Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.119
Filter
1.
Virulence ; 15(1): 2395837, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39240070

ABSTRACT

Vaccination is crucial for the prevention and mitigation of avian influenza infections in China. The inactivated H7N9 vaccine, when administered to poultry, significantly lowers the risk of infection among both poultry and humans, while also markedly decreasing the prevalence of H7N9 detections. Highly pathogenic (HP) H7N9 viruses occasionally appear, whereas their low pathogenicity (LP) counterparts have been scarcely detected since 2018. However, these contributing factors remain poorly understood. We conducted an exploratory investigation of the mechanics via the application of comprehensive bioinformatic approaches. We delineated the Yangtze River Delta (YRD) H7N9 lineage into 5 clades (YRD-A to E). Our findings highlight the emergence and peak occurrence of the LP H7N9-containing YRD-E clade during the 5th epidemic wave in China's primary poultry farming areas. A more effective control of LP H7N9 through vaccination was observed compared to that of its HP H7N9 counterpart. YRD-E exhibited a tardy evolutionary trajectory, denoted by the conservation of its genetic and antigenic variation. Our analysis of YRD-E revealed only minimal amino acid substitutions along its phylogenetic tree and a few selective sweep mutations since 2016. In terms of epidemic fitness, the YRD-E was measured to be lower than that of the HP variants. Collectively, these findings underscore the conserved evolutionary patterns distinguishing the YRD-E. Given the conservation presented in its evolutionary patterns, the YRD-E LP H7N9 is hypothesized to be associated with a reduction following the mass vaccination in a relatively short period owing to its lower probability of antigenic variation that might affect vaccine efficiency.


Subject(s)
Evolution, Molecular , Influenza A Virus, H7N9 Subtype , Influenza Vaccines , Influenza in Birds , Phylogeny , Poultry , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/immunology , Influenza A Virus, H7N9 Subtype/classification , Influenza A Virus, H7N9 Subtype/pathogenicity , Animals , Influenza in Birds/virology , Influenza in Birds/prevention & control , China/epidemiology , Influenza Vaccines/immunology , Influenza Vaccines/genetics , Poultry/virology , Mass Vaccination , Influenza, Human/prevention & control , Influenza, Human/virology , Influenza, Human/epidemiology , Poultry Diseases/virology , Poultry Diseases/prevention & control , Humans , Chickens/virology , Antigenic Variation/genetics
2.
mBio ; 15(9): e0066824, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39105586

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 has had a persistent and significant impact on global public health for 4 years. Recently, there has been a resurgence of seasonal influenza transmission worldwide. The co-circulation of SARS-CoV-2 and seasonal influenza viruses results in a dual burden on communities. Additionally, the pandemic potential of zoonotic influenza viruses, such as avian Influenza A/H5N1 and A/H7N9, remains a concern. Therefore, a combined vaccine against all these respiratory diseases is in urgent need. mRNA vaccines, with their superior efficacy, speed in development, flexibility, and cost-effectiveness, offer a promising solution for such infectious diseases and potential future pandemics. In this study, we present FLUCOV-10, a novel 10-valent mRNA vaccine created from our proven platform. This vaccine encodes hemagglutinin (HA) proteins from four seasonal influenza viruses and two avian influenza viruses with pandemic potential, as well as spike proteins from four SARS-CoV-2 variants. A two-dose immunization with the FLUCOV-10 elicited robust immune responses in mice, producing IgG antibodies, neutralizing antibodies, and antigen-specific cellular immune responses against all the vaccine-matched viruses of influenza and SARS-CoV-2. Remarkably, the FLUCOV-10 immunization provided complete protection in mouse models against both homologous and heterologous strains of influenza and SARS-CoV-2. These results highlight the potential of FLUCOV-10 as an effective vaccine candidate for the prevention of influenza and COVID-19.IMPORTANCEAmidst the ongoing and emerging respiratory viral threats, particularly the concurrent and sequential spread of SARS-CoV-2 and influenza, our research introduces FLUCOV-10. This novel mRNA-based combination vaccine, designed to counteract both influenza and COVID-19, by incorporating genes for surface glycoproteins from various influenza viruses and SARS-CoV-2 variants. This combination vaccine was highly effective in preclinical trials, generating strong immune responses and ensuring protection against both matching and heterologous strains of influenza viruses and SARS-CoV-2. FLUCOV-10 represents a significant step forward in our ability to address respiratory viral threats, showcasing potential as a singular, adaptable vaccine solution for global health challenges.


Subject(s)
COVID-19 Vaccines , COVID-19 , Influenza Vaccines , SARS-CoV-2 , mRNA Vaccines , Animals , COVID-19/prevention & control , COVID-19/immunology , Mice , SARS-CoV-2/immunology , SARS-CoV-2/genetics , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Humans , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/genetics , Antibodies, Viral/blood , Antibodies, Viral/immunology , Influenza, Human/prevention & control , Influenza, Human/immunology , Influenza, Human/virology , Vaccines, Synthetic/immunology , Vaccines, Synthetic/genetics , Vaccines, Synthetic/administration & dosage , Mice, Inbred BALB C , Female , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A virus/immunology , Influenza A virus/genetics
3.
Antiviral Res ; 230: 105978, 2024 10.
Article in English | MEDLINE | ID: mdl-39117282

ABSTRACT

Seasonal influenza is an annually severe crisis for global public health, and an ideal influenza vaccine is expected to provide broad protection against constantly drifted strains. Compared to highly flexible hemagglutinin (HA), increasing data have demonstrated that neuraminidase (NA) might be a potential target against influenza variants. In the present study, a series of genetic algorithm-based mosaic NA were designed, and then cloned into recombinant DNA and replication-defective Vesicular Stomatitis Virus (VSV) vector as a novel influenza vaccine candidate. Our Results showed that DNA prime/VSV boost strategy elicited a robust NA-specific Th1-dominated immune response, but the traditional inactivated influenza vaccine elicited a Th2-dominated immune response. More importantly, the superior NA-specific immunity induced by our strategy could confer both a full protection against lethal homologous influenza challenge and a partial protection against heterologous influenza infection. These findings will provide insights on designing NA-based universal vaccine strategy against influenza variants.


Subject(s)
Influenza Vaccines , Neuraminidase , Orthomyxoviridae Infections , Neuraminidase/immunology , Neuraminidase/genetics , Influenza Vaccines/immunology , Influenza Vaccines/genetics , Animals , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Mice , T-Lymphocytes/immunology , Mice, Inbred BALB C , Female , Humans , Influenza, Human/prevention & control , Influenza, Human/immunology , Influenza, Human/virology , Vaccines, DNA/immunology , Vaccines, DNA/genetics , Th1 Cells/immunology , Viral Proteins/genetics , Viral Proteins/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood
4.
mSphere ; 9(8): e0028324, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39087764

ABSTRACT

In 2009, a novel swine-origin H1N1 virus emerged, causing a pandemic. The virus, known as H1N1pdm09, quickly displaced the circulating H1 lineage and became the dominant seasonal influenza A virus subtype infecting humans. Human-to-swine spillovers of the H1N1pdm09 have occurred frequently, and each occurrence has led to sustained transmission of the human-origin H1N1pdm09 within swine populations. In the present study, we developed a lipid nanoparticle-based DNA vaccine (LNP-DNA) containing the hemagglutinin gene of a swine-origin H1N1pdm09. In pigs, this LNP-DNA vaccine induced a robust antibody response after a single intramuscular immunization and protected the pigs against challenge infection with the homologous swine-origin H1N1pdm09 virus. In a mouse model, the LNP-DNA vaccine induced antibody and T-cell responses and protected mice against lethal challenge with a mouse-adapted human-origin H1N1pdm09 virus. These findings demonstrate the potential of the LNP-DNA vaccine to protect against both swine- and human-origin H1N1pdm09 viruses. IMPORTANCE: Swine influenza A virus (IAV) is widespread and causes significant economic losses to the swine industry. Moreover, bidirectional transmission of IAV between swine and humans commonly occurs. Once introduced into the swine population, human-origin IAV often reassorts with endemic swine IAV, resulting in reassortant viruses. Thus, it is imperative to develop a vaccine that is not only effective against IAV strains endemic in swine but also capable of preventing the spillover of human-origin IAV. In this study, we developed a lipid nanoparticle-encapsulated DNA plasmid vaccine (LNP-DNA) that demonstrates efficacy against both swine- and human-origin H1N1 viruses. The LNP-DNA vaccines are non-infectious and non-viable, meeting the criteria to serve as a vaccine platform for rapidly updating vaccines. Collectively, this LNP-DNA vaccine approach holds great potential for alleviating the impact of IAV on the swine industry and preventing the emergence of reassortant IAV strains.


Subject(s)
Antibodies, Viral , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Nanoparticles , Orthomyxoviridae Infections , Swine Diseases , Vaccines, DNA , Animals , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/genetics , Vaccines, DNA/immunology , Vaccines, DNA/administration & dosage , Swine , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/genetics , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/veterinary , Nanoparticles/administration & dosage , Humans , Mice , Swine Diseases/prevention & control , Swine Diseases/virology , Swine Diseases/immunology , Antibodies, Viral/blood , Influenza, Human/prevention & control , Influenza, Human/immunology , Influenza, Human/virology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Female , Mice, Inbred BALB C , Liposomes/administration & dosage
5.
Emerg Microbes Infect ; 13(1): 2389095, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39101691

ABSTRACT

Influenza virus infection poses a continual menace to public health. Here, we developed soluble trimeric HA ectodomain vaccines by establishing interprotomer disulfide bonds in the stem region, which effectively preserve the native antigenicity of stem epitopes. The stable trimeric H1 ectodomain proteins exhibited higher thermal stabilities in comparison with unmodified HAs and showed strong binding activities towards a panel of anti-stem cross-reactive antibodies that recognize either interprotomer or intraprotomer epitopes. Negative stain transmission electron microscopy (TEM) analysis revealed the stable trimer architecture of the interprotomer disulfide-stapled WA11#5, NC99#2, and FLD#1 proteins as well as the irregular aggregation of unmodified HA molecules. Immunizations of mice with those trimeric HA ectodomain vaccines formulated with incomplete Freund's adjuvant elicited significantly more potent cross-neutralizing antibody responses and offered broader immuno-protection against lethal infections with heterologous influenza strains compared to unmodified HA proteins. Additionally, the findings of our study indicate that elevated levels of HA stem-specific antibody responses correlate with strengthened cross-protections. Our design strategy has proven effective in trimerizing HA ectodomains derived from both influenza A and B viruses, thereby providing a valuable reference for designing future influenza HA immunogens.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Disulfides , Hemagglutinin Glycoproteins, Influenza Virus , Influenza Vaccines , Mice, Inbred BALB C , Orthomyxoviridae Infections , Animals , Influenza Vaccines/immunology , Influenza Vaccines/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Antibodies, Viral/immunology , Mice , Disulfides/chemistry , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Antibodies, Neutralizing/immunology , Female , Cross Protection/immunology , Cross Reactions , Humans , Influenza, Human/prevention & control , Influenza, Human/immunology , Influenza, Human/virology , Epitopes/immunology , Epitopes/genetics , Epitopes/chemistry , Protein Multimerization , Influenza B virus/immunology , Influenza B virus/genetics , Influenza B virus/chemistry
6.
Virol J ; 21(1): 196, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39180083

ABSTRACT

Influenza is a highly contagious acute viral illness that affects the respiratory system, posing a significant global public health concern. Influenza B virus (IBV) causes annual seasonal epidemics. The exploration of molecular biology and reverse genetics of IBV is pivotal for understanding its replication, pathogenesis, and evolution. Reverse genetics empowers us to purposefully alter the viral genome, engineer precise genetic modifications, and unveil the secrets of virulence and resistance mechanisms. It helps us in quickly analyzing new virus strains by viral genome manipulation and the development of innovative influenza vaccines. Reverse genetics has been employed to create mutant or reassortant influenza viruses for evaluating their virulence, pathogenicity, host range, and transmissibility. Without this technique, these tasks would be difficult or impossible, making it crucial for preparing for epidemics and protecting public health. Here, we bring together the latest information on how we can manipulate the genes of the influenza B virus using reverse genetics methods, most importantly helper virus-independent techniques.


Subject(s)
Influenza B virus , Influenza Vaccines , Influenza, Human , Reverse Genetics , Influenza B virus/genetics , Influenza B virus/immunology , Reverse Genetics/methods , Humans , Influenza, Human/prevention & control , Influenza, Human/epidemiology , Influenza, Human/virology , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Genome, Viral , Animals , Vaccine Development , Molecular Biology/methods , Virulence/genetics , Epidemics/prevention & control
7.
Nat Commun ; 15(1): 6802, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39122688

ABSTRACT

Influenza virus infection remains a major global health problem and requires a universal vaccine with broad protection against different subtypes as well as a rapid-response vaccine to provide immediate protection in the event of an epidemic outbreak. Here, we show that intranasal administration of probiotic Escherichia coli Nissle 1917 activates innate immunity in the respiratory tract and provides immediate protection against influenza virus infection within 1 day. Based on this vehicle, a recombinant strain is engineered to express and secret five tandem repeats of the extracellular domain of matrix protein 2 from different influenza virus subtypes. Intranasal vaccination with this strain induces durable humoral and mucosal responses in the respiratory tract, and provides broad protection against the lethal challenge of divergent influenza viruses in female BALB/c mice. Our findings highlight a promising delivery platform for developing mucosal vaccines that provide immediate and sustained protection against respiratory pathogens.


Subject(s)
Administration, Intranasal , Escherichia coli , Influenza Vaccines , Mice, Inbred BALB C , Orthomyxoviridae Infections , Probiotics , Animals , Escherichia coli/genetics , Probiotics/administration & dosage , Female , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Mice , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/genetics , Influenza A virus/immunology , Influenza A virus/genetics , Viral Matrix Proteins/genetics , Viral Matrix Proteins/immunology , Immunity, Innate , Immunity, Mucosal , Humans , Antibodies, Viral/immunology , Viroporin Proteins
8.
Antiviral Res ; 229: 105960, 2024 09.
Article in English | MEDLINE | ID: mdl-38986872

ABSTRACT

Respiratory syncytial virus is the major cause of respiratory viral infections, particularly in infants, immunocompromised populations, and the elderly (over 65 years old), the prevention of RSV infection has become a priority. In this study, we generated a chimeric influenza virus, termed LAIV/RSV/HA-3F, using reverse genetics technology which contained three repeats of the RSV fusion protein neutralizing epitope site II to the N terminal in the background of the hemagglutinin (HA) gene of cold adapted influenza vaccine A/California/7/2009 ca. LAIV/RSV/HA-3F exhibited cold-adapted (ca) and attenuated (att) phenotype. BALB/c mice immunized intranasally with LAIV/RSV/HA-3F showed robust immunogenicity, inducing viral-specific antibody responses against both influenza and RSV, eliciting RSV-specific humoral, cellular and mucosal immune responses. LAIV/RSV/HA-3F also conferred protection as indicated by reduced viral titers and improved lung histopathological alterations against live RSV virus challenge. Mechanismly, single-cell RNA sequencing (scRNA-seq) and single-cell T cell antigen receptor (TCR) sequencing were employed to characterize the immune responses triggered by chimeric RSV vaccine, displaying that LAIV/RSV/HA-3F provided protection mainly via interferon-γ (IFN-γ). Moreover, we found that LAIV/RSV/HA-3F significantly inhibited viral replication in the challenged lung and protected against subsequent RSV challenge in cotton rats without causing lung disease. Taken together, our findings demonstrated that LAIV/RSV/HA-3F has potential as a promising bivalent vaccine with dual purpose candidate for the prevention of influenza and RSV, and preclinical and clinical studies warrant further investigations.


Subject(s)
Antibodies, Viral , Epitopes , Influenza Vaccines , Mice, Inbred BALB C , Respiratory Syncytial Virus Infections , Sigmodontinae , Viral Fusion Proteins , Animals , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/immunology , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/genetics , Mice , Viral Fusion Proteins/immunology , Viral Fusion Proteins/genetics , Epitopes/immunology , Epitopes/genetics , Antibodies, Viral/immunology , Antibodies, Viral/blood , Female , Respiratory Syncytial Viruses/immunology , Respiratory Syncytial Viruses/genetics , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus Vaccines/administration & dosage , Lung/virology , Lung/immunology , Lung/pathology , Humans , Cold Temperature , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Respiratory Syncytial Virus, Human/immunology , Respiratory Syncytial Virus, Human/genetics , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology
9.
Viruses ; 16(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38932122

ABSTRACT

In this study, we pioneered an alternative technology for manufacturing subunit influenza hemagglutinin (HA)-based vaccines. This innovative method involves harnessing the pupae of the Lepidoptera Trichoplusia ni (T. ni) as natural biofactories in combination with baculovirus vectors (using CrisBio® technology). We engineered recombinant baculoviruses encoding two versions of the HA protein (trimeric or monomeric) derived from a pandemic avian H7N1 virus A strain (A/chicken/Italy/5093/99). These were then used to infect T. ni pupae, resulting in the production of the desired recombinant antigens. The obtained HA proteins were purified using affinity chromatography, consistently yielding approximately 75 mg/L of insect extract. The vaccine antigen effectively immunized poultry, which were subsequently challenged with a virulent H7N1 avian influenza virus. Following infection, all vaccinated animals survived without displaying any clinical symptoms, while none of the mock-vaccinated control animals survived. The CrisBio®-derived antigens induced high titers of HA-specific antibodies in the vaccinated poultry, demonstrating hemagglutination inhibition activity against avian H7N1 and human H7N9 viruses. These results suggest that the CrisBio® technology platform has the potential to address major industry challenges associated with producing recombinant influenza subunit vaccines, such as enhancing production yields, scalability, and the speed of development, facilitating the global deployment of highly effective influenza vaccines.


Subject(s)
Antibodies, Viral , Chickens , Hemagglutinin Glycoproteins, Influenza Virus , Influenza Vaccines , Influenza in Birds , Pupa , Vaccines, Subunit , Animals , Influenza Vaccines/immunology , Influenza Vaccines/genetics , Influenza Vaccines/administration & dosage , Pupa/immunology , Influenza in Birds/prevention & control , Influenza in Birds/immunology , Vaccines, Subunit/immunology , Vaccines, Subunit/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Antibodies, Viral/immunology , Antibodies, Viral/blood , Influenza A Virus, H7N1 Subtype/immunology , Influenza A Virus, H7N1 Subtype/genetics , Baculoviridae/genetics , Influenza A Virus, H7N9 Subtype/immunology , Influenza A Virus, H7N9 Subtype/genetics , Humans , Vaccine Development , Moths/immunology , Pandemics/prevention & control
10.
Viruses ; 16(5)2024 04 27.
Article in English | MEDLINE | ID: mdl-38793574

ABSTRACT

Influenza viruses are constantly evolving and are therefore monitored worldwide in the hope to reduce the burden of disease by annual updates to vaccine recommendations. We conducted genomic sequencing of 110 influenza A and 30 influenza B viruses from specimens collected between October 2023 and February 2024 in Arizona, USA. We identified mutations in the hemagglutinin (HA) antigenic sites as well as the neuraminidase (NA) gene in our samples. We also found no unique HA and NA mutations in vaccinated yet influenza-infected individuals. Real-time genomic sequencing surveillance is important to ensure influenza vaccine effectiveness.


Subject(s)
Genome, Viral , Influenza A virus , Influenza B virus , Influenza, Human , Mutation , Neuraminidase , Arizona/epidemiology , Humans , Influenza, Human/epidemiology , Influenza, Human/virology , Neuraminidase/genetics , Influenza B virus/genetics , Influenza A virus/genetics , Influenza A virus/classification , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Genomics/methods , Phylogeny , Adult , Epidemiological Monitoring , Child , Adolescent , Middle Aged , Male , Female , Child, Preschool , Aged , Influenza Vaccines/immunology , Influenza Vaccines/genetics , Young Adult , Whole Genome Sequencing
11.
Vaccine ; 42(18): 3756-3767, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38724417

ABSTRACT

A Newcastle disease virus (NDV)-vectored vaccine expressing clade 2.3.4.4b H5 Hemagglutinin was developed and assessed for efficacy against H5N1 highly pathogenic avian influenza (HPAI) in specific pathogen-free (SPF) chickens, broilers, and domestic ducks. In SPF chickens, the live recombinant NDV-vectored vaccine, rK148/22-H5, achieved complete survival against HPAI and NDV challenges and significantly reduced viral shedding. Notably, the live rK148/22-H5 vaccine conferred good clinical protection in broilers despite the presence of maternally derived antibodies. Good clinical protection was observed in domestic ducks, with decreased viral shedding. It demonstrated complete survival and reduced cloacal viral shedding when used as an inactivated vaccine from SPF chickens. The rK148/22-H5 vaccine is potentially a viable and supportive option for biosecurity measure, effectively protecting in chickens against the deadly clade 2.3.4.4b H5 HPAI and NDV infections. Furthermore, it aligns with the strategy of Differentiating Infected from Vaccinated Animals (DIVA).


Subject(s)
Antibodies, Viral , Chickens , Ducks , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Newcastle disease virus , Vaccines, Inactivated , Vaccines, Synthetic , Virus Shedding , Animals , Chickens/immunology , Influenza in Birds/prevention & control , Influenza in Birds/immunology , Newcastle disease virus/immunology , Newcastle disease virus/genetics , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/pathogenicity , Ducks/virology , Ducks/immunology , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Antibodies, Viral/immunology , Antibodies, Viral/blood , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/genetics , Specific Pathogen-Free Organisms , Vaccines, Attenuated/immunology , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/genetics , Poultry Diseases/prevention & control , Poultry Diseases/virology , Poultry Diseases/immunology , Newcastle Disease/prevention & control , Newcastle Disease/immunology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
12.
Vaccine ; 42(15): 3505-3513, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38714444

ABSTRACT

It is necessary to develop universal vaccines that act broadly and continuously to combat regular seasonal epidemics of influenza and rare pandemics. The aim of this study was to find the optimal dose regimen for the efficacy and safety of a mixture of previously developed recombinant adenovirus-based vaccines that expressed influenza nucleoprotein, hemagglutinin, and ectodomain of matrix protein 2 (rAd/NP and rAd/HA-M2e). The vaccine efficacy and safety were measured in the immunized mice with the mixture of rAd/NP and rAd/HA-M2e intranasally or intramuscularly. The minimum dose that would be efficacious in a single intranasal administration of the vaccine mixture and cross-protective efficacy against various influenza strains were examined. In addition, the immune responses that may affect the cross-protective efficacy were measured. We found that intranasal administration is an optimal route for 107 pfu of vaccine mixture, which is effective against pre-existing immunity against adenovirus. In a study to find the minimum dose with vaccine efficacy, the 106 pfu of vaccine mixture showed higher antibody titers to the nucleoprotein than did the same dose of rAd/NP alone in the serum of immunized mice. The 106 pfu of vaccine mixture overcame the morbidity and mortality of mice against the lethal dose of pH1N1, H3N2, and H5N1 influenza infections. No noticeable side effects were observed in single and repeated toxicity studies. We found that the mucosal administration of adenovirus-based universal influenza vaccine has both efficacy and safety, and can provide cross-protection against various influenza infections even at doses lower than those previously known to be effective.


Subject(s)
Adenoviridae , Administration, Intranasal , Antibodies, Viral , Cross Protection , Hemagglutinin Glycoproteins, Influenza Virus , Influenza Vaccines , Mice, Inbred BALB C , Orthomyxoviridae Infections , Viral Matrix Proteins , Animals , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/genetics , Viral Matrix Proteins/immunology , Viral Matrix Proteins/genetics , Adenoviridae/genetics , Adenoviridae/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Mice , Antibodies, Viral/blood , Antibodies, Viral/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Female , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H3N2 Subtype/genetics , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/genetics , Vaccine Efficacy , Nucleoproteins/immunology , Nucleoproteins/genetics , Viral Core Proteins/immunology , Viral Core Proteins/genetics , Injections, Intramuscular , Viroporin Proteins
13.
Virology ; 596: 110117, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38797064

ABSTRACT

MicroRNAs (miRNAs) contribute to post-transcriptional modulation of the host response during influenza A virus (IAV) infection and may be involved in shaping disease severity. Differential disease severity was achieved in two groups of pigs by immunization of one group with a commercial swine IAV vaccine prior to heterologous IAV (H1N2) challenge of both groups. Lung tissue was harvested 1, 3, and 14 days after challenge and miRNA expression was quantified. Gene Ontology term enrichment analysis was employed to examine the functional relevance of genes potentially regulated by differentially expressed miRNAs in pigs with varying degrees of disease severity following IAV infection. Results suggested that the miRNA response associated with less severe disease may modulate host mechanisms essential for viral life cycle, e.g. transcription, translation, and protein trafficking. During more severe disease, miRNA-mediated regulation may focus on dampening virus-specific processes e.g. virion assembly and viral protein processing, and controlling host metabolism.


Subject(s)
Influenza A Virus, H1N2 Subtype , Influenza Vaccines , Lung , MicroRNAs , Orthomyxoviridae Infections , Swine Diseases , Animals , Swine , MicroRNAs/genetics , MicroRNAs/metabolism , MicroRNAs/immunology , Lung/virology , Lung/immunology , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/immunology , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/genetics , Influenza A Virus, H1N2 Subtype/genetics , Influenza A Virus, H1N2 Subtype/immunology , Swine Diseases/virology , Swine Diseases/immunology , Immunization , Gene Expression Profiling
14.
Virology ; 596: 110125, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38805804

ABSTRACT

Influenza viruses present a significant threat to global health. The production of a universal vaccine is considered essential due to the ineffectiveness of current seasonal influenza vaccines against mutant strains. mRNA technology offers new prospects in vaccinology, with various candidates for different infectious diseases currently in development and testing phases. In this study, we encapsulated a universal influenza mRNA vaccine. The vaccine encoded influenza hemagglutinin (HA), nucleoprotein (NP), and three tandem repeats of matrix protein 2 (3M2e). Twice-vaccinated mice exhibited strong humoral and cell-mediated immune responses in vivo. Notably, these immune responses led to a significant reduction in viral load of the lungs in challenged mice, and also conferred protection against future wild-type H1N1, H3N2, or H5N1 influenza virus challenges. Our findings suggest that this mRNA-universal vaccine strategy for influenza virus may be instrumental in mitigating the impact of future influenza pandemics.


Subject(s)
Antibodies, Viral , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H3N2 Subtype , Influenza Vaccines , Mice, Inbred BALB C , Orthomyxoviridae Infections , Viral Matrix Proteins , mRNA Vaccines , Animals , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/genetics , Mice , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Antibodies, Viral/immunology , mRNA Vaccines/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H3N2 Subtype/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Viral Matrix Proteins/immunology , Viral Matrix Proteins/genetics , Female , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/genetics , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Cross Protection/immunology , Viral Load , Lung/virology , Lung/immunology , Humans , Viroporin Proteins
15.
Protein Expr Purif ; 221: 106506, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38772430

ABSTRACT

Influenza poses a substantial health risk, with infants and the elderly being particularly susceptible to its grave impacts. The primary challenge lies in its rapid genetic evolution, leading to the emergence of new Influenza A strains annually. These changes involve punctual mutations predominantly affecting the two main glycoproteins: Hemagglutinin (HA) and Neuraminidase (NA). Our existing vaccines target these proteins, providing short-term protection, but fall short when unexpected pandemics strike. Delving deeper into Influenza's genetic makeup, we spotlight the nucleoprotein (NP) - a key player in the transcription, replication, and packaging of RNA. An intriguing characteristic of the NP is that it is highly conserved across all Influenza A variants, potentially paving the way for a more versatile and broadly protective vaccine. We designed and synthesized a novel NP-Hoc fusion protein combining Influenza A nucleoprotein and T4 phage Hoc, cloned using Gibson assembly in E. coli, and purified via ion affinity chromatography. Simultaneously, we explore the T4 coat protein Hoc, typically regarded as inconsequential in controlled viral replication. Yet, it possesses a unique ability: it can link with another protein, showcasing it on the T4 phage coat. Fusing these concepts, our study designs, expresses, and purifies a novel fusion protein named NP-Hoc. We propose this protein as the basis for a new generation of vaccines, engineered to guard broadly against Influenza A. The excitement lies not just in the immediate application, but the promise this holds for future pandemic resilience, with NP-Hoc marking a significant leap in adaptive, broad-spectrum influenza prevention.


Subject(s)
Bacteriophage T4 , Escherichia coli , Recombinant Fusion Proteins , Bacteriophage T4/genetics , Bacteriophage T4/chemistry , Bacteriophage T4/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/biosynthesis , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/metabolism , Influenza A virus/genetics , Influenza A virus/metabolism , Influenza Vaccines/genetics , Influenza Vaccines/biosynthesis , Influenza Vaccines/immunology , Influenza Vaccines/chemistry , Humans , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/isolation & purification
16.
Virol J ; 21(1): 82, 2024 04 09.
Article in English | MEDLINE | ID: mdl-38589848

ABSTRACT

Influenza and SARS-CoV-2 are two major respiratory pathogens that cocirculate in humans and cause serious illness with the potential to exacerbate disease in the event of co-infection. To develop a bivalent vaccine, capable of protecting against both infections, we inserted the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein into hemagglutinin (HA) molecule or into the open reading frame of the truncated nonstructural protein 1 (NS1) of live attenuated influenza vaccine (LAIV) virus and assessed phenotypic characteristics of the rescued LAIV-RBD viruses, as well as their immunogenicity in mouse and Syrian hamster animal models. A panel of 9 recombinant LAIV-RBD viruses was rescued using the A/Leningrad/17 backbone. Notably, only two variants with RBD insertions into the HA molecule could express sufficient quantities of RBD protein in infected MDCK cells. Intranasal immunization of mice induced high levels of anti-influenza antibody responses in all chimeric LAIV-RBD viruses, which was comparable to the LAIV virus vector. The RBD-specific antibody responses were most pronounced in the variant expressing RBD194 fragment as a chimeric HA protein. This candidate was further tested in Syrian hamsters and was shown to be immunogenic and capable of protecting animals against both infections.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Spike Glycoprotein, Coronavirus , Humans , Animals , Mice , Influenza Vaccines/genetics , SARS-CoV-2/genetics , COVID-19 Vaccines , Vaccines, Combined , Antibodies, Viral , Hemagglutinins
17.
Virus Res ; 345: 199378, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38643857

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a significant threat to human health globally. It is crucial to develop a vaccine to reduce the effect of the virus on public health, economy, and society and regulate the transmission of SARS-CoV-2. Influenza B virus (IBV) can be used as a vector that does not rely on the current circulating influenza A strains. In this study, we constructed an IBV-based vector vaccine by inserting a receptor-binding domain (RBD) into a non-structural protein 1 (NS1)-truncated gene (rIBV-NS110-RBD). Subsequently, we assessed its safety, immunogenicity, and protective efficacy against SARS-CoV-2 in mice, and observed that it was safe in a mouse model. Intranasal administration of a recombinant rIBV-NS110-RBD vaccine induced high levels of SARS-CoV-2-specific IgA and IgG antibodies and T cell-mediated immunity in mice. Administering two doses of the intranasal rIBV-NS110-RBD vaccine significantly reduced the viral load and lung damage in mice. This novel IBV-based vaccine offers a novel approach for controlling the SARS-CoV-2 pandemic.


Subject(s)
Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Influenza B virus , Mice, Inbred BALB C , SARS-CoV-2 , Vaccines, Attenuated , Animals , Mice , Influenza B virus/immunology , Influenza B virus/genetics , Antibodies, Viral/blood , Antibodies, Viral/immunology , SARS-CoV-2/immunology , SARS-CoV-2/genetics , COVID-19/prevention & control , COVID-19/immunology , Vaccines, Attenuated/immunology , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/genetics , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Female , Administration, Intranasal , Humans , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/genetics , Immunoglobulin A/blood , Disease Models, Animal , Immunoglobulin G/blood , Viral Load , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology
18.
Front Immunol ; 15: 1277447, 2024.
Article in English | MEDLINE | ID: mdl-38633245

ABSTRACT

Modified vaccinia virus Ankara (MVA) has been widely tested in clinical trials as recombinant vector vaccine against infectious diseases and cancers in humans and animals. However, one biosafety concern about the use of MVA vectored vaccine is the potential for MVA to recombine with naturally occurring orthopoxviruses in cells and hosts in which it multiplies poorly and, therefore, producing viruses with mosaic genomes with altered genetic and phenotypic properties. We previously conducted co-infection and superinfection experiments with MVA vectored influenza vaccine (MVA-HANP) and a feline Cowpox virus (CPXV-No-F1) in Vero cells (that were semi-permissive to MVA infection) and showed that recombination occurred in both co-infected and superinfected cells. In this study, we selected the putative recombinant viruses and performed genomic characterization of these viruses. Some putative recombinant viruses displayed plaque morphology distinct of that of the parental viruses. Our analysis demonstrated that they had mosaic genomes of different lengths. The recombinant viruses, with a genome more similar to MVA-HANP (>50%), rescued deleted and/or fragmented genes in MVA and gained new host ranges genes. Our analysis also revealed that some MVA-HANP contained a partially deleted transgene expression cassette and one recombinant virus contained part of the transgene expression cassette similar to that incomplete MVA-HANP. The recombination in co-infected and superinfected Vero cells resulted in recombinant viruses with unpredictable biological and genetic properties as well as recovery of delete/fragmented genes in MVA and transfer of the transgene into replication competent CPXV. These results are relevant to hazard characterization and risk assessment of MVA vectored biologicals.


Subject(s)
Coinfection , Influenza Vaccines , Superinfection , Chlorocebus aethiops , Animals , Cats , Humans , Influenza Vaccines/genetics , Cowpox virus/genetics , Vero Cells , Vaccinia virus , Vaccines, Synthetic/genetics , Whole Genome Sequencing
19.
Hum Vaccin Immunother ; 20(1): 2336357, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38619079

ABSTRACT

Influenza remains a public health threat, partly due to suboptimal effectiveness of vaccines. One factor impacting vaccine effectiveness is strain mismatch, occurring when vaccines no longer match circulating strains due to antigenic drift or the incorporation of inadvertent (eg, egg-adaptive) mutations during vaccine manufacturing. In this review, we summarize the evidence for antigenic drift of circulating viruses and/or egg-adaptive mutations occurring in vaccine strains during the 2011-2020 influenza seasons. Evidence suggests that antigenic drift led to vaccine mismatch during four seasons and that egg-adaptive mutations caused vaccine mismatch during six seasons. These findings highlight the need for alternative vaccine development platforms. Recently, vaccines based on mRNA technology have demonstrated efficacy against SARS-CoV-2 and respiratory syncytial virus and are under clinical evaluation for seasonal influenza. We discuss the potential for mRNA vaccines to address strain mismatch, as well as new multi-component strategies using the mRNA platform to improve vaccine effectiveness.


Subject(s)
Influenza Vaccines , Influenza, Human , Respiratory Syncytial Virus, Human , Humans , Influenza Vaccines/genetics , mRNA Vaccines , Seasons , Influenza, Human/prevention & control , RNA, Messenger/genetics
20.
Nat Commun ; 15(1): 2546, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38514647

ABSTRACT

Influenza virus continuously evolves to escape human adaptive immunity and generates seasonal epidemics. Therefore, influenza vaccine strains need to be updated annually for the upcoming flu season to ensure vaccine effectiveness. We develop a computational approach, beth-1, to forecast virus evolution and select representative virus for influenza vaccine. The method involves modelling site-wise mutation fitness. Informed by virus genome and population sero-positivity, we calibrate transition time of mutations and project the fitness landscape to future time, based on which beth-1 selects the optimal vaccine strain. In season-to-season prediction in historical data for the influenza A pH1N1 and H3N2 viruses, beth-1 demonstrates superior genetic matching compared to existing approaches. In prospective validations, the model shows superior or non-inferior genetic matching and neutralization against circulating virus in mice immunization experiments compared to the current vaccine. The method offers a promising and ready-to-use tool to facilitate vaccine strain selection for the influenza virus through capturing heterogeneous evolutionary dynamics over genome space-time and linking molecular variants to population immune response.


Subject(s)
Influenza Vaccines , Influenza, Human , Humans , Animals , Mice , Influenza Vaccines/genetics , Influenza A Virus, H3N2 Subtype/genetics , Hemagglutinin Glycoproteins, Influenza Virus , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Mutation , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL