B*07:02-restricted NS1196-206 (11-mer) and HLA-B*07:02-restricted NP30-38 epitope presentation. Our study increases the number of IBV CD8+ T-cell epitopes, and defines IBV-specific CD8+ T-cells at cellular and molecular levels, across tissues and age.


CD8-Positive T-Lymphocytes , Epitopes, T-Lymphocyte , Influenza B virus , Influenza, Human , CD8-Positive T-Lymphocytes/immunology , Humans , Epitopes, T-Lymphocyte/immunology , Influenza B virus/immunology , Influenza, Human/immunology , Influenza, Human/virology , Adult , Middle Aged , Aged , Cross Reactions/immunology , Young Adult , Female , Male , Immunologic Memory/immunology , Adolescent , HLA-B Antigens/immunology , Child , Child, Preschool
14.
J Clin Virol ; 172: 105674, 2024 Jun.
Article En | MEDLINE | ID: mdl-38643722

BACKGROUND: Rapid and accurate detection of viral respiratory infections is important for infection control measures. This study compares the analytical and clinical performance of the Xpert® Xpress CoV-2/Flu/RSV plus test ("Xpert", Cepheid) and the STANDARD™ M10 Flu/RSV/SARS-CoV-2 test ("M10", SD Biosensor). Both tests are quadruplex RT-PCR assays for rapid diagnosis of SARS-CoV-2, influenza A/B and RSV. STUDY DESIGN: Analytical sensitivities were determined by limit of detection for SARS-CoV-2, influenza A, influenza B and RSV, respectively. Additionally, the clinical performance of the Xpert and the M10 tests was evaluated against standard-of-care RT-PCR by testing of 492 clinical specimens. RESULTS: The analytical sensitivities for Xpert versus M10 test was 10, 50, 50 and 300 versus 300, 200, 800 and 1500 copies/mL for SARS-CoV-2, influenza A, influenza B and RSV, respectively. Clinical sensitivity for the Xpert test was superior across all four pathogens compared to the M10 test. Xpert showed clinical sensitivity of 100 % in all Ct-ranges for all four pathogens whereas M10 showed clinical sensitivity of 100 % in the 25-30 Ct-range, 84-100 % in the 30-35 Ct-range and 47-67 % in the >35 Ct-range across the four pathogens. Translating into real-life clinical sensitivity, the Xpert would detect 100 % of all four pathogens, whereas M10 would detect 92.1, 92.4, 84.8 and 94.7 % for SARS-CoV-2, influenza A, influenza B and RSV. CONCLUSION: This study demonstrates improved analytical and clinical performance of Xpert Xpress CoV-2/Flu/RSV plus compared to STANDARD M10 Flu/RSV/SARS-CoV-2, which is important for ensuring accuracy of diagnosis at all stages of a respiratory infection.


COVID-19 , Influenza A virus , Influenza B virus , Influenza, Human , Respiratory Syncytial Virus Infections , SARS-CoV-2 , Sensitivity and Specificity , Humans , COVID-19/diagnosis , COVID-19/virology , Influenza, Human/diagnosis , Influenza, Human/virology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Influenza B virus/isolation & purification , Influenza B virus/genetics , Influenza A virus/isolation & purification , Influenza A virus/genetics , Respiratory Syncytial Virus Infections/diagnosis , Respiratory Syncytial Virus Infections/virology , Point-of-Care Testing , COVID-19 Nucleic Acid Testing/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/isolation & purification
15.
Diagn Microbiol Infect Dis ; 109(3): 116325, 2024 Jul.
Article En | MEDLINE | ID: mdl-38688146

Following the relaxation of COVID-19 restrictions, other respiratory viruses such as influenza and respiratory syncytial virus (RSV), whose transmission were decreased due to COVID-19 precautions, are rising again. Because of similar clinical features and reported co-infections, multiplex detection of SARS-CoV-2, influenza A/B, and RSV is required to use specific treatments. This study assessed an extraction-free sample preparation (heat treatment at 95°C for 3 minutes) for multiplex detection using rRT-PCR. Despite an observed Ct-delay (∆Ct) averageing 1.26 compared to the standard method, an acceptable total sensitivity of 92 % and a negative predictive value (NPV) of 96 % were obtained. Moreover, Implementation on a microfluidic chip demonstrated efficiency, maintaining an excellent correlation (R2=0.983) with the standard method. Combining this extraction-free procedure with rRT-PCR on a microfluidic chip seems promising, because it simplifies the design and reduces the cost and complexity of the integrated assay for multiplex detection of SARS-CoV-2, influenza A/B, and RSV.


COVID-19 , Influenza A virus , Influenza B virus , Influenza, Human , Respiratory Syncytial Virus Infections , SARS-CoV-2 , Humans , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , SARS-CoV-2/genetics , Influenza, Human/diagnosis , Influenza, Human/virology , Influenza A virus/isolation & purification , Influenza A virus/genetics , Influenza B virus/isolation & purification , Influenza B virus/genetics , Respiratory Syncytial Virus Infections/diagnosis , Respiratory Syncytial Virus Infections/virology , Sensitivity and Specificity , Lab-On-A-Chip Devices , Multiplex Polymerase Chain Reaction/methods , Respiratory Syncytial Viruses/isolation & purification , Respiratory Syncytial Viruses/genetics , Coinfection/virology , Coinfection/diagnosis , COVID-19 Nucleic Acid Testing/methods , COVID-19 Nucleic Acid Testing/instrumentation
16.
Virus Res ; 345: 199378, 2024 Jul.
Article En | MEDLINE | ID: mdl-38643857

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a significant threat to human health globally. It is crucial to develop a vaccine to reduce the effect of the virus on public health, economy, and society and regulate the transmission of SARS-CoV-2. Influenza B virus (IBV) can be used as a vector that does not rely on the current circulating influenza A strains. In this study, we constructed an IBV-based vector vaccine by inserting a receptor-binding domain (RBD) into a non-structural protein 1 (NS1)-truncated gene (rIBV-NS110-RBD). Subsequently, we assessed its safety, immunogenicity, and protective efficacy against SARS-CoV-2 in mice, and observed that it was safe in a mouse model. Intranasal administration of a recombinant rIBV-NS110-RBD vaccine induced high levels of SARS-CoV-2-specific IgA and IgG antibodies and T cell-mediated immunity in mice. Administering two doses of the intranasal rIBV-NS110-RBD vaccine significantly reduced the viral load and lung damage in mice. This novel IBV-based vaccine offers a novel approach for controlling the SARS-CoV-2 pandemic.


Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Influenza B virus , Mice, Inbred BALB C , SARS-CoV-2 , Vaccines, Attenuated , Animals , Mice , Influenza B virus/immunology , Influenza B virus/genetics , Antibodies, Viral/blood , Antibodies, Viral/immunology , SARS-CoV-2/immunology , SARS-CoV-2/genetics , COVID-19/prevention & control , COVID-19/immunology , Vaccines, Attenuated/immunology , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/genetics , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Female , Administration, Intranasal , Humans , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/genetics , Immunoglobulin A/blood , Disease Models, Animal , Immunoglobulin G/blood , Viral Load , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology
17.
Hum Vaccin Immunother ; 20(1): 2327736, 2024 Dec 31.
Article En | MEDLINE | ID: mdl-38513689

The objective of the study was to assess the safety and immunogenicity of mRNA-1273 COVID-19 booster vaccination when co-administered with an egg-based standard dose seasonal quadrivalent influenza vaccine (QIV). This was a phase 3, randomized, open-label study. Eligible adults aged ≥ 18 years were randomly assigned (1:1) to receive mRNA-1273 (50 µg) booster vaccination and QIV 2 weeks apart (Seq group) or concomitantly (Coad group). Primary objectives were non-inferiority of haemagglutinin inhibition (HI) and anti-Spike protein antibody responses in the Coad compared to Seq group. 497/498 participants were randomized and vaccinated in the Seq/Coad groups, respectively. The adjusted geometric mean titer/concentration ratios (95% confidence intervals) (Seq/Coad) for HI antibodies were 1.02 (0.89-1.18) for A/H1N1, 0.93 (0.82-1.05) for A/H3N2, 1.00 (0.89-1.14] for B/Victoria, and 1.04 (0.93-1.17) for B/Yamagata; and 0.98 (0.84-1.13) for anti-Spike antibodies, thus meeting the protocol-specified non-inferiority criteria. The most frequently reported adverse events in both groups were pain at the injection site and myalgia. The 2 groups were similar in terms of the overall frequency, intensity, and duration of adverse events. In conclusion, co-administration of mRNA-1273 booster vaccine with QIV in adults was immunologically non-inferior to sequential administration. Safety and reactogenicity profiles were similar in both groups (clinicaltrials.gov NCT05047770).


What is the context? Updated booster shots against COVID-19 disease are likely to offer more protection as the virus is changing over time.It is important for doctors, other healthcare providers and patients to know whether COVID-19 booster vaccines can be given at the same time as other vaccines recommended for adults.What is new? The results of our study showed that an mRNA-based COVID-19 booster vaccine could be given at the same time as the seasonal influenza vaccine.When given together, both vaccines led to immune responses and had side effects that were similar to those observed when they were given at separate times.What is the impact? The potential benefits of administering more than 1 vaccine during a healthcare visit include improved coverage and a reduced number of doctor visits needed to receive all vaccines.Co-administration of COVID-19 booster vaccines and influenza vaccines could be an attractive option for patients and healthcare professionals.


COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Pulmonary Disease, Chronic Obstructive , Adult , Humans , Influenza, Human/prevention & control , 2019-nCoV Vaccine mRNA-1273 , Influenza B virus , Influenza A Virus, H3N2 Subtype , COVID-19 Vaccines/adverse effects , Seasons , Antibodies, Viral , Vaccines, Inactivated , Hemagglutination Inhibition Tests , COVID-19/prevention & control , Immunogenicity, Vaccine
19.
Clin Lab ; 70(3)2024 Mar 01.
Article En | MEDLINE | ID: mdl-38469788

BACKGROUND: There is little data about the performance of multiplex rapid antigen tests (RATs) on the detection of SARS-CoV-2, influenza A (Flu A), and influenza B (Flu B). This study is to evaluate the performance of Panbio COVID-19/Flu A&B rapid panel (Abbott Diagnostics, Korea) and analyze the factors influencing its sensitivity. METHODS: Nasopharyngeal swabs were collected and stored at the Korea University Anam hospital. In total, 400 residual samples from nasopharyngeal swabs were examined. The diagnostic accuracy of RAT was compared to that of RT-qPCR using the Allplex SARS-CoV-2/FluA/FluB/RSV Assay (Seegene, Seoul, South Korea). RESULTS: Panbio COVID-19/Flu A&B rapid panel showed the sensitivities of 88.0%, 92.0%, and 100% for SARS-CoV-2, Flu A, and Flu B, respectively, and specificities of 100% for all. The agreements with previously licensed single-plex RATs were shown to be high. In the analysis of variables affecting sensitivity, inappropriate sampling time after symptom onset (STASO) and high cycle threshold (Ct value) were shown to negatively affect the sensi-tivity. CONCLUSIONS: In conclusion, the multiplex RAT is useful for diagnosing SARS-CoV-2 and Flu A/B, but more clinical studies are needed.


COVID-19 , Influenza A virus , Influenza, Human , Humans , Influenza, Human/diagnosis , SARS-CoV-2 , Influenza B virus/genetics , COVID-19/diagnosis , Nasopharynx , Sensitivity and Specificity
20.
Med Sci Monit ; 30: e942845, 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38451880

BACKGROUND This retrospective study evaluated the effects of specific COVID-19 preventive measures, including the use of medical masks, nucleic acid testing, and patient isolation, on respiratory infections, disease severity, and seasonal patterns among children in Hohhot, located in northern China. Understanding these alterations is pivotal in developing effective strategies to handle pediatric respiratory infections within the context of continuous public health initiatives. MATERIAL AND METHODS At the First Hospital of Hohhot, throat swabs were collected from 605 children with community-acquired respiratory between January 2022 and March 2023 for pathogen infection spectrum detection using microarray testing. RESULTS Among the patients, 56.03% were male, and their average age was 3.45 years. SARS-CoV-2 infections were highest between October 2022 and January 2023. Influenza A peaked in March 2023, and other pathogens such as respiratory syncytial virus and influenza B virus disappeared after December 2022. The proportion of mixed infections was 41.94% among SARS-CoV-2 patients, while other pathogens had mixed infection rates exceeding 57.14%. Before December 2022, the mean WBC count for Streptococcus pneumoniae and Haemophilus influenzae was 8.83×109/L, CRP was 18.36 mg/L, and PCT was 1.11 ng/ml. After December 2022, these values decreased significantly. Coughing, difficulty breathing, running nose, and lower respiratory tract infection diagnoses decreased in December 2022, except for SARS-CoV-2 infections. CONCLUSIONS SARS-CoV-2 peaked around November 2022, influenza A peaked in March 2023, and other pathogens like respiratory syncytial virus and influenza B virus were greatly reduced after December 2022. Inflammatory markers and respiratory symptoms decreased after December 2022, except for SARS-CoV-2.


COVID-19 , Influenza, Human , Respiratory Tract Infections , Humans , Child , Male , Child, Preschool , Female , COVID-19/prevention & control , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Retrospective Studies , SARS-CoV-2 , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/prevention & control , China/epidemiology , Respiratory Syncytial Viruses , Influenza B virus , Patient Acuity
...