Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.916
Filter
1.
Parasit Vectors ; 17(1): 264, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890667

ABSTRACT

BACKGROUND: Fleas, considered to be the main transmission vectors of Bartonella, are highly prevalent and show great diversity. To date, no investigations have focused on Bartonella vectors in Southeast China. The aim of this study was to investigate the epidemiological and molecular characteristics of Bartonella in fleas in Southeast China. METHODS: From 2016 to 2022, flea samples (n = 1119) were collected from 863 rodent individuals in seven inland and coastal cities in Southeast China. Flea species, region, gender, host species and habitat were recorded. The DNA samples from each individual flea were screened by real-time PCR for the Bartonella ssrA gene. All positive samples were confirmed by PCR based on the presence of the gltA gene and sequenced. The factors associated with Bartonella infection were analyzed by the Chi-square test and Fisher's exact test. ANOVA and the t-test were used to compare Bartonella DNA load. RESULTS: Bartonella DNA was detected in 26.2% (293/1119) of the flea samples, including in 27.1% (284/1047) of Xenopsylla cheopis samples, 13.2% (5/38) of Monopsyllus anisus samples, 8.3% (2/24) of Leptopsylla segnis samples and 20.0% (2/10) of other fleas (Nosopsyllus nicanus, Ctenocephalides felis, Stivalius klossi bispiniformis and Neopsylla dispar fukienensis). There was a significant difference in the prevalence of Bartonella among flea species, sex, hosts, regions and habitats. Five species of Bartonella fleas were identified based on sequencing and phylogenetic analyses targeting the gltA gene: B. tribocorum, B. queenslandensis, B. elizabethae, B. rochalimae and B. coopersplainsensis. CONCLUSIONS: There is a high prevalence and diversity of Bartonella infection in the seven species of fleas collected in Southeast China. The detection of zoonotic Bartonella species in this study, including B. tribocorum, B. elizabethae and B. rochalimae, raises public health concerns.


Subject(s)
Bartonella Infections , Bartonella , Flea Infestations , Genetic Variation , Insect Vectors , Rodentia , Siphonaptera , Animals , Bartonella/genetics , Bartonella/isolation & purification , Bartonella/classification , China/epidemiology , Siphonaptera/microbiology , Bartonella Infections/epidemiology , Bartonella Infections/veterinary , Bartonella Infections/microbiology , Bartonella Infections/transmission , Rodentia/microbiology , Female , Flea Infestations/epidemiology , Flea Infestations/veterinary , Flea Infestations/parasitology , Insect Vectors/microbiology , Male , Phylogeny , DNA, Bacterial/genetics , Rodent Diseases/epidemiology , Rodent Diseases/microbiology , Rodent Diseases/parasitology , Prevalence
2.
BMC Infect Dis ; 24(1): 569, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849747

ABSTRACT

BACKGROUND: Flies are acknowledged as vectors of diseases transmitted through mechanical means and represent a significant risk to human health. The study aimed to determine the prevalence of enteropathogens carried by flies in Pudong New Area to inform strategies for preventing and controlling flies. METHODS: Samples were collected from various locations in the area using cage trapping techniques between April and November 2021, encompassing various habitats such as parks, residential areas, restaurants, and farmers' markets. The main fly species were identified using cryomicrography and taxonomic enumeration, with 20 samples per tube collected from different habitats. Twenty-five enteropathogens were screened using GI_Trial v3 TaqManTM microbial arrays. RESULTS: A total of 3,875 flies were collected from 6,400 placements, resulting in an average fly density of 0.61 flies per cage. M. domestica were the most common species at 39.85%, followed by L. sericata at 16.57% and B. peregrina at 13.14%. Out of 189 samples, 93 tested positive for enteropathogens, with nine different pathogens being found. 12.70% of samples exclusively had parasites, a higher percentage than those with only bacteria or viruses. The study found that M. domestica had fewer enteropathogens than L. sericata and B. peregrina, which primarily harbored B. hominis instead of bacteria and viruses such as E. coli, Astrovirus, and Sapovirus. During spring testing, all three fly species exhibited low rates of detecting enteropathogens. M. domestica were found in residential areas with the highest number of pathogen species, totaling six. In contrast, L. sericata and B. peregrina were identified in farmers' markets with the highest number of pathogen species, totaling six and seven, respectively. CONCLUSIONS: Flies have the potential to serve as vectors for the transmission of enteropathogens, thereby posing a substantial risk to public health.


Subject(s)
Insect Vectors , Animals , Humans , Insect Vectors/microbiology , Bacteria/isolation & purification , Bacteria/classification , Bacteria/genetics , China/epidemiology , Diptera/microbiology , Viruses/isolation & purification , Viruses/classification , Viruses/genetics , Muscidae/microbiology
3.
BMC Plant Biol ; 24(1): 576, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890568

ABSTRACT

BACKGROUND: Little leaf disease caused by phytoplasma infection is a significant threat to eggplant (also known as brinjal) cultivation in India. This study focused on the molecular characterisation of the phytoplasma strains and insect vectors responsible for its transmission and screening of brinjal germplasm for resistance to little leaf disease. RESULTS: Surveys conducted across districts in the Tamil Nadu state of India during 2021-2022 showed a higher incidence of phytoplasma during the Zaid (March to June), followed by Kharif (June to November) and Rabi (November to March) seasons with mean incidence ranging from 22 to 27%. As the name indicates, phytoplasma infection results in little leaf (reduction in leaf size), excessive growth of axillary shoots, virescence, phyllody, stunted growth, leaf chlorosis and witches' broom symptoms. PCR amplification with phytoplasma-specific primers confirmed the presence of this pathogen in all symptomatic brinjal plants and in Hishimonus phycitis (leafhopper), providing valuable insights into the role of leafhoppers in disease transmission. BLAST search and phylogenetic analysis revealed the phytoplasma strain as "Candidatus Phytoplasma trifolii". Insect population and disease dynamics are highly influenced by environmental factors such as temperature, relative humidity and rainfall. Further, the evaluation of 22 eggplant accessions revealed immune to highly susceptible responses where over 50% of the entries were highly susceptible. Finally, additive main effect and multiplicative interaction (AMMI) and won-where biplot analyses identified G18 as a best-performing accession for little leaf resistance due to its consistent responses across multiple environments. CONCLUSIONS: This research contributes essential information on little leaf incidence, symptoms, transmission and resistance profiles of different brinjal genotypes, which together ensure effective and sustainable management of this important disease of eggplants.


Subject(s)
Disease Resistance , Phytoplasma , Plant Diseases , Plant Leaves , Solanum melongena , Solanum melongena/microbiology , Solanum melongena/genetics , Plant Diseases/microbiology , Phytoplasma/physiology , Disease Resistance/genetics , Plant Leaves/microbiology , India , Phylogeny , Animals , Hemiptera/microbiology , Incidence , Insect Vectors/microbiology
4.
Front Cell Infect Microbiol ; 14: 1408362, 2024.
Article in English | MEDLINE | ID: mdl-38938879

ABSTRACT

The Asian citrus psyllid (ACP) Diaphorina citri Kuwayama is the leading vector of Candidatus Liberibacter asiaticus (CLas), the causative agent of citrus Huanglongbing (HLB) disease. The distribution and dynamics of CLas within ACP are critical to understanding how the transmission, spread and infection of CLas occurs within its host vector in nature. In this study, the distribution and titer changes of CLas in various tissues of ACP 5th instar nymphs and adults were examined by fluorescence in situ hybridization (FISH) and real-time quantitative PCR (qPCR) techniques. Results demonstrated that 100% of ACP 5th instar nymphs and adults were infected with CLas following feeding on infected plants, and that CLas had widespread distribution in most of the tissues of ACP. The titers of CLas within the midgut, salivary glands and hemolymph tissues were the highest in both 5th instar nymphs and adults. When compared with adults, the titers of CLas in these three tissues of 5th instar nymphs were significantly higher, while in the mycetome, ovary and testes they were significantly lower than those of adults. FISH visualization further confirmed these findings. Dynamic analysis of CLas demonstrated that it was present across all the developmental ages of ACP adults. There was a discernible upward trend in the presence of CLas with advancing age in most tissues of ACP adults, including the midgut, hemolymph, salivary glands, foot, head, cuticula and muscle. Our findings have significant implications for the comprehensive understanding of the transmission, dissemination and infestation of CLas, which is of much importance for developing novel strategies to halt the spread of CLas, and therefore contribute to the efficient prevention and control of HLB.


Subject(s)
Citrus , Hemiptera , In Situ Hybridization, Fluorescence , Insect Vectors , Nymph , Plant Diseases , Animals , Hemiptera/microbiology , Insect Vectors/microbiology , Plant Diseases/microbiology , Nymph/microbiology , Citrus/microbiology , Rhizobiaceae/genetics , Rhizobiaceae/physiology , Real-Time Polymerase Chain Reaction , Salivary Glands/microbiology , Hemolymph/microbiology
5.
Curr Opin Insect Sci ; 63: 101203, 2024 06.
Article in English | MEDLINE | ID: mdl-38705385

ABSTRACT

Vector-borne diseases are globally prevalent and represent a major socioeconomic problem worldwide. Blood-sucking arthropods transmit most pathogenic agents that cause these human infections. The pathogens transmission to their vertebrate hosts depends on how efficiently they infect their vector, which is particularly impacted by the microbiota residing in the intestinal lumen, as well as its cells or internal organs such as ovaries. The balance between costs and benefits provided by these interactions ultimately determines the outcome of the relationship. Here, we will explore aspects concerning the nature of microbe-vector interactions, including the adaptive traits required for their establishment, the varied outcomes of symbiotic interactions, as well as the factors influencing the transition of these relationships across a continuum from parasitism to mutualism.


Subject(s)
Arthropod Vectors , Symbiosis , Animals , Arthropod Vectors/microbiology , Arthropod Vectors/parasitology , Insect Vectors/microbiology , Insect Vectors/physiology , Vector Borne Diseases/transmission
6.
Comp Immunol Microbiol Infect Dis ; 110: 102200, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788400

ABSTRACT

Bed bugs, common blood-feeding pests, have received limited attention regarding their potential involvement in emerging pathogen transmission. This study aimed to investigate the main vector-borne bacteria within bed bugs collected from Tunisian governorates and to genetically characterize the identified species. Molecular screening was conducted on field-collected bed bug samples, targeting zoonotic vector-borne bacteria from the Anaplasmataceae family, as well as the genera Rickettsia, Ehrlichia, Bartonella, and Borrelia. A total of 119 Cimex lectularius specimens were collected and grouped into 14 pools based on sampling Tunisian sites. Using genus-specific PCR assays, DNA of Rickettsia and Ehrlichia spp. was detected in a single pool. Sequencing and BLAST analysis of the obtained partial ompB and dsb sequences from positive samples revealed 100% similarity with those of Ehrlichia canis and Rickettsia felis available in GenBank. Obtained partial sequences showed phylogenetic similarity to R. felis and E. canis isolates found in dogs and ticks from American and European countries. To the best of our knowledge, this study is the first to investigate bed bugs in Tunisia and to report the worldwide identification of R. felis and E. canis DNA in the common bed bug, C. lectularius. These findings highlight the need for further research to explore the potential role of bed bugs in the epidemiology of these vector-borne bacteria.


Subject(s)
Bedbugs , DNA, Bacterial , Ehrlichia canis , Phylogeny , Rickettsia felis , Animals , Bedbugs/microbiology , Rickettsia felis/genetics , Rickettsia felis/isolation & purification , Ehrlichia canis/genetics , Ehrlichia canis/isolation & purification , Tunisia/epidemiology , DNA, Bacterial/genetics , Dogs , Rickettsia Infections/microbiology , Rickettsia Infections/veterinary , Rickettsia Infections/epidemiology , Rickettsia Infections/transmission , Polymerase Chain Reaction , Insect Vectors/microbiology , Ehrlichiosis/microbiology , Ehrlichiosis/veterinary , Ehrlichiosis/epidemiology
7.
Microb Pathog ; 192: 106688, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750772

ABSTRACT

The unprecedented worldwide spread of the Citrus greening disorder, called Huanglongbing (HLB), has urged researchers for rapid interventions. HLB poses a considerable threat to global citriculture owing to its devastating impact on citrus species. This disease is caused by Candidatus Liberibacter species (CLs), primarily transferred through psyllid insects, such as Trioza erytreae and Diaphorina citri. It results in phloem malfunction, root decline, and altered plant source-sink relationships, leading to a deficient plant with minimal yield before it dies. Thus, many various techniques have been employed to eliminate HLB and control vector populations through the application of insecticides and antimicrobials. The latter have evidenced short-term efficiency. While nucleic acid-based analyses and symptom-based identification of the disease have been used for detection, they suffer from limitations such as false negatives, complex sample preparation, and high costs. To address these challenges, secreted protein-based biomarkers offer a promising solution for accurate, rapid, and cost-effective disease detection. This paper presents an overview of HLB symptoms in citrus plants, including leaf and fruit symptoms, as well as whole tree symptoms. The differentiation between HLB symptoms and those of nutrient deficiencies is discussed, emphasizing the importance of precise identification for effective disease management. The elusive nature of CLs and the challenges in culturing them in axenic cultures have hindered the understanding of their pathogenic mechanisms. However, genome sequencing has provided insights into CLs strains' metabolic traits and potential virulence factors. Efforts to identify potential host target genes for resistance are discussed, and a high-throughput antimicrobial testing method using Citrus hairy roots is introduced as a promising tool for rapid assessment of potential treatments. This review summarizes current challenges and novel therapies for HLB disease. It highlights the urgency of developing accurate and efficient detection methods and identifying the complex relations between CLs and their host plants. Transgenic citrus in conjunction with secreted protein-based biomarkers and innovative testing methodologies could revolutionize HLB management strategies toward achieving a sustainable citrus cultivation. It offers more reliable and practical solutions to combat this devastating disease and safeguard the global citriculture industry.


Subject(s)
Citrus , Plant Diseases , Citrus/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Animals , Hemiptera/microbiology , Rhizobiaceae/genetics , Rhizobiaceae/pathogenicity , Liberibacter/genetics , Plant Leaves/microbiology , Fruit/microbiology , Biomarkers , Insect Vectors/microbiology
8.
Proc Natl Acad Sci U S A ; 121(22): e2402911121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38776366

ABSTRACT

Leaf yellowing is a well-known phenotype that attracts phloem-feeding insects. However, it remains unclear how insect-vectored plant pathogens induce host leaf yellowing to facilitate their own transmission by insect vectors. Here, we report that an effector protein secreted by rice orange leaf phytoplasma (ROLP) inhibits chlorophyll biosynthesis and induces leaf yellowing to attract leafhopper vectors, thereby presumably promoting pathogen transmission. This effector, designated secreted ROLP protein 1 (SRP1), first secreted into rice phloem by ROLP, was subsequently translocated to chloroplasts by interacting with the chloroplastic glutamine synthetase (GS2). The direct interaction between SRP1 and GS2 disrupts the decamer formation of the GS2 holoenzyme, attenuating its enzymatic activity, thereby suppressing the synthesis of chlorophyll precursors glutamate and glutamine. Transgenic expression of SRP1 in rice plants decreased GS2 activity and chlorophyll precursor accumulation, finally inducing leaf yellowing. This process is correlated with the previous evidence that the knockout of GS2 expression in rice plants causes a similar yellow chlorosis phenotype. Consistently, these yellowing leaves attracted higher numbers of leafhopper vectors, caused the vectors to probe more frequently, and presumably facilitate more efficient phytoplasma transmission. Together, these results uncover the mechanism used by phytoplasmas to manipulate the leaf color of infected plants for the purpose of enhancing attractiveness to insect vectors.


Subject(s)
Chloroplasts , Glutamate-Ammonia Ligase , Hemiptera , Insect Vectors , Oryza , Phytoplasma , Plant Leaves , Animals , Hemiptera/microbiology , Glutamate-Ammonia Ligase/metabolism , Glutamate-Ammonia Ligase/genetics , Phytoplasma/physiology , Plant Leaves/microbiology , Plant Leaves/metabolism , Oryza/microbiology , Oryza/genetics , Insect Vectors/microbiology , Chloroplasts/metabolism , Plant Diseases/microbiology , Chlorophyll/metabolism , Plants, Genetically Modified , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
9.
PLoS Negl Trop Dis ; 18(5): e0012165, 2024 May.
Article in English | MEDLINE | ID: mdl-38771858

ABSTRACT

The infectious inoculum of a sand fly, apart from its metacyclic promastigotes, is composed of factors derived from both the parasite and the vector. Vector-derived factors, including salivary proteins and the gut microbiota, are essential for the establishment and enhancement of infection. However, the type and the number of bacteria egested during salivation is unclear. In the present study, sand flies of Phlebotomus papatasi were gathered from three locations in hyperendemic focus of zoonotic cutaneous leishmaniasis (ZCL) in Isfahan Province, Iran. By using the forced salivation assay and targeting the 16S rRNA barcode gene, egested bacteria were characterized in 99 (44%) out of 224 sand flies. Culture-dependent and culture-independent methods identified the members of Enterobacter cloacae and Spiroplasma species as dominant taxa, respectively. Ten top genera of Spiroplasma, Ralstonia, Acinetobacter, Reyranella, Undibacterium, Bryobacter, Corynebacterium, Cutibacterium, Psychrobacter, and Wolbachia constituted >80% of the saliva microbiome. Phylogenetic analysis displayed the presence of only one bacterial species for the Spiroplasma, Ralstonia, Reyranella, Bryobacter and Wolbachia, two distinct species for Cutibacterium, three for Undibacterium and Psychrobacter, 16 for Acinetobacter, and 27 for Corynebacterium, in the saliva. The abundance of microbes in P. papatasi saliva was determined by incorporating the data on the read counts and the copy number of 16S rRNA gene, about 9,000 bacterial cells, per sand fly. Both microbiological and metagenomic data indicate that bacteria are constant companions of Leishmania, from the intestine of the vector to the vertebrate host. This is the first forced salivation experiment in a sand fly, addressing key questions on infectious bite and competent vectors.


Subject(s)
Bacteria , Phlebotomus , Phylogeny , RNA, Ribosomal, 16S , Saliva , Animals , Phlebotomus/microbiology , RNA, Ribosomal, 16S/genetics , Saliva/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Iran , Insect Vectors/microbiology , Insect Vectors/physiology , Female , Microbiota , Leishmaniasis, Cutaneous/transmission , Leishmaniasis, Cutaneous/microbiology , Leishmaniasis, Cutaneous/parasitology , Male
10.
PLoS Biol ; 22(5): e3002625, 2024 May.
Article in English | MEDLINE | ID: mdl-38771885

ABSTRACT

Yersinia pestis, the causative agent of plague, is a highly lethal vector-borne pathogen responsible for killing large portions of Europe's population during the Black Death of the Middle Ages. In the wild, Y. pestis cycles between fleas and rodents; occasionally spilling over into humans bitten by infectious fleas. For this reason, fleas and the rats harboring them have been considered the main epidemiological drivers of previous plague pandemics. Human ectoparasites, such as the body louse (Pediculus humanus humanus), have largely been discounted due to their reputation as inefficient vectors of plague bacilli. Using a membrane-feeder adapted strain of body lice, we show that the digestive tract of some body lice become chronically infected with Y. pestis at bacteremia as low as 1 × 105 CFU/ml, and these lice routinely defecate Y. pestis. At higher bacteremia (≥1 × 107 CFU/ml), a subset of the lice develop an infection within the Pawlowsky glands (PGs), a pair of putative accessory salivary glands in the louse head. Lice that developed PG infection transmitted Y. pestis more consistently than those with bacteria only in the digestive tract. These glands are thought to secrete lubricant onto the mouthparts, and we hypothesize that when infected, their secretions contaminate the mouthparts prior to feeding, resulting in bite-based transmission of Y. pestis. The body louse's high level of susceptibility to infection by gram-negative bacteria and their potential to transmit plague bacilli by multiple mechanisms supports the hypothesis that they may have played a role in previous human plague pandemics and local outbreaks.


Subject(s)
Pediculus , Plague , Yersinia pestis , Animals , Yersinia pestis/pathogenicity , Yersinia pestis/physiology , Pediculus/microbiology , Pediculus/physiology , Humans , Plague/transmission , Plague/microbiology , Insect Vectors/microbiology , Insect Vectors/parasitology , Insect Bites and Stings/microbiology , Female , Male
11.
PLoS Negl Trop Dis ; 18(5): e0012194, 2024 May.
Article in English | MEDLINE | ID: mdl-38814945

ABSTRACT

Haemophilus ducreyi was historically known as the causative agent of chancroid, a sexually-transmitted disease causing painful genital ulcers endemic in many low/middle-income nations. In recent years the species has been implicated as the causative agent of nongenital cutaneous ulcers affecting children of the South Pacific Islands and West African countries. Much is still unknown about the mechanism of H. ducreyi transmission in these areas, and recent studies have identified local insect species, namely flies, as potential transmission vectors. H. ducreyi DNA has been detected on the surface and in homogenates of fly species sampled from Lihir Island, Papua New Guinea. The current study develops a model system using Musca domestica, the common house fly, as a model organism to demonstrate proof of concept that flies are a potential vector for the transmission of viable H. ducreyi. Utilizing a green fluorescent protein (GFP)-tagged strain of H. ducreyi and three separate exposure methods, we detected the transmission of viable H. ducreyi by 86.11% ± 22.53% of flies sampled. Additionally, the duration of H. ducreyi viability was found to be directly related to the bacterial concentration, and transmission of H. ducreyi was largely undetectable within one hour of initial exposure. Push testing, Gram staining, and PCR were used to confirm the identity and presence of GFP colonies as H. ducreyi. This study confirms that flies are capable of mechanically transmitting viable H. ducreyi, illuminating the importance of investigating insects as vectors of cutaneous ulcerative diseases.


Subject(s)
Chancroid , Haemophilus ducreyi , Houseflies , Animals , Houseflies/microbiology , Haemophilus ducreyi/genetics , Haemophilus ducreyi/isolation & purification , Chancroid/transmission , Chancroid/microbiology , Papua New Guinea , Insect Vectors/microbiology , Female , Male
12.
Phytopathology ; 114(5): 869-884, 2024 May.
Article in English | MEDLINE | ID: mdl-38557216

ABSTRACT

An unprecedented plant health emergency in olives has been registered over the last decade in Italy, arguably more severe than what occurred repeatedly in grapes in the United States in the last 140 years. These emergencies are epidemics caused by a stealthy pathogen, the xylem-limited, insect-transmitted bacterium Xylella fastidiosa. Although these epidemics spurred research that answered many questions about the biology and management of this pathogen, many gaps in knowledge remain. For this review, we set out to represent both the U.S. and European perspectives on the most pressing challenges that need to be addressed. These are presented in 10 sections that we hope will stimulate discussion and interdisciplinary research. We reviewed intrinsic problems that arise from the fastidious growth of X. fastidiosa, the lack of specificity for insect transmission, and the economic and social importance of perennial mature woody plant hosts. Epidemiological models and predictions of pathogen establishment and disease expansion, vital for preparedness, are based on very limited data. Most of the current knowledge has been gathered from a few pathosystems, whereas several hundred remain to be studied, probably including those that will become the center of the next epidemic. Unfortunately, aspects of a particular pathosystem are not always transferable to others. We recommend diversification of research topics of both fundamental and applied nature addressing multiple pathosystems. Increasing preparedness through knowledge acquisition is the best strategy to anticipate and manage diseases caused by this pathogen, described as "the most dangerous plant bacterium known worldwide."


Subject(s)
Insect Vectors , Plant Diseases , Xylella , Xylem , Xylella/physiology , Xylella/pathogenicity , Plant Diseases/microbiology , Plant Diseases/prevention & control , Xylem/microbiology , Animals , Insect Vectors/microbiology , Olea/microbiology , Insecta/microbiology , United States , Vitis/microbiology
13.
Pest Manag Sci ; 80(8): 4013-4023, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38554028

ABSTRACT

BACKGROUND: Citrus huanglongbing (HLB) is a devastating disease caused by Candidatus Liberibacter asiaticus (CLas) that affects the citrus industry. In nature, CLas relies primarily on Diaphorina citri Kuwayama as its vector for dissemination. After D. citri ingests CLas-infected citrus, the pathogen infiltrates the insect's body, where it thrives, reproduces, and exerts regulatory control over the growth and metabolism of D. citri. Previous studies have shown that CLas alters the composition of proteins in the saliva of D. citri, but the functions of these proteins remain largely unknown. RESULTS: In this study, we detected two proteins (DcitSGP1 and DcitSGP3) with high expression levels in CLas-infected D. citri. Quantitative PCR and Western blotting analysis showed that the two proteins were highly expressed in the salivary glands and delivered into the host plant during feeding. Silencing the two genes significantly decreased the survival rate for D. citri, reduced phloem nutrition sucking and promoted jasmonic acid (JA) defenses in citrus. By contrast, after overexpressing the two genes in citrus, the expression levels of JA pathway-associated genes decreased. CONCLUSION: Our results suggest that CLas can indirectly suppress the defenses of citrus and support feeding by D. citri via increasing the levels of effectors in the insect's saliva. This discovery facilitates further research into the interaction between insect vectors and pathogens. © 2024 Society of Chemical Industry.


Subject(s)
Citrus , Cyclopentanes , Hemiptera , Oxylipins , Rhizobiaceae , Hemiptera/microbiology , Hemiptera/physiology , Hemiptera/metabolism , Cyclopentanes/metabolism , Oxylipins/metabolism , Animals , Citrus/microbiology , Rhizobiaceae/physiology , Plant Diseases/microbiology , Liberibacter/metabolism , Insect Vectors/microbiology , Insect Vectors/physiology
14.
J Invertebr Pathol ; 204: 108078, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38438078

ABSTRACT

The spittlebug Philaenus spumarius (Hemiptera: Aphrophoridae) is the predominant vector of Xylella fastidiosa (Xanthomonadales: Xanthomonadaceae) in Apulia, Italy and the rest of Europe. Current control strategies of the insect vector rely on mechanical management of nymphal stages and insecticide application against adult populations. Entomopathogenic fungi (EPF) are biological control agents naturally attacking spittlebugs and may effectively reduce population levels of host species. Different experimental trials in controlled conditions have been performed to i) identify naturally occurring EPF on P, spumarius in Northwestern Italy, and ii) evaluate the potential for biocontrol of the isolated strains on both nymphal and adult stages of the spittlebug. Four EPF species were isolated from dead P. spumarius collected in semi-field conditions: Beauveria bassiana, Conidiobolus coronatus, Fusarium equiseti and Lecanicillium aphanocladii. All the fungal isolates showed entomopathogenic potential against nymphal stages of P. spumarius (≈ 45 % mortality), except for F. equiseti, in preliminary trials. No induced mortality was observed on adult stage. Lecanicillium aphanocladii was the most promising fungus and its pathogenicity against spittlebug nymphs was further tested in different formulations (conidia vs blastospores) and with natural adjuvants. Blastospore formulation was the most effective in killing nymphal instars and reducing the emergence rate of P, spumarius adults, reaching mortality levels (90%) similar to those of the commercial product Naturalis®, while no or adverse effect of natural adjuvants was recorded. The encouraging results of this study pave way for testing EPF isolates against P, spumarius in field conditions and find new environmentally friendly control strategies against insect vectors of X. fastidiosa.


Subject(s)
Hemiptera , Nymph , Pest Control, Biological , Animals , Nymph/microbiology , Nymph/growth & development , Pest Control, Biological/methods , Hemiptera/microbiology , Beauveria/pathogenicity , Beauveria/physiology , Insect Vectors/microbiology , Fusarium , Italy , Xylella/physiology , Hypocreales/physiology , Hypocreales/pathogenicity
15.
J Med Entomol ; 61(1): 201-211, 2024 01 12.
Article in English | MEDLINE | ID: mdl-38038662

ABSTRACT

Plague is a zoonotic vector-borne disease caused by the bacterium Yersinia pestis. In Madagascar, it persists in identified foci, where it is a threat to public health generally from September to April. A more complete understanding of how the disease persists could guide control strategies. Fleas are the main vector for transmission between small mammal hosts and humans, and fleas likely play a role in the maintenance of plague. This study characterized the dynamics of flea populations in plague foci alongside the occurrence of human cases. From 2018 to 2020, small mammals were trapped at sites in the central Highlands of Madagascar. A total of 2,762 small mammals were captured and 5,295 fleas were collected. The analysis examines 2 plague vector species in Madagascar (Synopsyllus fonquerniei and Xenopsylla cheopis). Generalized linear models were used to relate flea abundance to abiotic factors, with adjustments for trap location and flea species. We observed significant effects of abiotic factors on the abundance, intensity, and infestation rate by the outdoor-associated flea species, S. fonquerniei, but weak seasonality for the indoor-associated flea species, X. cheopis. A difference in the timing of peak abundance was observed between the 2 flea species during and outside the plague season. While the present study did not identify a clear link between flea population dynamics and plague maintenance, as only one collected X. cheopis was infected, the results presented herein can be used by local health authorities to improve monitoring and control strategies of plague vector fleas in Madagascar.


Subject(s)
Flea Infestations , Plague , Siphonaptera , Yersinia pestis , Animals , Humans , Plague/microbiology , Siphonaptera/microbiology , Insect Vectors/microbiology , Flea Infestations/epidemiology , Flea Infestations/veterinary , Mammals , Population Dynamics
16.
PLoS One ; 18(10): e0291734, 2023.
Article in English | MEDLINE | ID: mdl-37792900

ABSTRACT

A comprehensive list of all known host plant species utilised by the Meadow Spittlebug (Philaenus spumarius (L.)) is presented, compiled from published and unpublished sources. P. spumarius feeds on 1311 host plants in 631 genera and 117 families. This appears, by a large margin, to be the greatest number of host species exploited by any herbivorous insect. The Asteraceae (222 species) and Rosaceae (110) together account for 25% of all host species. The Fabaceae (76) and Poaceae (73), are nearly tied for third and fourth place and these four families, combined with the Lamiaceae (62), Apiaceae (50), Brassicaceae (43) and Caprifoliaceae (34), comprise about half of all host species. Hosts are concentrated among herbaceous dicots but range from ferns and grasses to shrubs and trees. Philaenus spumarius is an "extreme polyphage", which appears to have evolved from a monophage ancestor in the past 3.7 to 7.9 million years. It is also the primary European vector of the emerging plant pathogen Xylella fastidiosa. Its vast host range suggests that it has the potential to spread X. fastidiosa among multiple hosts in any environment in which both the spittlebug and bacterium are present. Fully 47.9% of all known hosts were recorded in the Xylella-inspired BRIGIT citizen science P. spumarius host survey, including 358 hosts new to the documentary record, 27.3% of the 1311 total. This is a strong demonstration of the power of organized amateur observers to contribute to scientific knowledge.


Subject(s)
Hemiptera , Herbivory , Humans , Animals , Insect Vectors/microbiology , Hemiptera/microbiology , Host Specificity , Poaceae , Trees
17.
Phytopathology ; 113(10): 1805-1816, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37160668

ABSTRACT

Plant bacterial pathogens transmitted by hemipteran vectors pose a large threat to the agricultural industry worldwide. Although virus-vector relationships have been widely investigated, a significant gap exists in our understanding of the molecular interactions between circulative bacteria and their insect vectors, mainly leafhoppers and psyllids. In this review, we will describe how these bacterial pathogens adhere, invade, and proliferate inside their insect vectors. We will also highlight the different transmission routes and molecular factors of phloem-limited bacteria that maintain an effective relationship with the insect host. Understanding the pathogen-vector relationship at the molecular level will help in the management of vector-borne bacterial diseases.


Subject(s)
Hemiptera , Plant Diseases , Animals , Plant Diseases/microbiology , Hemiptera/microbiology , Bacteria/genetics , Insect Vectors/microbiology
18.
Environ Entomol ; 52(2): 243-253, 2023 04 18.
Article in English | MEDLINE | ID: mdl-36869841

ABSTRACT

Insects often harbor bacterial endosymbionts that provide them with nutritional benefit or with protection against natural enemies, plant defenses, insecticides, and abiotic stresses. Certain endosymbionts may also alter acquisition and transmission of plant pathogens by insect vectors. We identified bacterial endosymbionts from four leafhopper vectors (Hemiptera: Cicadellidae) of 'Candidatus Phytoplasma' species by direct sequencing 16S rDNA and confirmed endosymbiont presence and identity by species-specific conventional PCR. We examined three vectors of Ca. Phytoplasma pruni, causal agent of cherry X-disease [Colladonus geminatus (Van Duzee), Colladonus montanus reductus (Van Duzee), Euscelidius variegatus (Kirschbaum)] - and a vector of Ca. Phytoplasma trifolii, the causal agent of potato purple top disease [Circulifer tenellus (Baker)]. Direct sequencing of 16S identified the two obligate endosymbionts of leafhoppers, 'Ca. Sulcia' and 'Ca. Nasuia', which are known to produce essential amino acids lacking in the leafhoppers' phloem sap diet. About 57% of C. geminatus also harbored endosymbiotic Rickettsia. We identified 'Ca. Yamatotoia cicadellidicola' in Euscelidius variegatus, providing just the second host record for this endosymbiont. Circulifer tenellus harbored the facultative endosymbiont Wolbachia, although the average infection rate was only 13% and all males were Wolbachia-uninfected. A significantly greater percentage of Wolbachia-infected Ci. tenellus adults than uninfected adults carried Ca. P. trifolii, suggesting that Wolbachia may increase this insect's ability to tolerate or acquire this pathogen. Results of our study provide a foundation for continued work on interactions between leafhoppers, bacterial endosymbionts, and phytoplasma.


Subject(s)
Hemiptera , Phytoplasma , Male , Animals , Hemiptera/genetics , Phytoplasma/genetics , Bacteria/genetics , Polymerase Chain Reaction , Insect Vectors/microbiology , Plant Diseases/microbiology
19.
Appl Environ Microbiol ; 89(4): e0209122, 2023 04 26.
Article in English | MEDLINE | ID: mdl-36939324

ABSTRACT

Yersinia pestis (the agent of flea-borne plague) must obstruct the flea's proventriculus to maintain transmission to a mammalian host. To this end, Y. pestis must consolidate a mass that entrapped Y. pestis within the proventriculus very early after its ingestion. We developed a semiautomated fluorescent image analysis method and used it to monitor and compare colonization of the flea proventriculus by a fully competent flea-blocking Y. pestis strain, a partially competent strain, and a noncompetent strain. Our data suggested that flea blockage results primarily from the replication of Y. pestis trapped in the anterior half of the proventriculus. However, consolidation of the bacteria-entrapping mass and colonization of the entire proventricular lumen increased the likelihood of flea blockage. The data also showed that consolidation of the bacterial mass is not a prerequisite for colonization of the proventriculus but allowed Y. pestis to maintain itself in a large flea population for an extended period of time. Taken as the whole, the data suggest that a strategy targeting bacterial mass consolidation could significantly reduce the likelihood of Y. pestis being transmitted by fleas (due to gut blockage), but also the possibility of using fleas as a long-term reservoir. IMPORTANCE Yersinia pestis (the causative agent of plague) is one of the deadliest bacterial pathogens. It circulates primarily among rodent populations and their fleas. Better knowledge of the mechanisms leading to the flea-borne transmission of Y. pestis is likely to generate strategies for controlling or even eradicating this bacillus. It is known that Y. pestis obstructs the flea's foregut so that the insect starves, frantically bites its mammalian host, and regurgitates Y. pestis at the bite site. Here, we developed a semiautomated fluorescent image analysis method and used it to document and compare foregut colonization and disease progression in fleas infected with a fully competent flea-blocking Y. pestis strain, a partially competent strain, and a noncompetent strain. Overall, our data provided new insights into Y. pestis' obstruction of the proventriculus for transmission but also the ecology of plague.


Subject(s)
Plague , Siphonaptera , Yersinia pestis , Animals , Siphonaptera/microbiology , Plague/microbiology , Proventriculus , Microscopy , Insect Vectors/microbiology , Mammals
20.
Phytopathology ; 113(9): 1686-1696, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36774557

ABSTRACT

The bacterium Xylella fastidiosa is mainly transmitted by the meadow spittlebug Philaenus spumarius in Europe, where it has caused significant economic damage to olive and almond trees. Understanding the factors that determine disease dynamics in pathosystems that share similarities can help to design control strategies focused on minimizing transmission chains. Here, we introduce a compartmental model for X. fastidiosa-caused diseases in Europe that accounts for the main relevant epidemiological processes, including the seasonal dynamics of P. spumarius. The model was confronted with epidemiological data from the two major outbreaks of X. fastidiosa in Europe, the olive quick disease syndrome in Apulia, Italy, caused by the subspecies pauca, and the almond leaf scorch disease in Mallorca, Spain, caused by subspecies multiplex and fastidiosa. Using a Bayesian inference framework, we show how the model successfully reproduces the general field data in both diseases. In a global sensitivity analysis, the vector-to-plant and plant-to-vector transmission rates, together with the vector removal rate, were the most influential parameters in determining the time of the infectious host population peak, the incidence peak, and the final number of dead hosts. We also used our model to check different vector-based control strategies, showing that a joint strategy focused on increasing the rate of vector removal while lowering the number of annual newborn vectors is optimal for disease control. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Olea , Prunus dulcis , Xylella , Animals , Epidemiological Models , Seasons , Bayes Theorem , Plant Diseases/microbiology , Insect Vectors/microbiology , Olea/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...