Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.928
Filter
2.
Virulence ; 15(1): 2395837, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39240070

ABSTRACT

Vaccination is crucial for the prevention and mitigation of avian influenza infections in China. The inactivated H7N9 vaccine, when administered to poultry, significantly lowers the risk of infection among both poultry and humans, while also markedly decreasing the prevalence of H7N9 detections. Highly pathogenic (HP) H7N9 viruses occasionally appear, whereas their low pathogenicity (LP) counterparts have been scarcely detected since 2018. However, these contributing factors remain poorly understood. We conducted an exploratory investigation of the mechanics via the application of comprehensive bioinformatic approaches. We delineated the Yangtze River Delta (YRD) H7N9 lineage into 5 clades (YRD-A to E). Our findings highlight the emergence and peak occurrence of the LP H7N9-containing YRD-E clade during the 5th epidemic wave in China's primary poultry farming areas. A more effective control of LP H7N9 through vaccination was observed compared to that of its HP H7N9 counterpart. YRD-E exhibited a tardy evolutionary trajectory, denoted by the conservation of its genetic and antigenic variation. Our analysis of YRD-E revealed only minimal amino acid substitutions along its phylogenetic tree and a few selective sweep mutations since 2016. In terms of epidemic fitness, the YRD-E was measured to be lower than that of the HP variants. Collectively, these findings underscore the conserved evolutionary patterns distinguishing the YRD-E. Given the conservation presented in its evolutionary patterns, the YRD-E LP H7N9 is hypothesized to be associated with a reduction following the mass vaccination in a relatively short period owing to its lower probability of antigenic variation that might affect vaccine efficiency.


Subject(s)
Evolution, Molecular , Influenza A Virus, H7N9 Subtype , Influenza Vaccines , Influenza in Birds , Phylogeny , Poultry , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/immunology , Influenza A Virus, H7N9 Subtype/classification , Influenza A Virus, H7N9 Subtype/pathogenicity , Animals , Influenza in Birds/virology , Influenza in Birds/prevention & control , China/epidemiology , Influenza Vaccines/immunology , Influenza Vaccines/genetics , Poultry/virology , Mass Vaccination , Influenza, Human/prevention & control , Influenza, Human/virology , Influenza, Human/epidemiology , Poultry Diseases/virology , Poultry Diseases/prevention & control , Humans , Chickens/virology , Antigenic Variation/genetics
3.
Poult Sci ; 103(10): 104135, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39106695

ABSTRACT

During poultry immunization, antibiotics are typically added to inactivated oil-adjuvant avian influenza (AI) vaccines. Here, we evaluated the effects of adding ceftiofur, a third-generation cephalosporin, to an AI vaccine on vaccine stability and structure and on chick growth, immune efficacy, blood concentrations, biochemical and immunological indices, and gut microbiota. The results demonstrated that neither aqueous ceftiofur sodium nor ceftiofur hydrochloride oil emulsion formed a stable mixture with the vaccine. Adding ceftiofur formulations, particularly ceftiofur hydrochloride, at >4% significantly destabilized the vaccine's water-in-oil structures. Adding ceftiofur also increased vaccine malabsorption at the injection site; specifically, adding ceftiofur hydrochloride reduced H5N8 and H7N9 antibody titers after the first immunization (P < 0.05) and H7N9 antibody titers after the second immunization (P < 0.01). Serum drug concentrations did not differ significantly between the groups with ceftiofur sodium and hydrochloride addition. Ceftiofur addition increased postvaccination chick weight loss; compared with the vaccine alone, ceftiofur sodium-vaccine mixture increased chick weight significantly (P < 0.05). Ceftiofur addition also increased stress indices and reduced antioxidant capacity significantly (P < 0.05 or P < 0.01). Vaccination-related immune stress reduced gut microbiota diversity in chicks; ceftiofur addition reversed this change. AI vaccine immunization significantly reduced the relative abundance of Lactobacillus and Muribaculaceae but significantly increased that of Bacteroides and Eubacterium coprostanoligenes group. Ceftiofur addition restored the gut microbiota structure; in particular, ceftiofur hydrochloride addition significantly increased the abundance of the harmful gut microbes Escherichia-Shigella and Enterococcus, whereas ceftiofur sodium addition significantly reduced it. The changes in gut microbiota led to alterations in metabolic pathways related to membrane transport, amino acids, and carbohydrates. In conclusion, adding ceftiofur to the AI vaccine had positive effects on chick growth and gut microbiota modulation; however, different antibiotic concentrations and formulations may disrupt vaccine structure, possibly affecting vaccine safety and immunization efficacy. Thus, the addition of antibiotics to oil-adjuvant vaccines is associated with a risk of immunization failure and should be applied to poultry with caution.


Subject(s)
Anti-Bacterial Agents , Cephalosporins , Chickens , Influenza Vaccines , Influenza in Birds , Animals , Cephalosporins/administration & dosage , Cephalosporins/pharmacology , Influenza in Birds/prevention & control , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Influenza Vaccines/administration & dosage , Influenza Vaccines/immunology , Poultry Diseases/prevention & control , Vaccines, Inactivated/administration & dosage , Gastrointestinal Microbiome/drug effects , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/administration & dosage
4.
Emerg Microbes Infect ; 13(1): 2399268, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39207215

ABSTRACT

High pathogenicity avian influenza (HPAI) virus H5N1 first emerged in Bangladesh in 2007. Despite the use of vaccines in chickens since 2012 to control HPAI, HPAI H5Nx viruses have continued to infect poultry, and wild birds, resulting in notable mass mortalities in house crows (Corvus splendens). The first HPAI H5Nx viruses in Bangladesh belonged to clade 2.2.2, followed by clade 2.3.4.2 and 2.3.2.1 viruses in 2011. After the implementation of chicken vaccination in 2012, these viruses were mostly replaced by clade 2.3.2.1a viruses and more recently clade 2.3.4.4b and h viruses. In this study, we reconstruct the phylogenetic history of HPAI H5Nx viruses in Bangladesh to evaluate the role of major host species in the maintenance and evolution of HPAI H5Nx virus in Bangladesh and reveal the role of heavily impacted crows in virus epidemiology. Epizootic waves caused by HPAI H5N1 and H5N6 viruses amongst house crows occurred annually in winter. Bayesian phylodynamic analysis of clade 2.3.2.1a revealed frequent bidirectional viral transitions between domestic ducks, chickens, and house crows that was markedly skewed towards ducks; domestic ducks might be the source, or reservoir, of HPAI H5Nx in Bangladesh, as the number of viral transitions from ducks to chickens and house crows was by far more numerous than the other transitions. Our results suggest viral circulation in domestic birds despite vaccination, with crow epizootics acting as a sentinel. The vaccination strategy needs to be updated to use more effective vaccinations, assess vaccine efficacy, and extension of vaccination to domestic ducks, the key reservoir.


Subject(s)
Chickens , Disease Reservoirs , Ducks , Influenza in Birds , Phylogeny , Animals , Influenza in Birds/virology , Influenza in Birds/epidemiology , Influenza in Birds/prevention & control , Ducks/virology , Bangladesh/epidemiology , Disease Reservoirs/virology , Chickens/virology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/classification , Influenza A Virus, H5N1 Subtype/isolation & purification , Crows/virology , Animals, Wild/virology , Influenza A virus/genetics , Influenza A virus/pathogenicity , Influenza A virus/classification , Influenza A virus/immunology , Poultry Diseases/virology , Poultry Diseases/epidemiology , Poultry Diseases/prevention & control
5.
Microb Pathog ; 195: 106871, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39163919

ABSTRACT

The H9N2 avian influenza virus (AIV) is spreading worldwide. Presence of H9N2 virus tends to increase the chances of infection with other pathogens which can lead to more serious economic losses. In a previous study, a regulated delayed lysis Salmonella vector was used to deliver a DNA vaccine named pYL233 encoding M1 protein, mosaic HA protein and chicken GM-CSF adjuvant. To further increase its efficiency, chitosan as a natural adjuvant was applied in this study. The purified plasmid pYL233 was coated with chitosan to form a DNA containing nanoparticles (named CS233) by ionic gel method and immunized by intranasal boost immunization in birds primed by oral administration with Salmonella strain. The CS233 DNA nanoparticle has a particle size of about 150 nm, with an encapsulation efficiency of 93.2 ± 0.12 % which protected the DNA plasmid from DNase I digestion and could be stable for a period of time at 37°. After intranasal boost immunization, the CS233 immunized chickens elicited higher antibody response, elevated CD4+ T cells and CD8+ T cells activation and increased T-lymphocyte proliferation, as well as increased productions of IL-4 and IFN-γ. After challenge, chickens immunized with CS233 resulted in the lowest levels of pulmonary virus titer and viral shedding as compared to the other challenge groups. The results showed that the combination of intranasal immunization with chitosan-coated DNA vaccine and oral immunization with regulatory delayed lytic Salmonella strain could enhance the immune response and able to provide protection against H9N2 challenge.


Subject(s)
Administration, Intranasal , Antibodies, Viral , Chickens , Chitosan , Immunity, Cellular , Influenza A Virus, H9N2 Subtype , Influenza Vaccines , Influenza in Birds , Plasmids , Vaccines, DNA , Virus Shedding , Animals , Influenza A Virus, H9N2 Subtype/immunology , Influenza A Virus, H9N2 Subtype/genetics , Vaccines, DNA/immunology , Vaccines, DNA/administration & dosage , Influenza in Birds/prevention & control , Influenza in Birds/immunology , Chickens/immunology , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Antibodies, Viral/blood , Plasmids/genetics , Nanoparticles , Immunization, Secondary , CD8-Positive T-Lymphocytes/immunology , Adjuvants, Immunologic/administration & dosage , Interferon-gamma , Interleukin-4 , Adjuvants, Vaccine , Poultry Diseases/prevention & control , Poultry Diseases/immunology , Poultry Diseases/virology , CD4-Positive T-Lymphocytes/immunology , Salmonella/immunology , Salmonella/genetics
6.
Int J Mol Sci ; 25(15)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39126117

ABSTRACT

Avian influenza virus has been long considered the main threat for a future pandemic. Among the possible avian influenza virus subtypes, A(H5N1) clade 2.3.4.4b is becoming enzootic in mammals, representing an alarming step towards a pandemic. In particular, genotype B3.13 has recently caused an outbreak in US dairy cattle. Since pandemic preparedness is largely based on the availability of prepandemic candidate vaccine viruses, in this review we will summarize the current status of the enzootics, and challenges for H5 vaccine manufacturing and delivery.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza Vaccines , Influenza in Birds , Animals , Influenza Vaccines/immunology , Humans , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/genetics , Influenza in Birds/prevention & control , Influenza in Birds/virology , Influenza in Birds/epidemiology , Influenza, Human/prevention & control , Influenza, Human/epidemiology , Influenza, Human/immunology , Influenza, Human/virology , Birds/virology , Pandemics/prevention & control
8.
Protein Expr Purif ; 223: 106541, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38971212

ABSTRACT

Avian influenza poses a significant global health threat, with the potential for widespread pandemics and devastating consequences. Hemagglutinin (HA), a critical surface glycoprotein of influenza viruses, plays a pivotal role in viral entry and serves as a primary target for subunit vaccine development. In this study, we successfully cloned, expressed, and purified hemagglutinin from the circulating strain of H5N1 influenza virus using a robust molecular biology approach. The cloning process involved insertion of the synthetic HA gene into the pET21b vector, confirmed through double digestion and sequencing. SDS-PAGE analysis confirmed the presence of the expected 60 kDa protein band post-induction. Following expression, the protein was subjected to purification via Ni-NTA affinity chromatography, yielding pure protein fractions. Native PAGE analysis confirmed the protein's oligomeric forms, essential for optimal antigenicity. Western blot analysis further validated protein identity using anti-His and anti-HA antibodies. MALDI-TOF analysis confirmed the protein's sequence integrity, while hemagglutination assay demonstrated its biological activity in binding to N-acetyl neuraminic acid. These findings underscore the potential of recombinant hemagglutinin as a valuable antigen for diagnosis and biochemical assays as well as for vaccine development against avian influenza. In conclusion, this study represents a critical guide for bacterial production of H5N1 HA, which can be a cost-effective and simpler strategy compared to mammalian protein expression. Further research into optimizing vaccine candidates and production methods will be essential in combating the ongoing threat of avian influenza pandemics.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H5N1 Subtype , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/biosynthesis , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Animals , Escherichia coli/genetics , Escherichia coli/metabolism , Hemagglutination , Influenza in Birds/prevention & control , Influenza in Birds/virology , Influenza in Birds/immunology , Influenza in Birds/genetics , Cloning, Molecular , Gene Expression , Protein Multimerization , Humans , Birds
9.
Can J Vet Res ; 88(3): 94-98, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38988336

ABSTRACT

Cases of high pathogenicity avian influenza (HPAI) in Canada are upon us again and with reports of infection in US dairy cattle and a dairy farmer in the United States, concern has been raised. Although panic isn't helpful, this heightened level of concern is appropriate, given that reports of human infections with the H5N1 virus often indicate high mortality rates. These can range from 14 to 50%. The current devastating impact of the virus on the poultry industry, as well as its propensity to mutate are also reasons for concern. At the same time, HPAI provides an opportunity for the poultry and livestock industries to align and organize coherently for the management of all zoonotic diseases and other industry issues. To manage HPAI more effectively, it is essential to align all stakeholders under Outbreak Response Best Practices using a formal Quality Management System (QMS). The objective of this article is to describe this approach with examples drawn from management of the Walkerton waterborne disease crisis. We urge the veterinary profession to rise to the challenge of HPAI and use it as a context in which to align more coherently with national stakeholders for the prevention and management of all priority issues within the areas of Agri-food and Public Health.


Les cas de grippe aviaire hautement pathogène (HPAI) sont de nouveau aux portes du Canada et, avec les rapports d'infection chez des bovins laitiers américains et chez un producteur laitier aux États-Unis, des inquiétudes ont été soulevées. Même si la panique n'aide pas, ce niveau d'inquiétude accru est approprié, étant donné que les rapports d'infections humaines par le virus H5N1 indiquent souvent des taux de mortalité élevés. Ceux-ci peuvent aller de 14 à 50 %. L'impact dévastateur actuel du virus sur l'industrie avicole, ainsi que sa propension à muter sont également des motifs d'inquiétude. Dans un même temps, l'HPAI offre aux secteurs de la volaille et de l'élevage l'opportunité de s'associer et de s'organiser de manière cohérente pour la gestion de toutes les maladies zoonotiques et d'autres problèmes industriels. Pour gérer l'HPAI plus efficacement, il est essentiel d'aligner toutes les parties prenantes sur les meilleures pratiques de réponse aux épidémies en utilisant un système de gestion de la qualité (QMS) formel. L'objectif de cet article est de décrire cette approche avec des exemples tirés de la gestion de la crise des maladies d'origine hydrique à Walkerton. Nous exhortons la profession vétérinaire à relever le défi de l'HPAI et à l'utiliser comme un contexte dans lequel s'aligner de manière plus cohérente avec les parties prenantes nationales pour la prévention et la gestion de toutes les questions prioritaires dans les domaines de l'agroalimentaire et de la santé publique.(Traduit par Docteur Serge Messier).


Subject(s)
Disease Outbreaks , Influenza in Birds , Animals , Influenza in Birds/epidemiology , Influenza in Birds/prevention & control , Influenza in Birds/virology , Disease Outbreaks/veterinary , Disease Outbreaks/prevention & control , Canada/epidemiology , Humans , Influenza A Virus, H5N1 Subtype/pathogenicity , Birds
10.
PLoS One ; 19(7): e0307100, 2024.
Article in English | MEDLINE | ID: mdl-39012858

ABSTRACT

The outbreak of clade 2.3.4.4b H5 highly pathogenic avian influenza (HPAI) in North America that started in 2021 has increased interest in applying vaccination as a strategy to help control and prevent the disease in poultry. Two commercially available vaccines based on the recombinant herpes virus of turkeys (rHVT) vector were tested against a recent North American clade 2.3.4.4b H5 HPAI virus isolate: A/turkey/Indiana/22-003707-003/2022 H5N1 in specific pathogen free white leghorn (WL) chickens and commercial broiler chickens. One rHVT-H5 vaccine encodes a hemagglutinin (HA) gene designed by the computationally optimized broadly reactive antigen method (COBRA-HVT vaccine). The other encodes an HA gene of a clade 2.2 virus (2.2-HVT vaccine). There was 100% survival of both chicken types COBRA-HVT vaccinated groups and in the 2.2-HVT vaccinated groups there was 94.8% and 90% survival of the WL and broilers respectively. Compared to the 2.2-HVT vaccinated groups, WL in the COBRA-HVT vaccinated group shed significantly lower mean viral titers by the cloacal route and broilers shed significantly lower titers by the oropharyngeal route than broilers. Virus titers detected in oral and cloacal swabs were otherwise similar among both vaccine groups and chicken types. To assess antibody-based tests to identify birds that have been infected after vaccination (DIVA-VI), sera collected after the challenge were tested with enzyme-linked lectin assay-neuraminidase inhibition (ELLA-NI) for N1 neuraminidase antibody detection and by commercial ELISA for detection of antibodies to the NP protein. As early as 7 days post challenge (DPC) 100% of the chickens were positive by ELLA-NI. ELISA was less sensitive with a maximum of 75% positive at 10DPC in broilers vaccinated with 2.2-HVT. Both vaccines provided protection from challenge to both types of chickens and ELLA-NI was sensitive at identifying antibodies to the challenge virus therefore should be evaluated further for DIVA-VI.


Subject(s)
Chickens , Influenza A Virus, H5N1 Subtype , Influenza Vaccines , Influenza in Birds , Animals , Chickens/virology , Chickens/immunology , Influenza in Birds/prevention & control , Influenza in Birds/virology , Influenza in Birds/immunology , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/genetics , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Antibodies, Viral/immunology , Antibodies, Viral/blood , North America , Vaccination , Poultry Diseases/prevention & control , Poultry Diseases/virology , Poultry Diseases/immunology , Herpesvirus 1, Meleagrid/immunology , Herpesvirus 1, Meleagrid/genetics
11.
Poult Sci ; 103(9): 103988, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38970848

ABSTRACT

Inactivated vaccines play an important role in preventing and controlling the epidemic caused by the H5 subtype avian influenza virus. The vaccine strains are updated in response to alterations in surface protein antigens, while an avian-derived vaccine internal backbone with a high replicative capacity in chicken embryonated eggs and MDCK cells is essential for vaccine development. In this study, we constructed recombinant viruses using the clade 2.3.4.4d A/chicken/Jiangsu/GY5/2017(H5N6, CkG) strain as the surface protein donor and the clade 2.3.4.4b A/duck/Jiangsu/84512/2017(H5N6, Dk8) strain with high replicative ability as an internal donor. After optimization, the integration of the M gene from the CkG into the internal genes from Dk8 (8GM) was selected as the high-yield vaccine internal backbone, as the combination improved the hemagglutinin1/nucleoprotein (HA1/NP) ratio in recombinant viruses. The r8GMΔG with attenuated hemagglutinin and neuraminidase from the CkG exhibited high-growth capacity in both chicken embryos and MDCK cell cultures. The inactivated r8GMΔG vaccine candidate also induced a higher hemagglutination inhibition antibody titer and microneutralization titer than the vaccine strain using PR8 as the internal backbone. Further, the inactivated r8GMΔG vaccine candidate provided complete protection against wild-type strain challenge. Therefore, our study provides a high-yield, easy-to-cultivate candidate donor as an internal gene backbone for vaccine development.


Subject(s)
Chickens , Influenza Vaccines , Influenza in Birds , Animals , Influenza Vaccines/immunology , Dogs , Madin Darby Canine Kidney Cells , Chick Embryo , Influenza in Birds/prevention & control , Influenza A virus/immunology , Vaccines, Inactivated/immunology , Poultry Diseases/prevention & control , Poultry Diseases/virology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology
13.
Prev Vet Med ; 230: 106260, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38976955

ABSTRACT

Outbreaks of highly pathogenic avian influenza (HPAI) have resulted in severe economic impact for national governments and poultry industries globally and in Sweden in recent years. Veterinary authorities can enforce prevention measures, e.g. mandatory indoor housing of poultry, in HPAI high-risk areas. The aim of this study was to conduct a spatiotemporal mapping of the risk of introduction of highly pathogenic avian influenza virus (HPAIV) to Swedish poultry from wild birds, utilising existing data sources. A raster calculation method was used to assess the spatiotemporal risk of introduction of HPAIV to Swedish poultry. The environmental infectious pressure of HPAIV was first calculated in each 5 km by 5 km cell using four risk factors: density of selected species of wild birds, air temperature, presence of agriculture as land cover and presence of HPAI in wild birds based on data from October 2016-September 2021. The relative importance of each risk factor was weighted based on opinion of experts. The estimated environmental infectious pressure was then multiplied with poultry population density to obtain risk values for risk of introduction of HPAIV to poultry. The results showed a large variation in risk both on national and local level. The counties of Skåne and Östergötland particularly stood out regarding environmental infectious pressure, risk of introduction to poultry and detected outbreaks of HPAI. On the other hand, there were counties, identified as having higher risk of introduction to poultry which never experienced any outbreaks. A possible explanation is the variation in poultry production types present in different areas of Sweden. These results indicate that the national and local variation in risk for HPAIV introduction to poultry in Sweden is high, and this would support more targeted compulsory prevention measures than what has previously been employed in Sweden. With the current and evolving HPAI situation in Europe and on the global level, there is a need for continuous updates to the risk map as the virus evolves and circulates in different wild bird species. The study also identified areas of improvement, in relation to data use and data availability, e.g. improvements to poultry registers, inclusion of citizen reported mortality in wild birds, data from standardised wild bird surveys, wild bird migration data as well as results from ongoing risk-factor studies.


Subject(s)
Influenza in Birds , Poultry Diseases , Poultry , Animals , Sweden/epidemiology , Influenza in Birds/epidemiology , Influenza in Birds/virology , Influenza in Birds/prevention & control , Poultry Diseases/virology , Poultry Diseases/epidemiology , Poultry Diseases/prevention & control , Risk Factors , Disease Outbreaks/veterinary , Risk Assessment , Animals, Wild , Birds , Spatio-Temporal Analysis
14.
Sci Rep ; 14(1): 15924, 2024 07 10.
Article in English | MEDLINE | ID: mdl-38987345

ABSTRACT

Wild bird repulsion is critical in agriculture because it helps avoid agricultural food losses and mitigates the risk of avian influenza. Wild birds transmit avian influenza in poultry farms and thus cause large economic losses. In this study, we developed an automatic wild bird repellent system that is based on deep-learning-based wild bird detection and integrated with a laser rotation mechanism. When a wild bird appears at a farm, the proposed system detects the bird's position in an image captured by its detection unit and then uses a laser beam to repel the bird. The wild bird detection model of the proposed system was optimized for detecting small pixel targets, and trained through a deep learning method by using wild bird images captured at different farms. Various wild bird repulsion experiments were conducted using the proposed system at an outdoor duck farm in Yunlin, Taiwan. The statistical test results of our experimental data indicated that the proposed automatic wild bird repellent system effectively reduced the number of wild birds in the farm. The experimental results indicated that the developed system effectively repelled wild birds, with a high repulsion rate of 40.3% each day.


Subject(s)
Animals, Wild , Deep Learning , Influenza in Birds , Lasers , Animals , Influenza in Birds/prevention & control , Birds , Ducks , Taiwan
16.
ACS Infect Dis ; 10(8): 3026-3041, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-38970488

ABSTRACT

Low-pathogenic avian influenza virus (LPAIV) remains the most common subtype of type-A influenza virus that causes moderate to severe infection in poultry with significant zoonotic and pandemic potential. Due to high mutability, increasing drug resistance, and limited vaccine availability, the conventional means to prevent intra- or interspecies transmission of AIV is highly challenging. As an alternative to control AIV infections, cytokine-based approaches to augment antiviral host defense have gained significant attention. However, the selective application of cytokines is critical since unregulated expression of cytokines, particularly proinflammatory ones, can cause substantial tissue damage during acute phases of immune responses. Moreover, depending on the type of cytokine and its impact on intestinal microbiota, outcomes of cytokine-gut microflora interaction can have a critical effect on overall host defense against AIV infections. Our recent study demonstrated some prominent roles of chicken IL-17A (ChIL-17A) in regulating antiviral host responses against AIV infection, however, in an in vitro model. For more detailed insights into ChIL-17A function, in the present study, we investigated whether ChIL-17A-meditated elevated antiviral host responses can translate into effective immune protection against AIV infection in an in vivo system. Moreover, considering the role of gut health in fostering innate or local host responses, we further studied the contributory relationships between gut microbiota and host immunity against AIV infection in chickens. For this, we employed a recombinant lactic acid-producing bacterial (LAB) vector, Lactococcus lactis, expressing ChIL-17A and analyzed the in vivo functionality in chickens against an LPAIV (A/H9N2) infection. Our study delineates that mucosal delivery of rL. lactis expressing ChIL-17A triggers proinflammatory signaling cascades and can drive a positive shift in phylum Firmicutes, along with a marked decline in phylum Actinobacteriota and Proteobacteria, favoring effective antiviral host responses against AIV infection in chickens. We propose that ChIL-17A-mediated selective expansion of beneficial gut microbiota might form a healthy microbial community that augments the effective immune protection against AIV infections in chickens.


Subject(s)
Chickens , Gastrointestinal Microbiome , Influenza in Birds , Interleukin-17 , Animals , Influenza in Birds/immunology , Influenza in Birds/prevention & control , Influenza in Birds/virology , Interleukin-17/genetics , Interleukin-17/immunology , Influenza A virus/immunology , Genetic Vectors , Poultry Diseases/immunology , Poultry Diseases/prevention & control , Poultry Diseases/virology , Poultry Diseases/microbiology
17.
Int J Pharm ; 660: 124318, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38852750

ABSTRACT

Avian influenza virus subtype H9N2 has the ability to infect birds and humans, further causing significant losses to the poultry industry and even posing a great threat to human health. Oral vaccine received particular interest for preventing majority infection due to its ability to elicit both mucosal and systemic immune responses, but their development is limited by the bad gastrointestinal (GI) environment, compact epithelium and mucus barrier, and the lack of effective mucosal adjuvants. Herein, we developed the dendritic fibrous nano-silica (DFNS) grafted with Cistanche deserticola polysaccharide (CDP) nanoparticles (CDP-DFNS) as an adjuvant for H9N2 vaccine. Encouragingly, CDP-DFNS facilitated the proliferation of T and B cells, and further induced the activation of T lymphocytes in vitro. Moreover, CDP-DFNS/H9N2 significantly promoted the antigen-specific antibodies levels in serum and intestinal mucosal of chickens, indicating the good ability to elicit both systemic and mucosal immunity. Additional, CDP-DFNS facilitate the activation of CD4 + and CD8 + T cells both in spleen and intestinal mucosal, and the indexes of immune organs. This study suggested that CDP-DFNS may be a new avenue for development of oral vaccine against pathogens that are transmitted via mucosal route.


Subject(s)
Adjuvants, Immunologic , Chickens , Immunity, Mucosal , Influenza A Virus, H9N2 Subtype , Influenza Vaccines , Influenza in Birds , Nanoparticles , Polysaccharides , Silicon Dioxide , Animals , Influenza A Virus, H9N2 Subtype/immunology , Influenza A Virus, H9N2 Subtype/drug effects , Polysaccharides/administration & dosage , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/immunology , Silicon Dioxide/administration & dosage , Silicon Dioxide/chemistry , Nanoparticles/administration & dosage , Influenza Vaccines/administration & dosage , Influenza Vaccines/immunology , Immunity, Mucosal/drug effects , Influenza in Birds/prevention & control , Influenza in Birds/immunology , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/pharmacology , Administration, Oral , Intestinal Mucosa/immunology , Intestinal Mucosa/drug effects , Antibodies, Viral/blood , Antibodies, Viral/immunology
18.
Rev Med Virol ; 34(4): e2559, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38886173

ABSTRACT

The World Organization for Animal Health defines Avian Influenza Virus as a highly infectious disease caused by diverse subtypes that continue to evolve rapidly, impacting poultry species, pet birds, wild birds, non-human mammals, and occasionally humans. The effects of Avian influenza viruses have been recognised as a precursor for serious health concerns among affected birds, poultry, and human populations in the Middle East. Furthermore, low and high pathogenic avian influenza viruses lead to respiratory illness with varying severity, depending on the virus subtype (e.g., H5, H7, H9, etc.). Possible future outbreaks and endemics of newly emerging subtypes are expected to occur, as many studies have reported the emergence of novel mutations and viral subtypes. However, proper surveillance programs and biosecurity applications should be developed, and countries with incapacitated defences against such outbreaks should be encouraged to undergo complete reinstation and reinforcement in their health and research sectors. Public education regarding biosafety and virus prevention is necessary to ensure minimal spread of avian influenza endemic.


Subject(s)
Birds , Influenza A virus , Influenza in Birds , Influenza, Human , Animals , Influenza in Birds/epidemiology , Influenza in Birds/virology , Influenza in Birds/prevention & control , Influenza in Birds/transmission , Humans , Influenza, Human/prevention & control , Influenza, Human/epidemiology , Influenza, Human/virology , Mediterranean Region/epidemiology , Birds/virology , Influenza A virus/genetics , Influenza A virus/physiology , Influenza A virus/pathogenicity , Disease Outbreaks/prevention & control , Disease Outbreaks/veterinary
20.
Viruses ; 16(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38932122

ABSTRACT

In this study, we pioneered an alternative technology for manufacturing subunit influenza hemagglutinin (HA)-based vaccines. This innovative method involves harnessing the pupae of the Lepidoptera Trichoplusia ni (T. ni) as natural biofactories in combination with baculovirus vectors (using CrisBio® technology). We engineered recombinant baculoviruses encoding two versions of the HA protein (trimeric or monomeric) derived from a pandemic avian H7N1 virus A strain (A/chicken/Italy/5093/99). These were then used to infect T. ni pupae, resulting in the production of the desired recombinant antigens. The obtained HA proteins were purified using affinity chromatography, consistently yielding approximately 75 mg/L of insect extract. The vaccine antigen effectively immunized poultry, which were subsequently challenged with a virulent H7N1 avian influenza virus. Following infection, all vaccinated animals survived without displaying any clinical symptoms, while none of the mock-vaccinated control animals survived. The CrisBio®-derived antigens induced high titers of HA-specific antibodies in the vaccinated poultry, demonstrating hemagglutination inhibition activity against avian H7N1 and human H7N9 viruses. These results suggest that the CrisBio® technology platform has the potential to address major industry challenges associated with producing recombinant influenza subunit vaccines, such as enhancing production yields, scalability, and the speed of development, facilitating the global deployment of highly effective influenza vaccines.


Subject(s)
Antibodies, Viral , Chickens , Hemagglutinin Glycoproteins, Influenza Virus , Influenza Vaccines , Influenza in Birds , Pupa , Vaccines, Subunit , Animals , Influenza Vaccines/immunology , Influenza Vaccines/genetics , Influenza Vaccines/administration & dosage , Pupa/immunology , Influenza in Birds/prevention & control , Influenza in Birds/immunology , Vaccines, Subunit/immunology , Vaccines, Subunit/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Antibodies, Viral/immunology , Antibodies, Viral/blood , Influenza A Virus, H7N1 Subtype/immunology , Influenza A Virus, H7N1 Subtype/genetics , Baculoviridae/genetics , Influenza A Virus, H7N9 Subtype/immunology , Influenza A Virus, H7N9 Subtype/genetics , Humans , Vaccine Development , Moths/immunology , Pandemics/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL