Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 259
Filter
2.
Medicine (Baltimore) ; 103(29): e38985, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39029009

ABSTRACT

RATIONALE: Patients with relapsed and refractory Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) with the T315I mutation are at higher risk of relapse and have shorter overall survival. PATIENT CONCERNS: A 31-year-old man presented to the hematology department with intermittent fever and pancytopenia. He was diagnosed with Ph+ acute lymphoblastic leukemia and experienced 2 relapses during treatment. A drug-resistant T315I mutation was detected in the ABL kinase region during review. DIAGNOSES: Morphological examination of the bone marrow revealed approximately 93.5% lymphoid blast. Flow cytometric analysis confirmed the diagnosis of common B-cell ALL with the following phenotype: CD34, CD45dim, CD19, CD10, cCD79a, CD58dim, CD81dim, cTdT, HLA-DR, CD22dim, CXCR4, CD33dim, CD20, CD25, CD13, CD123. The examination of the ABL kinase region mutation suggested a T315I mutation. INTERVENTIONS: Olverembatinib, a third-generation TKI drug, was administered in combination with inotuzumab ozogamicin to treat the disease. OUTCOMES: The patient achieved morphological remission with a negative flow cytometry MRD test, and the quantification of BCR-ABL transcripts was 0% after 1 cycle of therapy. LESSONS: The third-generation TKI olverembatinib has been proven to be effective in CML patients with the T315I mutation, and it may also be effective in Ph+ acute lymphoblastic leukemia. Some new immune drugs have also shown improvement in the remission rate. Combination therapy with olverembatinib and Ino can achieve a complete molecular response in patients with relapsed and refractory Ph+ ALL with the T315I mutation.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Inotuzumab Ozogamicin , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Male , Adult , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Philadelphia Chromosome , Mutation
5.
Clin Pharmacokinet ; 63(7): 981-997, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38907948

ABSTRACT

BACKGROUND AND OBJECTIVE: Inotuzumab ozogamicin is an antibody-drug conjugate approved for treating relapsed/refractory B-cell precursor acute lymphoblastic leukemia (BCP-ALL) in adults. Pediatric pharmacokinetic data of inotuzumab ozogamicin are lacking. This study is the first to examine the population pharmacokinetics of inotuzumab ozogamicin in pediatric patients with relapsed/refractory BCP-ALL. METHODS: From 531 adult patients with B-cell non-Hodgkin's lymphoma, 234 adult patients with BCP-ALL, and 53 pediatric patients with BCP-ALL, 8924 inotuzumab ozogamicin serum concentrations were analyzed using non-linear mixed-effects modeling. A published adult inotuzumab ozogamicin population-pharmacokinetic model, a two-compartment model with linear and time-dependent clearance, was adapted to describe the pediatric data. RESULTS: Modifications in this analysis, compared to the published adult model, included: (i) re-estimating pharmacokinetic parameters and covariate effects; (ii) modifying covariate representation; and (iii) introducing relevant pediatric covariate effects (age on the decay coefficient of time-dependent clearance and ALL effect (disease type and/or different bioanalytical analysis methods) on initial values of time-dependent clearance). For patients with relapsed/refractory BCP-ALL, increasing age was associated with a decreasing decay coefficient of time-dependent clearance, reflecting that the target-mediated drug clearance declines more rapidly in children. In pediatric BCP-ALL, the median [interquartile range] cumulative area under the concentration-time curve was significantly higher among responders (n = 42) versus non-responders (n = 10) at the end of the first cycle (26.1 [18.9-35.0] vs 10.1 [9.19-16.1], × 103 ng*h/mL, p < 0.001). From simulations performed at the recommended pediatric phase II dose, inotuzumab ozogamicin exposure reached a similar level as observed in responding pediatric trial participants. CONCLUSIONS: The pharmacokinetic profile of inotuzumab ozogamicin in pediatric patients with relapsed/refractory BCP-ALL was well described in this study. No dose adjustment is required clinically for pediatric patients with BCP-ALL based on the simulated inotuzumab ozogamicin exposure at the recommended pediatric phase II dose, promising efficacy and acceptable tolerability.


Subject(s)
Antineoplastic Agents, Immunological , Inotuzumab Ozogamicin , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Inotuzumab Ozogamicin/pharmacokinetics , Inotuzumab Ozogamicin/administration & dosage , Child , Male , Female , Adolescent , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/blood , Child, Preschool , Antineoplastic Agents, Immunological/pharmacokinetics , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Agents, Immunological/therapeutic use , Adult , Young Adult , Middle Aged , Models, Biological , Recurrence , Infant , Aged
6.
Haematologica ; 109(6): 1700-1712, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38832425

ABSTRACT

The treatment of childhood acute lymphoblastic leukemia (ALL) has reached overall survival rates exceeding 90%. The present and future challenges are to cure the remainder of patients still dying from disease, and to reduce morbidity and mortality in those who can be cured with standard-of-care chemotherapy by replacing toxic chemotherapy elements while retaining cure rates. With the novel therapeutic options introduced in the last years, including immunotherapies and targeted antibodies, the treatment of ALL is undergoing major changes. For B-cell precursor ALL, blinatumomab, an anti-CD19 bispecific antibody, has established its role in the consolidation treatment for both high- and standard-risk first relapse of ALL, in the presence of bone marrow involvement, and may also have an impact on the outcome of high-risk subsets such as infant ALL and Philadelphia chromosome-positive ALL. Inotuzumab ozogamicin, an anti-CD22 drug conjugated antibody, has demonstrated high efficacy in inducing complete remission in relapsed ALL, even in the presence of high tumor burden, but randomized phase III trials are still ongoing. For T-ALL the role of CD38-directed treatment, such as daratumumab, is gaining interest, but randomized data are needed to assess its specific benefit. These antibodies are currently being tested in patients with newly diagnosed ALL and may lead to major changes in the present paradigm of treatment of pediatric ALL. Unlike the past, lessons may be learned from innovations in adult ALL, in which more drastic changes are piloted that may need to be translated to pediatrics.


Subject(s)
Antibodies, Bispecific , Immunoconjugates , Molecular Targeted Therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Child , Immunoconjugates/therapeutic use , Antibodies, Bispecific/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Treatment Outcome , Inotuzumab Ozogamicin/therapeutic use
7.
JAMA Oncol ; 10(7): 961-965, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38722664

ABSTRACT

Importance: Options for adults with relapsed or refractory B-cell acute lymphoblastic leukemia or lymphoma (B-ALL) are limited, and new approaches are needed. Inotuzumab ozogamicin (InO) has been combined with low-intensity chemotherapy, with modest improvements over historical controls, and dose-adjusted etoposide, prednisone, vincristine, cyclophosphamide, and doxorubicin (DA-EPOCH) treatment is safe and active for newly diagnosed ALL. Objective: To assess the safety and clinical activity of DA-EPOCH and InO in adults with relapsed or refractory B-ALL. Design, Setting, and Participants: This single-center, single-arm, nonrandomized, phase 1 dose-escalation trial included adults with relapsed or refractory CD22+ B-ALL and was conducted between September 2019 and November 2022. At least 5% blood or marrow blasts or measurable extramedullary disease (EMD) was required for enrollment. Interventions: DA-EPOCH was given on days 1 to 5, while InO was given on day 8 and day 15 of a 28-day cycle. Three dose levels were studied using a bayesian optimal interval design. Main Outcomes and Measures: The primary outcome was the maximum tolerated dose of InO when combined with DA-EPOCH, defined as the highest dose level that produced a rate of dose-limiting toxicity below 33%. Secondary objectives included response rates, survival estimates, and descriptions of toxic effects. Results: A total of 24 participants were screened and enrolled (median age, 46 [range, 28-76] years; 15 [62%] male). The median number of lines of prior therapy was 3 (range, 1-12). Three of 11 participants (27%) treated at the highest dose level (InO, 0.6 mg/m2, on day 8 and day 15) experienced dose-limiting toxicity, making this the maximum tolerated dose. No deaths occurred during the study, and only 1 patient (4%; 95% CI, 0.1%-21%) developed sinusoidal obstructive syndrome after poststudy allograft. The morphologic complete response rate was 84% (95% CI, 60%-97%), 88% (95% CI, 62%-98%) of which was measurable residual disease negative by flow cytometry. Five of 6 participants with EMD experienced treatment response. The overall response rate was 83% (95% CI, 63%-95%). Median overall survival, duration of response, and event-free survival were 17.0 (95% CI, 8.4-not reached), 15.0 (95% CI, 6.7-not reached), and 9.6 (95% CI, 4.5-not reached) months, respectively. Conclusions: In this study, adding InO to DA-EPOCH in adults with relapsed or refractory B-ALL was feasible, with high response rates and sinusoidal obstructive syndrome occurring rarely in a heavily pretreated population. Many patients were able to proceed to poststudy consolidative allogeneic hematopoietic cell transplant and/or chimeric antigen receptor T-cell therapy. Further investigation of this combination is warranted. Trial Registration: ClinicalTrials.gov Identifier: NCT03991884.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Cyclophosphamide , Doxorubicin , Etoposide , Inotuzumab Ozogamicin , Prednisone , Vincristine , Humans , Inotuzumab Ozogamicin/administration & dosage , Male , Female , Middle Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Adult , Etoposide/administration & dosage , Etoposide/adverse effects , Doxorubicin/administration & dosage , Doxorubicin/adverse effects , Cyclophosphamide/administration & dosage , Cyclophosphamide/therapeutic use , Cyclophosphamide/adverse effects , Vincristine/administration & dosage , Vincristine/adverse effects , Vincristine/therapeutic use , Prednisone/administration & dosage , Prednisone/adverse effects , Prednisone/therapeutic use , Aged , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/mortality , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Maximum Tolerated Dose , Dose-Response Relationship, Drug
8.
Paediatr Drugs ; 26(4): 459-467, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38780741

ABSTRACT

Inotuzumab ozogamicin (BESPONSA™) is a CD22-targeted monoclonal antibody drug conjugate (ADC) developed by Pfizer for the treatment of CD22-postive B-cell precursor acute lymphoblastic leukaemia (ALL). Inotuzumab ozogamicin comprises a humanized IgG4 anti-CD22 monoclonal antibody covalently linked to the potent DNA-binding cytotoxic agent N-acetyl-gamma-calicheamicin dimethylhydrazide (CalichDMH) via a linker. Inotuzumab ozogamicin binds to CD22-expressing tumour cells, facilitating the delivery of conjugated CalichDMH, which after intracellular activation induces double strand DNA breaks, ultimately leading to cell cycle arrest and apoptotic cell death. Inotuzumab ozogamicin is approved in the USA, Europe and several countries worldwide for the treatment of relapsed or refractory CD22-positive B-cell precursor ALL in adults. On 6 March 2024, inotuzumab ozogamicin received its first pediatric approval in the USA for this indication in patients aged ≥ 1 years. Inotuzumab ozogamicin has since been approved in Japan in March 2024 for the same indication in pediatric patients. This article summarizes the milestones in the development of inotuzumab ozogamicin leading to this first approval for the treatment of relapsed or refractory CD22-positive B-cell precursor ALL in pediatric patients.


Subject(s)
Drug Approval , Inotuzumab Ozogamicin , Humans , Child , Sialic Acid Binding Ig-like Lectin 2/immunology , Antineoplastic Agents, Immunological/adverse effects , Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Agents, Immunological/pharmacokinetics , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/administration & dosage , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/pharmacokinetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
10.
Oncol Rep ; 52(1)2024 Jul.
Article in English | MEDLINE | ID: mdl-38785163

ABSTRACT

Inotuzumab ozogamicin (IO), a novel therapeutic drug for relapsed or refractory acute lymphoblastic leukemia (RR)­(ALL), is a humanized anti­cluster of differentiation (CD) 22 monoclonal antibody conjugated with calicheamicin that causes DNA single­ and double­strand breaks. Although the efficacy of IO is significantly improved compared with that of conventional chemotherapies, the prognosis for RR­ALL remains poor, highlighting the need for more effective treatment strategies. The present study examined the role of DNA damage repair inhibition using the poly (ADP­ribose) polymerase (PARP) inhibitors olaparib or talazoparib on the enhancement of the antitumor effects of IO on B­ALL cells in vitro. The Reh, Philadelphia (Ph)­B­ALL and the SUP­B15 Ph+ B­ALL cell lines were used for experiments. Both cell lines were ~90% CD22+. The half­maximal inhibitory concentration (IC50) values of IO were 5.3 and 49.7 ng/ml for Reh and SUP­B15 cells, respectively. The IC50 values of IO combined with minimally toxic concentrations of olaparib or talazoparib were 0.8 and 2.9 ng/ml for Reh cells, respectively, and 36.1 and 39.6 ng/ml for SUP­B15 cells, respectively. The combination index of IO with olaparib and talazoparib were 0.19 and 0.56 for Reh cells and 0.76 and 0.89 for SUP­B15 cells, demonstrating synergistic effects in all combinations. Moreover, the addition of minimally toxic concentrations of PARP inhibitors augmented IO­induced apoptosis. The alkaline comet assay, which quantitates the amount of DNA strand breaks, was used to investigate the degree to which DNA damage observed 1 h after IO administration was repaired 6 h later, reflecting successful repair of DNA strand breaks. However, DNA strand breaks persisted 6 h after IO administration combined with olaparib or talazoparib, suggesting inhibition of the repair processes by PARP inhibitors. Adding olaparib or talazoparib thus synergized the antitumor effects of IO by inhibiting DNA strand break repair via the inhibition of PARP.


Subject(s)
DNA Repair , Drug Synergism , Inotuzumab Ozogamicin , Phthalazines , Piperazines , Poly(ADP-ribose) Polymerase Inhibitors , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Phthalazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Piperazines/pharmacology , Piperazines/administration & dosage , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Cell Line, Tumor , DNA Repair/drug effects , Inotuzumab Ozogamicin/pharmacology , Apoptosis/drug effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Proliferation/drug effects , Indoles/pharmacology
11.
J Hematol Oncol ; 17(1): 32, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734670

ABSTRACT

Inotuzumab ozogamicin (INO) is an anti-CD22 antibody-drug conjugate that was first evaluated in B-cell lymphomas but was subsequently shown to be highly effective in acute lymphoblastic leukemia (ALL). INO improved response rates and survival in a randomized study in adults with relapsed/refractory B-cell ALL, leading to its regulatory approval in the United States in 2017. While the formal approval for INO is as monotherapy in relapsed/refractory ALL, subsequent studies with INO administered in combination with chemotherapy and/or blinatumomab both in the frontline and salvage settings have yielded promising results. In this review, we discuss the clinical development of INO in ALL, highlighting lessons learned from the initial clinical trials of INO, as well as the many ongoing studies that are seeking to expand the role of INO in ALL.


Subject(s)
Inotuzumab Ozogamicin , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Inotuzumab Ozogamicin/therapeutic use , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Antineoplastic Agents, Immunological/therapeutic use , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
13.
Blood Adv ; 8(12): 3226-3236, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38607410

ABSTRACT

ABSTRACT: The phase 3 INO-VATE trial demonstrated higher rates of remission, measurable residual disease negativity, and improved overall survival for patients with relapsed/refractory (R/R) acute lymphoblastic leukemia (ALL) who received inotuzumab ozogamicin (InO) vs standard-of-care chemotherapy (SC). Here, we examined associations between genomic alterations and the efficacy of InO. Of 326 randomized patients, 91 (InO, n = 43; SC, n = 48) had samples evaluable for genomic analysis. The spectrum of gene fusions and other genomic alterations observed was comparable with prior studies of adult ALL. Responses to InO were observed in all leukemic subtypes, genomic alterations, and risk groups. Significantly higher rates of complete remission (CR)/CR with incomplete count recovery were observed with InO vs SC in patients with BCR::ABL1-like ALL (85.7% [6/7] vs 0% [0/5]; P = .0076), with TP53 alterations (100% [5/5] vs 12.5% [1/8]; P = .0047), and in the high-risk BCR::ABL1- (BCR::ABL1-like, low-hypodiploid, KMT2A-rearranged) group (83.3% [10/12] vs 10.5% [2/19]; P < .0001). This retrospective, exploratory analysis of the INO-VATE trial demonstrated potential for benefit with InO for patients with R/R ALL across leukemic subtypes, including BCR::ABL1-like ALL, and for those bearing diverse genomic alterations. Further confirmation of the efficacy of InO in patients with R/R ALL exhibiting the BCR::ABL1-like subtype or harboring TP53 alterations is warranted. This trial was registered at www.ClinicalTrials.gov as #NCT01564784.


Subject(s)
Inotuzumab Ozogamicin , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Inotuzumab Ozogamicin/therapeutic use , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/mortality , Adult , Female , Male , Middle Aged , Treatment Outcome , Aged , Recurrence , Antineoplastic Agents, Immunological/therapeutic use , Young Adult , Drug Resistance, Neoplasm , Adolescent
14.
Blood ; 144(1): 61-73, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38551807

ABSTRACT

ABSTRACT: Inotuzumab ozogamicin (InO) is an antibody-drug conjugate that delivers calicheamicin to CD22-expressing cells. In a retrospective cohort of InO-treated patients with B-cell acute lymphoblastic leukemia, we sought to understand the genomic determinants of the response and resistance to InO. Pre- and post-InO-treated patient samples were analyzed by whole genome, exome, and/or transcriptome sequencing. Acquired CD22 mutations were observed in 11% (3/27) of post-InO-relapsed tumor samples, but not in refractory samples (0/16). There were multiple CD22 mutations per sample and the mechanisms of CD22 escape included epitope loss (protein truncation and destabilization) and epitope alteration. Two CD22 mutant cases were post-InO hyper-mutators resulting from error-prone DNA damage repair (nonhomologous/alternative end-joining repair, or mismatch repair deficiency), suggesting that hypermutation drove escape from CD22-directed therapy. CD22-mutant relapses occurred after InO and subsequent hematopoietic stem cell transplantation (HSCT), suggesting that InO eliminated the predominant clones, leaving subclones with acquired CD22 mutations that conferred resistance to InO and subsequently expanded. Acquired loss-of-function mutations in TP53, ATM, and CDKN2A were observed, consistent with a compromise of the G1/S DNA damage checkpoint as a mechanism for evading InO-induced apoptosis. Genome-wide CRISPR/Cas9 screening of cell lines identified DNTT (terminal deoxynucleotidyl transferase) loss as a marker of InO resistance. In conclusion, genetic alterations modulating CD22 expression and DNA damage response influence InO efficacy. Our findings highlight the importance of defining the basis of CD22 escape and eradication of residual disease before HSCT. The identified mechanisms of escape from CD22-targeted therapy extend beyond antigen loss and provide opportunities to improve therapeutic approaches and overcome resistance. These trials were registered at www.ClinicalTrials.gov as NCT01134575, NCT01371630, and NCT03441061.


Subject(s)
Drug Resistance, Neoplasm , Inotuzumab Ozogamicin , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Sialic Acid Binding Ig-like Lectin 2 , Humans , Sialic Acid Binding Ig-like Lectin 2/genetics , Drug Resistance, Neoplasm/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Female , Mutation , Male , Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Agents, Immunological/pharmacology , Adult , Middle Aged , Retrospective Studies , Adolescent
15.
Crit Rev Oncol Hematol ; 196: 104317, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38437908

ABSTRACT

B-cell acute lymphoblastic leukaemia (B-cell ALL) is a common haematologic cancer in children and adults. About 10 percent of children and 50 percent of adults fail to achieve a histological complete remission or subsequently relapse despite current anti-leukaemia drug therapies and/or haematopoietic cell transplants. Several new immune therapies including monoclonal antibodies and chimeric antigen receptor (CAR)-T-cells are proved safe and effective in this setting. We review data on US Food and Drug Administration (FDA)-approved immune therapies for B-cell ALL in children and adults including blinatumomab, inotuzumab ozogamicin, tisagenlecleucel, and brexucabtagene autoleucel. We also summarize pharmaco-dynamics, pharmaco-kinetics, and pharmaco-economics of these interventions.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Adult , Child , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Neoplasm Recurrence, Local/drug therapy , Inotuzumab Ozogamicin/therapeutic use , Antibodies, Monoclonal/therapeutic use
16.
Rinsho Ketsueki ; 65(2): 78-83, 2024.
Article in Japanese | MEDLINE | ID: mdl-38448002

ABSTRACT

A 25-year-old woman with a history of B-cell acute lymphoblastic leukemia over ten years ago was referred to our hospital with a chief complaint of leukoblastosis. She was participating in a JPLSG (Japanese Pediatric Leukemia/Lymphoma Study Group) clinical study at that time. We diagnosed ALL relapse by multi-color flow cytometric analysis of bone marrow samples at admission, with reference to previous JPLSG data. Because her leukemic cells were resistant to conventional cytotoxic agents, she proceeded to lymphocyte apheresis for chimeric antigen receptor T-cell (CAR-T, Tisagenlecleucel [Tisa-cel]). She received two cycles of inotuzumab ozogamicin as a bridging therapy to Tisa-cel, resulting in a hematological complete remission (minimal residual disease measured by polymerase chain reaction [PCR-MRD] was positive at 1.0×10-4). She was finally administered Tisa-cel and achieved MRD negativity. She is currently in complete remission with careful MRD monitoring. This strategy of sequential bi-targeted therapy combining antibody conjugates and CAR-T cells provides tumor control in deeper remission and minimal damage to organ function through reduced use of cytotoxic anti-tumor agents. Therefore, we believe that this therapeutic strategy is an effective and rational treatment for adolescent and young adult ALL patients.


Subject(s)
Burkitt Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Adolescent , Female , Child , Young Adult , Adult , Inotuzumab Ozogamicin/therapeutic use , Immunotherapy, Adoptive , Philadelphia Chromosome , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy
17.
Target Oncol ; 19(2): 135-141, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38457052

ABSTRACT

Older patients with acute lymphoblastic leukemia (ALL) have historically had poor outcomes (5-year survival rate, 20%) with standard intensive and dose-adjusted chemotherapy regimens, due to a high incidence of adverse biologic features including high-risk cytogenetics, presence of TP53 mutations, and poor tolerance to intensive therapy. Thus, there is an unmet medical need in this patient population. Inotuzumab ozogamicin is a humanized antibody-drug conjugate that targets CD22-positive leukemic blasts. It is approved for the treatment of relapsed or refractory ALL and has been shown to be effective and tolerable in older patients. Several ongoing trials in older patients with newly diagnosed ALL have yielded encouraging data with inotuzumab ozogamicin in induction alone and in combination with low-intensity chemotherapy. In this podcast, the authors summarize and highlight some of the recent findings on the use of inotuzumab ozogamicin as induction therapy for older adults with newly diagnosed ALL.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Aged , Inotuzumab Ozogamicin/pharmacology , Inotuzumab Ozogamicin/therapeutic use , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Antibodies, Monoclonal, Humanized/adverse effects
18.
Am J Hematol ; 99(5): 836-843, 2024 05.
Article in English | MEDLINE | ID: mdl-38400519

ABSTRACT

Here we report on the first prospective study evaluating the safety and long-term survival when an escalating dose of inotuzumab ozogamicin (INO) (0.6, 1.2, or 1.8 mg/m2 on day 13) was added to one alkylator-containing conditioning regimen in patients with relapsed CD22 (+) lymphoid malignancies who were candidates for hematopoietic stem cell transplantation (HSCT). Twenty-six patients were enrolled. Six (23%) of these patients entered the phase 1 study: four were treated at an INO dose of 0.6 mg/m2 and two at dose of 1.2 mg/m2. None of these patients experienced dose-limiting toxicities. The remaining 20 (77%) patients entered the phase 2 part of the study at the maximum dose of 1.8 mg/m2. One patient developed VOD; this patient had received nivolumab immediately before HSCT while simultaneously experiencing hyperacute graft-vs-host disease (GVHD). Treatment-related mortality (TRM) at 5 years was 12%. With a median follow-up of 48.7 months, the 5-year overall survival (OS) and progression-free survival (PFS) rates were 84% and 80%, respectively. Compared with a historical cohort who received same conditioning for HSCT but without INO (n = 56), the INO group showed no significant differences in incidence of liver toxicity, engraftment time, TRM, or risk of acute GVHD. Patients with lymphoma who received INO had a trend for a better 5-year OS (93% versus 68%) and PFS (93% versus 58%) than those in the control group. In conclusion, our results showed that INO is safe with no increased risk of VOD when combined with one alkylator-containing regimen of HSCT.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , Inotuzumab Ozogamicin , Prospective Studies , Recurrence , Hematopoietic Stem Cell Transplantation/adverse effects , Graft vs Host Disease/etiology , Alkylating Agents , Transplantation Conditioning/methods
19.
Blood ; 143(5): 380-382, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38300611
20.
Blood Adv ; 8(4): 909-915, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38207208

ABSTRACT

ABSTRACT: Preclinical studies suggest that Bcl-2 inhibition with venetoclax has antileukemic activity in acute lymphoblastic leukemia (ALL) and may synergize with conventional chemotherapy. We designed a phase 1/2 clinical trial to evaluate the safety and efficacy of low-intensity chemotherapy in combination with venetoclax in adults with relapsed or refractory ALL. Patients received the mini-hyper-CVD regimen (dose-attenuated hyperfractionated cyclophosphamide, vincristine, and dexamethasone alternating with methotrexate and cytarabine) in combination with venetoclax (200 mg or 400 mg daily) on days 1 to 14 in cycle 1 and on days 1 to 7 in consolidation cycles. Twenty-two patients were treated. The median number of prior therapies was 2 (range, 1-6). Thirteen patients (59%) had undergone prior allogeneic stem cell transplant (allo-SCT), and 7 of 18 patients (39%) with B-cell ALL had previously received both inotuzumab ozogamicin and blinatumomab. The recommended phase 2 dose of venetoclax in the combination regimen was 400 mg daily. The composite complete remission (CR) and CR with incomplete hematologic recovery (CRi) rate was 57% (CR, 43%; CRi, 14%), and 45% of responders achieved measurable residual disease negativity by multiparameter flow cytometry. Four patients proceeded to allo-SCT. The median duration of response was 6.3 months. The median overall survival was 7.1 months, and the 1-year overall survival rate was 29%. The most common grade ≥3 nonhematologic adverse events were infection in 17 patients (77%) and febrile neutropenia in 4 patients (18%). Overall, the combination of mini-hyper-CVD plus venetoclax was active in heavily pretreated relapsed/refractory ALL. Further development of venetoclax-based combinations in ALL is warranted. This trial is registered at www.clinicaltrials.gov as #NCT03808610.


Subject(s)
Cardiovascular Diseases , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Sulfonamides , Adult , Humans , Inotuzumab Ozogamicin/therapeutic use , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Bridged Bicyclo Compounds, Heterocyclic/adverse effects , Cardiovascular Diseases/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL