Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.323
Filter
1.
Biomed Pharmacother ; 178: 117287, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39137652

ABSTRACT

This study investigates the effects of inositol (INO) supplementation on cardiac changes caused by Li in mice. The study involved 4 groups of C57BL6 mice (n=10 each): (i) mice orally administered with Li2CO3 for 8 weeks, then 4 additional weeks without (Li_group) or (ii) with INO supplementation (Li_INOdelayed_group) (total of 12 weeks); (iii) mice given Li2CO3 and INO supplementation concurrently for 12 weeks (Li+INO_group); (iv) one group left untreated (C-group). The INO was administered as a mixture of myo-inositol and d-chiro-inositol (80:1) in drinking water. The mice were characterised for heart morphology, function, electrical activity, arrhythmogenic susceptibility, and multiorgan histopathology (heart, liver and kidney). Cardiomyocyte size, protein expression of key signalling pathways related to hypertrophy, and transcription levels of ion channel subunits and hypertrophy markers were evaluated in the ventricle tissue. The study found that INO supplementation reduced the Li-induced cardiac adverse effects, including systolic impairment and increased susceptibility to arrhythmias. The positive effect on arrhythmias might be attributed to the restored expression levels of the potassium channel subunit Kv 1.5. Additionally, INO improved cardiomyocyte hypertrophy, possibly by inhibiting the Li-induced activation of the ERK1/2 signalling pathway and by restoring the normal expression level of BNP, and alleviated injury in the liver and kidney. The effect was preventive if INO supplementation was taken concurrently with Li and therapeutic if INO was administered after Li-induced cardiac impairments were established. These results provide new insights into the cardioprotective effect of INO and suggest a potential treatment approach for Li-induced cardiac disease.


Subject(s)
Dietary Supplements , Inositol , Mice, Inbred C57BL , Animals , Male , Mice , Administration, Oral , Inositol/pharmacology , Inositol/administration & dosage , Lithium/administration & dosage , Lithium/pharmacology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Myocytes, Cardiac/metabolism , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/prevention & control , Arrhythmias, Cardiac/drug therapy , Heart Diseases/chemically induced , Heart Diseases/prevention & control , Heart Diseases/pathology , Heart Diseases/drug therapy
2.
Fish Shellfish Immunol ; 153: 109850, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39179187

ABSTRACT

Increasing evidence shows the potential threat of gill rot in freshwater fish culture. F. columnare is wide-spread in aquatic environments, which can cause fish gill rot and result in high mortality and losses of fish. This study investigated the effects of myo-inositol (MI) on the proliferation, structural integrity, and different death modes of grass carp (Ctenopharyngodon idella) gill epithelial cells, as well as its possible mechanism. 30 mg/L MI up-regulated CCK8 OD value and the protein level of solute carrier family 5A 3 (SLC5A3), and down-regulated the reactive oxygen species (ROS) content in gill cells and lactate dehydrogenase (LDH) release in the culture medium (P < 0.05). MI up-regulated the protein level of Beclin1, the protein level and fluorescence expression of microtubule-associated protein light chain 3B (LC3B) and down-regulated the protein level of sequestosome-1 (SQSTM1, also called p62) (P < 0.05). MI down-regulated the protein levels of Cysteine aspartate protease-1 (caspase-1), Gasdermin E (GSDME) and Cleaved interleukin 1 beta (IL-1ß) (P < 0.05). MI up-regulated the protein level of caspase-8 (P < 0.05), but had no effect on apoptosis (P > 0.05). MI down-regulated the mRNA expressions and protein levels of tumor necrosis factor α (tnfα), TNF receptor 1 (tnfr1), receptor interacting protein 1 (ripk1), receptor interacting protein 3 (ripk3) and mixed lineage kinase domain-like protein (mlkl), and reduce the ratio of p-MLKL/MLKL (P < 0.05). The addition of MI or necrosulfonamide (NSA) alone, or the addition of MI after induction of necroptosis, significantly up-regulated the cell activity and the protein level of SLC5A3 in gill cells, and significantly reduced the LDH release in the culture medium and the intracellular ROS content, the number of necroptosis cells, the protein expression of TNFα, TNFR1 and RIPK1, and the ratio of p-RIPK3/RIPK3 and p-MLKL/MLKL (P < 0.05). It indicated MI induce autophagy may relate to Beclin1/LC3/p62 signaling pathway, inhibits pyroptosis may attribute to Caspase-1/GSDMD/IL-1ß signaling pathway, and inhibits necroptosis via MLKL signaling pathway. However, MI had no effect on apoptosis.


Subject(s)
Carps , Fish Diseases , Gills , Inositol , Animals , Carps/immunology , Gills/drug effects , Fish Diseases/immunology , Inositol/pharmacology , Cell Death/drug effects , Fish Proteins/genetics
3.
Cells ; 13(14)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39056753

ABSTRACT

Androgen excess is a key feature of several clinical phenotypes of polycystic ovary syndrome (PCOS). However, the presence of FSH receptor (FSHR) and aromatase (CYP19A1) activity responses to physiological endocrine stimuli play a critical role in the pathogenesis of PCOS. Preliminary data suggest that myo-Inositol (myo-Ins) and D-Chiro-Inositol (D-Chiro-Ins) may reactivate CYP19A1 activity. We investigated the steroidogenic pathway of Theca (TCs) and Granulosa cells (GCs) in an experimental model of murine PCOS induced in CD1 mice exposed for 10 weeks to a continuous light regimen. The effect of treatment with different combinations of myo-Ins and D-Chiro-Ins on the expression of Fshr, androgenic, and estrogenic enzymes was analyzed by real-time PCR in isolated TCs and GCs and in ovaries isolated from healthy and PCOS mice. Myo-Ins and D-Chiro-Ins, at a ratio of 40:1 at pharmacological and physiological concentrations, positively modulate the steroidogenic activity of TCs and the expression of Cyp19a1 and Fshr in GCs. Moreover, in vivo, inositols (40:1 ratio) significantly increase Cyp19a1 and Fshr. These changes in gene expression are mirrored by modifications in hormone levels in the serum of treated animals. Myo-Ins and D-Chiro-Ins in the 40:1 formula efficiently rescued PCOS features by up-regulating aromatase and FSHR levels while down-regulating androgen excesses produced by TCs.


Subject(s)
Aromatase , Disease Models, Animal , Inositol , Ovary , Polycystic Ovary Syndrome , Receptors, FSH , Female , Animals , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/pathology , Polycystic Ovary Syndrome/drug therapy , Inositol/pharmacology , Mice , Aromatase/metabolism , Aromatase/genetics , Receptors, FSH/metabolism , Receptors, FSH/genetics , Ovary/metabolism , Ovary/drug effects , Ovary/pathology , Granulosa Cells/metabolism , Granulosa Cells/drug effects , Theca Cells/metabolism , Theca Cells/drug effects , Steroids/biosynthesis
4.
J Biosci ; 492024.
Article in English | MEDLINE | ID: mdl-39046035

ABSTRACT

Trehalose serves as a primary circulatory sugar in insects which is crucial in energy metabolism and stress recovery. It is hydrolyzed into two glucose molecules by trehalase. Silencing or inhibiting trehalase results in reduced fitness, developmental defects, and insect mortality. Despite its importance, the molecular response of insects to trehalase inhibition is not known. Here, we performed transcriptomic analyses of Helicoverpa armigera treated with validamycin A (VA), a trehalase inhibitor. VA ingestion resulted in increased mortality, developmental delay, and reduced ex vivo trehalase activity. Pathway enrichment and gene ontology analyses suggest that key genes involved in carbohydrate, protein, fatty acid, and mitochondria-related metabolisms are deregulated. The activation of protein and fat degradation may be necessary to fulfil energy requirements, evidenced by the dysregulated expression of critical genes in these metabolisms. Co-expression analysis supports the notion that trehalase inhibition leads to putative interaction with key regulators of other pathways. Metabolomics correlates with transcriptomics to show reduced levels of key energy metabolites. VA generates an energy-deficient condition, and insects activate alternate pathways to facilitate the energy demand. Overall, this study provides insights into the molecular mechanisms underlying the response of insects to trehalase inhibition and highlights potential targets for insect control.


Subject(s)
Energy Metabolism , Trehalase , Animals , Energy Metabolism/drug effects , Energy Metabolism/genetics , Gene Expression Profiling , Helicoverpa armigera , Inositol/pharmacology , Inositol/metabolism , Inositol/analogs & derivatives , Insect Proteins/genetics , Insect Proteins/metabolism , Larva , Transcriptome/genetics , Trehalase/metabolism , Trehalase/genetics , Trehalase/antagonists & inhibitors , Trehalose/metabolism
5.
Nutrients ; 16(13)2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38999746

ABSTRACT

INTRODUCTION: Myo-inositol (MI) is the most abundant inositol found in nature. To date MI supplementation is reported to be effective in the treatment of polycystic ovary syndrome, it is also suggested to alleviate the symptoms of diabetes and neurodegenerative disorders, but to date no statistically significant effects of inositol on depressive and anxiety symptoms were proven. In the study of anxiolytic effects in zebrafish, we often use the thigmotaxis index measuring the ratio of the amount of time the animal spends near the walls compared to the entire arena. AIM: The objective of this paper was to examine the effect of MI on zebrafish embryos' locomotor activity, as well as its potential anxiolytic activity in zebrafish larvae. MATERIAL AND METHODS: In the first part of the experiment, the embryos were incubated with 5, 10, 20, and 40 mg/mL MI. 1-day post fertilization, embryo mobility was evaluated and burst activity was calculated. In the next part of the study, the behavior of 5-day-old larvae was tested. RESULTS: Tests on embryo movement showed an increase in burst activity in the MI group at concentrations of 40 mg/mL (p < 0.0001) and a slight decrease in the group at concentrations of 10 mg/mL (p < 0.05). MI in the light/dark challenge had no impact on the thigmotaxis index. CONCLUSIONS: MI was shown to not affect stress reduction in zebrafish larvae. Further research on the potential of MI and other stereoisomers is needed.


Subject(s)
Anti-Anxiety Agents , Behavior, Animal , Inositol , Zebrafish , Animals , Inositol/pharmacology , Inositol/administration & dosage , Anti-Anxiety Agents/pharmacology , Behavior, Animal/drug effects , Embryo, Nonmammalian/drug effects , Larva/drug effects , Locomotion/drug effects , Anxiety/drug therapy
6.
J Agric Food Chem ; 72(25): 14466-14478, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38875577

ABSTRACT

d-Pinitol (DP) is primarily found in Vigna sinensis, which has been shown to have hypoglycemic and protective effects on target organs. However, the mechanism of DP in treating diabetic sarcopenia (DS) is still unclear. To explore the underlying mechanism of DS and the protective targets of DP by high-throughput analysis of 16S rRNA gene, metabolome, and the proteome. Streptozotocin-induced SAMP8 mice were intragastrically administrated DP (150 mg/kg) for 8 weeks. Fecal 16S rRNA gene sequencing and gastrocnemius muscle metabolomic and proteomic analyses were completed to investigate the gut-muscle axis interactions. DP significantly alleviated the muscle atrophy in diabetic mice. Dysfunction of the gut microbiota was observed in the DS mice. DP significantly reduced the Parabacteroides, Akkermansia, and Enterobacteriaceae, while it increased Lachnospiraceae_NK4A136. Metabolome and proteome revealed that 261 metabolites and 626 proteins were significantly changed in the gastrocnemius muscle of diabetic mice. Among these, DP treatment restored 44 metabolites and 17 proteins to normal levels. Functional signaling pathways of DP-treated diabetic mice included nucleotide metabolism, ß-alanine, histidine metabolism, ABC transporters, and the calcium signaling pathway. We systematically explored the molecular mechanism of DS and the protective effect of DP, providing new insights that may advance the treatment of sarcopenia.


Subject(s)
Gastrointestinal Microbiome , Inositol , Metabolome , Proteome , Sarcopenia , Animals , Gastrointestinal Microbiome/drug effects , Mice , Sarcopenia/metabolism , Sarcopenia/drug therapy , Male , Proteome/metabolism , Metabolome/drug effects , Inositol/pharmacology , Inositol/analogs & derivatives , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Humans , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Bacteria/metabolism , Bacteria/drug effects
7.
J Appl Biomed ; 22(2): 74-80, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38912862

ABSTRACT

Myo-inositol (MI), present in a variety of foods, is essential in several important processes of cell physiology. In this study, we explored the protective effects of MI against hyperglycemia and dyslipidemia in db/db mice, a typical animal model of type 2 diabetes mellitus (T2DM). MI supplement effectively suppressed the high plasma glucose and insulin levels and markedly relieved the insulin resistance (IR) in the db/db mice, comparable to metformin's effects. In MIN6 pancreatic ß cells, MI also restrained the upsurge of insulin secretion stimulated by high-concentration glucose but had no impact on the promoted cell proliferation. Moreover, MI abated the enhanced plasma triglyceride and total cholesterol levels in the db/db mice. Notably, the lipid droplet formation of mesenchymal stem cells (MSCs) from db/db mice was significantly diminished after the treatment of MI, indicating that MI could effectively inhibit the differentiation of db/db mouse MSCs into adipocytes. However, MI regretfully failed to control obesity in db/db mice. This work proved that MI significantly helped db/db mice's metabolic disorders, indicating that MI has potential as an effective adjunctive treatment for hyperglycemia and dyslipidemia in T2DM patients.


Subject(s)
Diabetes Mellitus, Type 2 , Dyslipidemias , Inositol , Insulin Resistance , Animals , Dyslipidemias/drug therapy , Dyslipidemias/metabolism , Inositol/pharmacology , Inositol/therapeutic use , Mice , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Male , Insulin/metabolism , Insulin/blood , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Blood Glucose/metabolism , Blood Glucose/drug effects , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Adipocytes/metabolism , Adipocytes/drug effects , Hyperglycemia/drug therapy , Hyperglycemia/metabolism
8.
J Agric Food Chem ; 72(28): 15487-15497, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38917402

ABSTRACT

Validamycin A (VMA) is an antifungal antibiotic derived from Streptomyces hygroscopicus commonly used in plant disease management. Surprisingly, VMA was discovered to impede the production of fumonisin B1 (FB1) in agricultural settings. However, the specific target of VMA in Fusarium verticillioides remained unclear. To unravel the molecular mechanism of VMA, ultrastructural observations unveiled damage to mitochondrial membranes. Trehalase (FvNth) was pinpointed as the target of VMA by utilizing a 3D-printed surface plasmon resonance sensor. Molecular docking identified Trp285, Arg447, Asp452, and Phe665 as the binding sites between VMA and FvNth. A ΔFvnth mutant lacking amino acids 250-670 was engineered through homologous recombination. Transcriptome analysis indicated that samples treated with VMA and ΔFvnth displayed similar expression patterns, particularly in the suppression of the FUM gene cluster. VMA treatment resulted in reduced trehalase and ATPase activity as well as diminished production of glucose, pyruvic acid, and acetyl-CoA. Conversely, these effects were absent in samples treated with ΔFvnth. This research proposes that VMA hinders acetyl-CoA synthesis by trehalase, thereby suppressing the FB1 biosynthesis. These findings present a novel target for the development of mycotoxin control agents.


Subject(s)
Fumonisins , Fungal Proteins , Fusarium , Trehalase , Fusarium/metabolism , Fusarium/drug effects , Fusarium/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Fumonisins/metabolism , Trehalase/genetics , Trehalase/metabolism , Trehalase/chemistry , Trehalase/antagonists & inhibitors , Molecular Docking Simulation , Inositol/analogs & derivatives , Inositol/pharmacology , Inositol/chemistry , Plant Diseases/microbiology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Streptomyces/metabolism , Streptomyces/genetics , Streptomyces/chemistry
9.
FASEB J ; 38(11): e23738, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38855924

ABSTRACT

Maternal nutrition contributes to gene-environment interactions that influence susceptibility to common congenital anomalies such as neural tube defects (NTDs). Supplemental myo-inositol (MI) can prevent NTDs in some mouse models and shows potential for prevention of human NTDs. We investigated effects of maternal MI intake on embryonic MI status and metabolism in curly tail mice, which are genetically predisposed to NTDs that are inositol-responsive but folic acid resistant. Dietary MI deficiency caused diminished MI in maternal plasma and embryos, showing that de novo synthesis is insufficient to maintain MI levels in either adult or embryonic mice. Under normal maternal dietary conditions, curly tail embryos that developed cranial NTDs had significantly lower MI content than unaffected embryos, revealing an association between diminished MI status and failure of cranial neurulation. Expression of inositol-3-phosphate synthase 1, required for inositol biosynthesis, was less abundant in the cranial neural tube than at other axial levels. Supplemental MI or d-chiro-inositol (DCI) have previously been found to prevent NTDs in curly tail embryos. Here, we investigated the metabolic effects of MI and DCI treatments by mass spectrometry-based metabolome analysis. Among inositol-responsive metabolites, we noted a disproportionate effect on nucleotides, especially purines. We also found altered proportions of 5-methyltetrahydrolate and tetrahydrofolate in MI-treated embryos suggesting altered folate metabolism. Treatment with nucleotides or the one-carbon donor formate has also been found to prevent NTDs in curly tail embryos. Together, these findings suggest that the protective effect of inositol may be mediated through the enhanced supply of nucleotides during neural tube closure.


Subject(s)
Inositol , Neural Tube Defects , Inositol/metabolism , Inositol/pharmacology , Neural Tube Defects/metabolism , Neural Tube Defects/prevention & control , Animals , Female , Mice , Pregnancy , Embryo, Mammalian/metabolism , Maternal Nutritional Physiological Phenomena , Metabolome , Folic Acid/metabolism
10.
Pestic Biochem Physiol ; 202: 105973, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879316

ABSTRACT

Using a high-efficiency insecticide in combination with fungicides that have different mechanisms of action is a conventional method in the current management of brown planthopper (BPH) resistance. In this study, we investigate the separate and combined effects of the low-toxicity fungicide validamycin and the non-cross-resistant insecticide imidacloprid on the fitness and symbiosis of BPH. These research results indicate that when the proportion of active ingredients in validamycin is combined with imidacloprid at a ratio of 1:30, the toxicity ratio and co-toxicity coefficient are 1.34 and 691.73, respectively, suggesting that the combination has a synergistic effect on the control of BPH. The number of yeast-like symbiotic (YLS) and dominant symbiotic (Noda) in the imidacloprid + validamycin groups were significantly lower than the other three treatment groups (validamycin, imidacloprid, and water). The results of the study on population fitness show that the lifespan of the BPH population in validamycin, imidacloprid, and imidacloprid + validamycin was shortened. Notably, the BPH populations in the imidacloprid + validamycin groups were significantly lower than other groups in terms of average generation cycle, intrinsic growth rate, net reproduction rate, finite rate of increase, and fitness. The Real-time quantitative PCR showed that validamycin and imidacloprid + validamycin can significantly inhibit the expression of the farnesyl diphosphate farnesyl transferase gene (EC2.5.1.21) and uricase gene (EC1.7.3.3), with imidacloprid + validamycin demonstrating the most pronounced inhibitory effect. Our research results can provide insights and approaches for delaying resistance and integrated management of BPH.


Subject(s)
Hemiptera , Insecticides , Neonicotinoids , Nitro Compounds , Symbiosis , Animals , Hemiptera/drug effects , Neonicotinoids/pharmacology , Nitro Compounds/pharmacology , Insecticides/pharmacology , Inositol/analogs & derivatives , Inositol/pharmacology , Imidazoles/pharmacology , Fungicides, Industrial/pharmacology
11.
Biochem Biophys Res Commun ; 719: 150027, 2024 07 30.
Article in English | MEDLINE | ID: mdl-38749089

ABSTRACT

Aging is a complex, degenerative process associated with various metabolic abnormalities. Ginsenosides (GS) is the main active components of Panax ginseng, which has anti-aging effects and improves metabolism. However, the anti-aging effect and the mechanism of GS in middle-aged mice has not been elucidated. In this study, GS after 3-month treatment significantly improved the grip strength, fatigue resistance, cognitive indices, and cardiac function of 15-month-old mice. Meanwhile, GS treatment reduced the fat content and obviously inhibited histone H2AX phosphorylation at Ser 139 (γ-H2AX), a marker of DNA damage in major organs, especially in the heart and liver. Further, the correlation analysis of serum metabolomics combined with aging phenotype suggested that myo-inositol (MI) upregulated by GS was positively correlated with left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS), the main indicators of cardiac function. More importantly, liver tissue metabolomic analysis showed that GS increased MI content by promoting the synthesis pathway from phosphatidylcholine (PC) to MI for the inhibition of liver aging. Finally, we proved that MI reduced the percentage of senescence-associated ß-galactosidase staining, γ-H2AX immunofluorescence staining, p21 expression, and the production of reactive oxygen species in H2O2-induced cardiomyocytes. These results suggest that GS can enhance multiple organ functions, especially cardiac function for promoting the healthspan of aging mice, which is mediated by the conversion of PC to MI in the liver and the increase of MI level in the serum. Our study might provide new insights into the potential mechanisms of ginsenosides for prolonging the healthspan of natural aging mice.


Subject(s)
Aging , Ginsenosides , Inositol , Metabolomics , Panax , Phosphatidylcholines , Animals , Panax/chemistry , Ginsenosides/pharmacology , Aging/drug effects , Aging/metabolism , Phosphatidylcholines/metabolism , Mice , Male , Inositol/pharmacology , Liver/metabolism , Liver/drug effects , Mice, Inbred C57BL
12.
J Med Food ; 27(5): 419-427, 2024 May.
Article in English | MEDLINE | ID: mdl-38656897

ABSTRACT

The primary inflammatory process in atherosclerosis, a major contributor to cardiovascular disease, begins with monocyte adhering to vascular endothelial cells. Actinidia arguta (kiwiberry) is an edible fruit that contains various bioactive components. While A. arguta extract (AAE) has been recognized for its anti-inflammatory characteristics, its specific inhibitory effect on early atherogenic events has not been clarified. We used tumor necrosis factor-α (TNF-α)-stimulated human umbilical vein endothelial cells (HUVECs) for an in vitro model. AAE effectively hindered the attachment of THP-1 monocytes and reduced the expression of vascular cell adhesion molecule-1 (VCAM-1) in HUVECs. Transcriptome analysis revealed that AAE treatment upregulated phosphatase and tensin homolog (PTEN), subsequently inhibiting phosphorylation of AKT and glycogen synthase kinase 3ß (GSK3ß) in HUVECs. AAE further hindered phosphorylation of AKT downstream of the nuclear factor kappa B (NF-κB) signaling pathway, leading to suppression of target gene expression. Oral administration of AAE suppressed TNF-α-stimulated VCAM-1 expression, monocyte-derived macrophage infiltration, and proinflammatory cytokine expression in C57BL/6 mouse aortas. Myo-inositol, identified as the major compound in AAE, played a key role in suppressing THP-1 monocyte adhesion in HUVECs. These findings suggest that AAE could serve as a nutraceutical for preventing atherosclerosis by inhibiting its initial pathogenesis.


Subject(s)
Actinidia , Cell Adhesion , Glycogen Synthase Kinase 3 beta , Human Umbilical Vein Endothelial Cells , Inositol , Monocytes , NF-kappa B , PTEN Phosphohydrolase , Plant Extracts , Proto-Oncogene Proteins c-akt , Signal Transduction , Tumor Necrosis Factor-alpha , Vascular Cell Adhesion Molecule-1 , Vascular Cell Adhesion Molecule-1/metabolism , Vascular Cell Adhesion Molecule-1/genetics , Humans , NF-kappa B/metabolism , NF-kappa B/genetics , Monocytes/drug effects , Monocytes/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Actinidia/chemistry , Animals , Plant Extracts/pharmacology , Signal Transduction/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Cell Adhesion/drug effects , Mice , Inositol/pharmacology , Inositol/analogs & derivatives , Mice, Inbred C57BL , Atherosclerosis/metabolism , Atherosclerosis/drug therapy , Male
13.
J Cachexia Sarcopenia Muscle ; 15(3): 934-948, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38553831

ABSTRACT

BACKGROUND: Diabetic sarcopenia is a disease-related skeletal muscle disorder that causes progressive symptoms. The complete understanding of its pathogenesis is yet to be unravelled, which makes it difficult to develop effective therapeutic strategies. This study investigates how MFG-E8 affects mitophagy and the protective role of D-pinitol (DP) in diabetic sarcopenia. METHODS: In vivo, streptozotocin-induced diabetic SAM-R1 (STZ-R1) and SAM-P8 (STZ-P8) mice (16-week-old) were used, and STZ-P8 mice were administrated of DP (150 mg/kg per day) for 6 weeks. Gastrocnemius muscles were harvested for histological analysis including transmission electron microscopy. Proteins were evaluated via immunohistochemistry (IHC), immunofluorescence (IF), and western blotting (WB) assay. In vitro, advanced glycation end products (AGEs) induced diabetic and D-galactose (DG) induced senescent C2C12 models were established and received DP, MFG-E8 plasmid (Mover)/siRNA (MsiRNA), or 3-MA/Torin-1 intervention. Proteins were evaluated by IF and WB assay. Immunoprecipitation (IP) and co-immunoprecipitation (CO-IP) were used for hunting the interacted proteins of MFG-E8. RESULTS: In vivo, sarcopenia, mitophagy deficiency, and up-regulated MFG-E8 were confirmed in the STZ-P8 group. DP exerted protective effects on sarcopenia and mitophagy (DP + STZ-P8 vs. STZ-P8; all P < 0.01), such as increased lean mass (8.47 ± 0.81 g vs. 7.08 ± 1.64 g), grip strength (208.62 ± 39.45 g vs. 160.87 ± 26.95 g), rotarod tests (109.7 ± 11.81 s vs. 59.3 ± 20.97 s), muscle cross-sectional area (CSA) (1912.17 ± 535.61 µm2 vs. 1557.19 ± 588.38 µm2), autophagosomes (0.07 ± 0.02 per µm2 vs. 0.02 ± 0.01 per µm2), and cytolysosome (0.07 ± 0.03 per µm2 vs. 0.03 ± 0.01 per µm2). DP down-regulated MFG-E8 in both serum (DP + STZ-P8: 253.19 ± 34.75 pg/mL vs. STZ-P8: 404.69 ± 78.97 pg/mL; P < 0.001) and gastrocnemius muscle (WB assay. DP + STZ-P8: 0.39 ± 0.04 vs. STZ-P8: 0.55 ± 0.08; P < 0.01). DP also up-regulated PINK1, Parkin and LC3B-II/I ratio, and down-regulated P62 in gastrocnemius muscles (all P < 0.01). In vitro, mitophagy deficiency and MFG-E8 up-regulation were confirmed in diabetic and senescent models (all P < 0.05). DP and MsiRNA down-regulated MFG-E8 and P62, and up-regulated PINK1, Parkin and LC3B-II/I ratio to promote mitophagy as Torin-1 does (all P < 0.05). HSPA1L was confirmed as an interacted protein of MFG-E8 in IP and CO-IP assay. Mover down-regulated the expression of Parkin via the HSPA1L-Parkin pathway, leading to mitophagy inhibition. MsiRNA up-regulated the expression of PINK1 via SGK1, FOXO1, and STAT3 phosphorylation pathways, leading to mitophagy stimulation. CONCLUSIONS: MFG-E8 is a crucial target protein of DP and plays a distinct role in mitophagy regulation. DP down-regulates the expression of MFG-E8, reduces mitophagy deficiency, and alleviates the symptoms of diabetic sarcopenia, which could be considered a novel therapeutic strategy for diabetic sarcopenia.


Subject(s)
Mitophagy , Sarcopenia , Ubiquitin-Protein Ligases , Animals , Mitophagy/drug effects , Mice , Sarcopenia/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Diabetes Mellitus, Experimental/complications , Inositol/pharmacology , Inositol/therapeutic use , Inositol/metabolism , Male , Antigens, Surface/metabolism , HSP70 Heat-Shock Proteins/metabolism , Disease Models, Animal , Signal Transduction
14.
Exp Parasitol ; 260: 108725, 2024 May.
Article in English | MEDLINE | ID: mdl-38458554

ABSTRACT

Duddingtonia flagrans is a nematophagous fungus which has shown promising results as a non-chemical parasitic control tool. The fungus disrupts the parasite's life cycle by trapping larvae in the environment through the networks generated from chlamydospores, thus preventing the reinfection of animals. One barrier to the development of a commercial product using this tool is the need to increase chlamydospore production in the laboratory for its administration to livestock. The purpose of this study was to evaluate the addition of mannitol to an enriched culture medium and the effect of adverse cultivation conditions on chlamydospore production. D. flagrans was cultivated on Petri dishes with corn agar for 4 weeks at 27 °C and 70% relative humidity (RH). Four groups were then formed, all with Sabouraud agar as a base, to which different growth inducers were added: GSA (glucose Sabouraud agar), GSA-MI (glucose Sabouraud agar + meso inositol), GSA-E (enriched glucose Sabouraud agar), and AE-M (enriched agar + mannitol). After 4 weeks, chlamydospores were recovered by washing the surface of each plate with distilled water and then quantified. The medium that yielded the highest amount of chlamydospores was subjected to different cultivation conditions: NC (normal conditions): 70% RH and 27 °C, AC (adverse conditions) 1: 20% RH and 40 °C, CA2: 60% RH and 27 °C, and CA3: 55% RH and 24 °C. It was determined that mannitol increases chlamydospore production (65x106 chlamydospores/plate), and when reducing humidity by 10% under cultivation conditions it resulted in an approximately 10% increase in chlamydospore production compared to the control group. These results suggest that the addition of polyols, as well as its cultivation under certain environmental conditions, can improve chlamydospore production on a laboratory scale.


Subject(s)
Agar , Culture Media , Duddingtonia , Mannitol , Spores, Fungal , Mannitol/pharmacology , Culture Media/chemistry , Spores, Fungal/growth & development , Duddingtonia/growth & development , Duddingtonia/physiology , Glucose/metabolism , Animals , Inositol/pharmacology , Humidity , Temperature , Biological Control Agents/pharmacology
15.
Int J Mol Sci ; 25(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38542419

ABSTRACT

Human placenta is an intensively growing tissue. Phosphatidylinositol (PI) and its derivatives are part of the signaling pathway in the regulation of trophoblast cell differentiation. There are two different enzymes that take part in the direct PI synthesis: phosphatidylinositol synthase (PIS) and inositol exchange enzyme (IE). The presence of PIS is known in the human placenta, but IE activity has not been documented before. In our study, we describe the physiological properties of the two enzymes in vitro. PIS and IE were studied in different Mn2+ and Mg2+ concentrations that enabled us to separate the individual enzyme activities. Enzyme activity was measured by incorporation of 3[H]inositol in human primordial placenta tissue or microsomes. Optimal PIS activity was achieved between 0.5 and 2.0 mM Mn2+ concentration, but higher concentrations inhibit enzyme activity. In the presence of Mg2+, the enzyme activity increases continuously up to a concentration of 100 mM. PIS was inhibited by nucleoside di- and tri-phosphates. PI production increases between 0.1 and 10 mM Mn2+ concentration. The incorporation of [3H]inositol into PI increased by 57% when adding stabile GTP analog. The described novel pathway of inositol synthesis may provide an additional therapeutic approach of inositol supplementation before and during pregnancy.


Subject(s)
Inositol , Phosphatidylinositols , Female , Pregnancy , Humans , Inositol/pharmacology , Phosphatidylinositols/metabolism , CDP-Diacylglycerol-Inositol 3-Phosphatidyltransferase , Transferases (Other Substituted Phosphate Groups)/metabolism , Placenta/metabolism
16.
J Med Virol ; 96(3): e29552, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38511598

ABSTRACT

Ivermectin has broad-spectrum antiviral activities. Despite the failure in clinical application of COVID-19, it can serve as a lead compound for the development of more effective broad-spectrum antivirals, for which a better understanding of its antiviral mechanisms is essential. We thus searched for potential novel targets of ivermectin in host cells by label-free thermal proteomic profiling using Huh-7 cells. Inositol monophosphatase (IMPase) was found among the proteins with shifted thermal stability by ivermectin. Ivermectin could inhibit IMPase activity and reduce cellular myo-inositol and phosphatidylinositol-4-phosphate levels. On the other hand, inositol could impair the antiviral activity of ivermectin and lithium, an IMPase inhibitor with known antiviral activity. As phosphatidylinositol phosphate is crucial for the replication of many RNA viruses, inhibition of cellular myo-inositol biosynthesis may be an important antiviral mechanism of ivermectin. Hence, inhibition of IMPase could serve as a potential target for broad-spectrum antiviral development.


Subject(s)
5'-Nucleotidase , Ivermectin , Phosphoric Monoester Hydrolases , Humans , Ivermectin/pharmacology , Proteomics , Inositol/pharmacology , Antiviral Agents/pharmacology
17.
Article in English | MEDLINE | ID: mdl-38364652

ABSTRACT

This study explored the role of myo-inositol in alleviating the low salinity stress of White Shrimp (Litopenaeus vannamei). Juvenile shrimp (0.4 ± 0.02 g) in low salinity (salinity 3) water were fed diets with myo-inositol levels of 0, 272, 518, 1020 and 1950 mg/kg (crude protein is 36.82 %, crude lipid is 7.58 %), fed shrimp in seawater at a salinity of 25 were fed a 0 mg/kg myo-inositol diet as a control (Ctrl). The experiment was carried out in tanks (50 L) with satiety feeding, and the experiment lasted for 6 weeks. After sampling, the serum was used to measure immune function, the hepatopancreas homogenate was used to measure the antioxidant capacity and hepatopancreas damage state, the hepatopancreas was used for transcriptomics analysis, and the gills were used for qPCR to measure osmotic pressure regulation. The results showed that the final weight and survival of the shrimp in the 1020 mg/kg group increased significantly compared with those in the other low salinity groups, but the final weight and biomass increase were significantly lower than those in the Ctrl group. Dietary myo-inositol improved the antioxidant capacity of shrimp under low salinity. B-cell hyperplasia and hepatic duct damage were observed in the hepatopancreas in the 0 mg/kg group. The results of transcriptome analysis showed that myo-inositol could participate in the osmotic pressure regulation of shrimp by regulating carbohydrate metabolism, amino acid metabolism, lipid metabolism and other related genes. Myo-inositol significantly affected the expression of related genes in ion transporter and G protein-coupled receptor-mediated pathways. This study demonstrated that myo-inositol can not only act as an osmotic pressure effector and participate in the osmolar regulation of shrimp through the phosphatidylinositol signaling pathway mediated by G protein-coupled receptors but also relieve low salinity stress by mediating physiological pathways such as immunity, antioxidation, and metabolism in shrimp. The binomial regression analysis of biomass increases and survival showed that the appropriate amount of myo-inositol in the L. vannamei diet was 862.50-1275.00 mg/kg under low salinity.


Subject(s)
Inositol , Penaeidae , Salinity , Animals , Inositol/pharmacology , Penaeidae/drug effects , Penaeidae/metabolism , Penaeidae/growth & development , Biomarkers/metabolism , Hepatopancreas/metabolism , Hepatopancreas/drug effects , Stress, Physiological
18.
Mucosal Immunol ; 17(2): 288-302, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387824

ABSTRACT

Immunoglobulin superfamily (IgSF) members are known for their role as glycoproteins expressed on the surface of immune cells, enabling protein-protein interactions to sense external signals during immune responses. However, the functions of immunoglobulins localized within subcellular compartments have been less explored. In this study, we identified an endoplasmic reticulum (ER)-localized immunoglobulin, IgSF member 6 (IgSF6), that regulates ER stress and the inflammatory response in intestinal macrophages. Igsf6 expression is sustained by microbiota and significantly upregulated upon bacterial infection. Mice lacking Igsf6 displayed resistance to Salmonella typhimurium challenge but increased susceptibility to dextran sulfate sodium-induced colitis. Mechanistically, deficiency of Igsf6 enhanced inositol-requiring enzyme 1α/-X-box binding protein 1 pathway, inflammatory response, and reactive oxygen species production leading to increased bactericidal activity of intestinal macrophages. Inhibition of reactive oxygen species or inositol-requiring enzyme 1α-X-box binding protein 1 pathway reduced the advantage of Igsf6 deficiency in bactericidal capacity. Together, our findings provide insight into the role of IgSF6 in intestinal macrophages that modulate the ER stress response and maintain intestinal homeostasis.


Subject(s)
Endoplasmic Reticulum Stress , Macrophages , Mice , Animals , X-Box Binding Protein 1/pharmacology , Reactive Oxygen Species/metabolism , Macrophages/metabolism , Immunoglobulins , Inositol/pharmacology
19.
Int J Mol Sci ; 25(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38338641

ABSTRACT

The natural cyclic AMP antagonist, prostaglandylinositol cyclic phosphate (cyclic PIP), is biosynthesized from prostaglandin E (PGE) and activated inositol phosphate (n-Ins-P), which is synthesized by a particulate rat-liver-enzyme from GTP and a precursor named inositol phosphate (pr-Ins-P), whose 5-ring phosphodiester structure is essential for n-Ins-P synthesis. Aortic myocytes, preincubated with [3H] myo-inositol, synthesize after angiotensin II stimulation (30 s) [3H] pr-Ins-P (65% yield), which is converted to [3H] n-Ins-P and [3H] cyclic PIP. Acid-treated (1 min) [3H] pr-Ins-P co-elutes with inositol (1,4)-bisphosphate in high performance ion chromatography, indicating that pr-Ins-P is inositol (1:2-cyclic,4)-bisphosphate. Incubation of [3H]-GTP with unlabeled pr-Ins-P gave [3H]-guanosine-labeled n-Ins-P. Cyclic PIP synthase binds the inositol (1:2-cyclic)-phosphate part of n-Ins-P to PGE and releases the [3H]-labeled guanosine as [3H]-GDP. Thus, n-Ins-P is most likely guanosine diphospho-4-inositol (1:2-cyclic)-phosphate. Inositol feeding helps patients with metabolic conditions related to insulin resistance, but explanations for this finding are missing. Cyclic PIP appears to be the key for explaining the curative effect of inositol supplementation: (1) inositol is a molecular constituent of cyclic PIP; (2) cyclic PIP triggers many of insulin's actions intracellularly; and (3) the synthesis of cyclic PIP is decreased in diabetes as shown in rodents.


Subject(s)
Inositol Phosphates , Inositol , Prostaglandins E , Humans , Rats , Animals , Inositol/pharmacology , Inositol/metabolism , Inositol Phosphates/metabolism , Guanosine Triphosphate , Guanosine , Phosphates
20.
Gynecol Obstet Invest ; 89(2): 131-139, 2024.
Article in English | MEDLINE | ID: mdl-38295772

ABSTRACT

SETTING: Insulin resistance (IR) and compensatory hyperinsulinemia are considered contributing factors toward polycystic ovary syndrome (PCOS). OBJECTIVES: This study evaluates the frequency of metabolic abnormalities in PCOS patients and the effects of myo-inositol (MI) and D-chiro-inositol (DCI), in a 40:1 ratio on hormonal and metabolic parameters. PARTICIPANTS: Thirty-four women with PCOS phenotype A (endocrine-metabolic syndrome [EMS-type 1]) between the ages of 20-40. DESIGN: Open prospective study with phenotype A (EMS-type I, n = 34) supplemented with 2,255 mg/day of inositol (MI and DCI in a 40:1 ratio) for 3 months. METHODS: The following were measured before and after treatment: serum levels of follicular stimulating hormone, luteinizing hormone (LH), estradiol, total and free testosterone, sex hormone-binding globulin (SHBG), free androgen index (FAI), anti-Müllerian hormone, glucose, insulin, HOMA-IR, and body mass index (BMI). RESULTS: 55.9% of the enrolled patients were overweight or obese, 50% affected by IR, 17.6% with a history of gestational diabetes mellitus, and 61.8% had familial diabetes mellitus. At the conclusion of the study, BMI (p = 0.0029), HOMA-IR (p < 0.001) significantly decreased, along with decreased numbers of patients with elevated insulin levels. The supplementation resulted in decreased total testosterone (p < 0.001), free testosterone (p < 0.001), FAI (p < 0.001), and LH (p < 0.001); increased SHBG (p < 0.001) and estradiol (p < 0.001). LIMITATIONS: The present analysis was limited to a 12-week follow-up, which precluded a long-term evaluation of the effects of MI and DCI combination. Also, this period was insufficient to achieve and analyze clinical changes such as restoration of the menstrual cycle, restoration of reproductive function, and clinical manifestations of hyperandrogenism. CONCLUSIONS: Supplementation improved metabolic and hormonal profile in PCOS phenotype A (EMS-type I) patients. This builds upon previous work that demonstrated that combined inositol treatment may be effective in PCOS. The study presented herein, used a reduced concentration than in prior literature; however, a significant change in hormonal and metabolic parameters was still observed.


Subject(s)
Insulin Resistance , Polycystic Ovary Syndrome , Female , Humans , Young Adult , Adult , Inositol/therapeutic use , Inositol/pharmacology , Prospective Studies , Luteinizing Hormone , Insulin , Estradiol , Testosterone , Phenotype , Metabolome
SELECTION OF CITATIONS
SEARCH DETAIL