Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.254
Filter
1.
J Exp Med ; 221(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38953896

ABSTRACT

Gain-of-function mutations in STING cause STING-associated vasculopathy with onset in infancy (SAVI) characterized by early-onset systemic inflammation, skin vasculopathy, and interstitial lung disease. Here, we report and characterize a novel STING variant (F269S) identified in a SAVI patient. Single-cell transcriptomics of patient bone marrow revealed spontaneous activation of interferon (IFN) and inflammatory pathways across cell types and a striking prevalence of circulating naïve T cells was observed. Inducible STING F269S expression conferred enhanced signaling through ligand-independent translocation of the protein to the Golgi, protecting cells from viral infections but preventing their efficient immune priming. Additionally, endothelial cell activation was promoted and further exacerbated by cytokine secretion by SAVI immune cells, resulting in inflammation and endothelial damage. Our findings identify STING F269S mutation as a novel pathogenic variant causing SAVI, highlight the importance of the crosstalk between endothelial and immune cells in the context of lung disease, and contribute to a better understanding of how aberrant STING activation can cause pathology.


Subject(s)
Endothelial Cells , Membrane Proteins , Humans , Infant , Endothelial Cells/metabolism , Endothelial Cells/pathology , Gain of Function Mutation , Golgi Apparatus/metabolism , Interferons/metabolism , Interferons/genetics , Lung Diseases, Interstitial/genetics , Lung Diseases, Interstitial/pathology , Lung Diseases, Interstitial/immunology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mutation , Signal Transduction , Vascular Diseases/genetics , Vascular Diseases/pathology , Infant, Newborn , Child, Preschool , Female
2.
JCI Insight ; 9(13)2024 May 21.
Article in English | MEDLINE | ID: mdl-38973611

ABSTRACT

Optimization of protective immune responses against SARS-CoV-2 remains an urgent worldwide priority. In this regard, type III IFN (IFN-λ) restricts SARS-CoV-2 infection in vitro, and treatment with IFN-λ limits infection, inflammation, and pathogenesis in murine models. Furthermore, IFN-λ has been developed for clinical use to limit COVID-19 severity. However, whether endogenous IFN-λ signaling has an effect on SARS-CoV-2 antiviral immunity and long-term immune protection in vivo is unknown. In this study, we identified a requirement for IFN-λ signaling in promoting viral clearance and protective immune programming in SARS-CoV-2 infection of mice. Expression of both IFN and IFN-stimulated gene (ISG) in the lungs were minimally affected by the absence of IFN-λ signaling and correlated with transient increases in viral titers. We found that IFN-λ supported the generation of protective CD8 T cell responses against SARS-CoV-2 by facilitating accumulation of CD103+ DC in lung draining lymph nodes (dLN). IFN-λ signaling specifically in DCs promoted the upregulation of costimulatory molecules and the proliferation of CD8 T cells. Intriguingly, antigen-specific CD8 T cell immunity to SARS-CoV-2 was independent of type I IFN signaling, revealing a nonredundant function of IFN-λ. Overall, these studies demonstrate a critical role for IFN-λ in protective innate and adaptive immunity upon infection with SARS-CoV-2 and suggest that IFN-λ serves as an immune adjuvant to support CD8 T cell immunity.


Subject(s)
CD8-Positive T-Lymphocytes , COVID-19 , Interferon Type I , SARS-CoV-2 , Animals , CD8-Positive T-Lymphocytes/immunology , SARS-CoV-2/immunology , Mice , COVID-19/immunology , COVID-19/virology , Interferon Type I/immunology , Interferon Type I/metabolism , Lung/immunology , Lung/virology , Signal Transduction/immunology , Disease Models, Animal , Interferon Lambda , Interferons/immunology , Interferons/metabolism , Mice, Inbred C57BL , Mice, Knockout , Dendritic Cells/immunology , Humans
3.
Molecules ; 29(13)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38999177

ABSTRACT

A short 19 bp dsRNA with 3'-trinucleotide overhangs acting as immunostimulating RNA (isRNA) demonstrated strong antiproliferative action against cancer cells, immunostimulatory activity through activation of cytokines and Type-I IFN secretion, as well as anti-tumor and anti-metastatic effects in vivo. The aim of this study was to determine the tolerance of chemical modifications (2'-F, 2'-OMe, PS, cholesterol, and amino acids) located at different positions within this isRNA to its ability to activate the innate immune system. The obtained duplexes were tested in vivo for their ability to activate the synthesis of interferon-α in mice, and in tumor cell cultures for their ability to inhibit their proliferation. The obtained data show that chemical modifications in the composition of isRNA have different effects on its individual functions, including interferon-inducing and antiproliferative effects. The effect of modifications depends not only on the type of modification but also on its location and the surrounding context of the modifications. This study made it possible to identify leader patterns of modifications that enhance the properties of isRNA: F2/F2 and F2_S/F2 for interferon-inducing activity, as well as F2_S5/F2_S5, F2-NH2/F2-NH2, and Ch-F2/Ch-F2 for antiproliferative action. These modifications can improve the pharmacokinetic and pharmacodynamic properties, as well as increase the specificity of isRNA action to obtain the desired effect.


Subject(s)
Cell Proliferation , RNA, Double-Stranded , RNA, Double-Stranded/pharmacology , RNA, Double-Stranded/chemistry , Animals , Cell Proliferation/drug effects , Mice , Humans , Cell Line, Tumor , Interferon-alpha/metabolism , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/chemistry , Interferons/metabolism
4.
Int J Mol Sci ; 25(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39000027

ABSTRACT

Cytokines, chemokines, and interferons are released in response to viral infection with the ultimate aim of viral clearance. However, in SARS-CoV-2 infection, there is an imbalanced immune response, with raised cytokine levels but only a limited interferon response with inefficient viral clearance. Furthermore, the inflammatory response can be exaggerated, which risks both acute and chronic sequelae. Several observational studies have suggested a reduced risk of progression to severe COVID-19 in subjects with a higher omega-3 index. However, randomized studies of omega-3 supplementation have failed to replicate this benefit. Omega-3 fats provide important anti-inflammatory effects; however, fatty fish contains many other fatty acids that provide health benefits distinct from omega-3. Therefore, the immune health benefit of whole salmon oil (SO) was assessed in adults with mild to moderate COVID-19. Eleven subjects were randomized to best supportive care (BSC) with or without a full spectrum, enzymatically liberated SO, dosed at 4g daily, for twenty-eight days. Nasal swabs were taken to measure the change in gene expression of markers of immune response and showed that the SO provided both broad inflammation-resolving effects and improved interferon response. The results also suggest improved lung barrier function and enhanced immune memory, although the clinical relevance needs to be assessed in longer-duration studies. In conclusion, the salmon oil was well tolerated and provided broad inflammation-resolving effects, indicating a potential to enhance immune health.


Subject(s)
COVID-19 , Chemokines , Cytokines , Fish Oils , Interferons , SARS-CoV-2 , Humans , Fish Oils/pharmacology , Fish Oils/therapeutic use , COVID-19/immunology , COVID-19/virology , Male , Interferons/metabolism , Interferons/genetics , SARS-CoV-2/immunology , Cytokines/metabolism , Female , Middle Aged , Chemokines/metabolism , Chemokines/genetics , Adult , COVID-19 Drug Treatment , Fatty Acids, Omega-3/pharmacology
5.
Nat Commun ; 15(1): 5842, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992037

ABSTRACT

Activating interferon responses with STING agonists (STINGa) is a current cancer immunotherapy strategy, and therapeutic modalities that enable tumor-targeted delivery via systemic administration could be beneficial. Here we demonstrate that tumor cell-directed STING agonist antibody-drug-conjugates (STINGa ADCs) activate STING in tumor cells and myeloid cells and induce anti-tumor innate immune responses in in vitro, in vivo (in female mice), and ex vivo tumor models. We show that the tumor cell-directed STINGa ADCs are internalized into myeloid cells by Fcγ-receptor-I in a tumor antigen-dependent manner. Systemic administration of STINGa ADCs in mice leads to STING activation in tumors, with increased anti-tumor activity and reduced serum cytokine elevations compared to a free STING agonist. Furthermore, STINGa ADCs induce type III interferons, which contribute to the anti-tumor activity by upregulating type I interferon and other key chemokines/cytokines. These findings reveal an important role for type III interferons in the anti-tumor activity elicited by STING agonism and provide rationale for the clinical development of tumor cell-directed STINGa ADCs.


Subject(s)
Immunity, Innate , Immunoconjugates , Interferons , Membrane Proteins , Animals , Membrane Proteins/agonists , Membrane Proteins/immunology , Immunity, Innate/drug effects , Female , Humans , Mice , Cell Line, Tumor , Immunoconjugates/pharmacology , Immunoconjugates/administration & dosage , Interferons/metabolism , Interferon Lambda , Neoplasms/immunology , Neoplasms/drug therapy , Interferon Type I/immunology , Cytokines/metabolism , Myeloid Cells/immunology , Myeloid Cells/drug effects , Immunotherapy/methods , Mice, Inbred C57BL , Receptors, IgG/agonists , Receptors, IgG/metabolism , Receptors, IgG/immunology
6.
Viruses ; 16(6)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38932225

ABSTRACT

The innate immune system, particularly the interferon (IFN) system, constitutes the initial line of defense against viral infections. IFN signaling induces the expression of interferon-stimulated genes (ISGs), and their products frequently restrict viral infection. Retroviruses like the human immunodeficiency viruses and the human T-lymphotropic viruses cause severe human diseases and are targeted by ISG-encoded proteins. Here, we discuss ISGs that inhibit the translation of retroviral mRNAs and thereby retrovirus propagation. The Schlafen proteins degrade cellular tRNAs and rRNAs needed for translation. Zinc Finger Antiviral Protein and RNA-activated protein kinase inhibit translation initiation factors, and Shiftless suppresses translation recoding essential for the expression of retroviral enzymes. We outline common mechanisms that underlie the antiviral activity of multifunctional ISGs and discuss potential antiretroviral therapeutic approaches based on the mode of action of these ISGs.


Subject(s)
Interferons , Protein Biosynthesis , Retroviridae , Humans , Interferons/immunology , Interferons/metabolism , Interferons/genetics , Retroviridae/genetics , Retroviridae/physiology , Immunity, Innate , Animals , Signal Transduction , Retroviridae Infections/virology , Retroviridae Infections/immunology , Retroviridae Infections/genetics
7.
Viruses ; 16(6)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38932230

ABSTRACT

Type I interferons (IFN-Is) are pivotal in innate immunity against human immunodeficiency virus I (HIV-1) by eliciting the expression of IFN-stimulated genes (ISGs), which encompass potent host restriction factors. While ISGs restrict the viral replication within the host cell by targeting various stages of the viral life cycle, the lesser-known IFN-repressed genes (IRepGs), including RNA-binding proteins (RBPs), affect the viral replication by altering the expression of the host dependency factors that are essential for efficient HIV-1 gene expression. Both the host restriction and dependency factors determine the viral replication efficiency; however, the understanding of the IRepGs implicated in HIV-1 infection remains greatly limited at present. This review provides a comprehensive overview of the current understanding regarding the impact of the RNA-binding protein families, specifically the two families of splicing-associated proteins SRSF and hnRNP, on HIV-1 gene expression and viral replication. Since the recent findings show specifically that SRSF1 and hnRNP A0 are regulated by IFN-I in various cell lines and primary cells, including intestinal lamina propria mononuclear cells (LPMCs) and peripheral blood mononuclear cells (PBMCs), we particularly discuss their role in the context of the innate immunity affecting HIV-1 replication.


Subject(s)
HIV Infections , HIV-1 , Immunity, Innate , Virus Replication , HIV-1/genetics , HIV-1/physiology , Humans , HIV Infections/virology , HIV Infections/genetics , HIV Infections/immunology , Gene Expression Regulation, Viral , RNA Splicing Factors/metabolism , RNA Splicing Factors/genetics , Interferon Type I/metabolism , Interferon Type I/genetics , Host-Pathogen Interactions/immunology , Host-Pathogen Interactions/genetics , Interferons/metabolism , Interferons/genetics , Interferons/immunology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
8.
Viruses ; 16(6)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38932231

ABSTRACT

Porcine hemagglutinating encephalomyelitis virus (PHEV) replicates in the upper respiratory tract and tonsils of pigs. Using an air-liquid interface porcine respiratory epithelial cells (ALI-PRECs) culture system, we demonstrated that PHEV disrupts respiratory epithelia homeostasis by impairing ciliary function and inducing antiviral, pro-inflammatory cytokine, and chemokine responses. This study explores the mechanisms driving early innate immune responses during PHEV infection through host transcriptome analysis. Total RNA was collected from ALI-PRECs at 24, 36, and 48 h post inoculation (hpi). RNA-seq analysis was performed using an Illumina Hiseq 600 to generate 100 bp paired-end reads. Differential gene expression was analyzed using DeSeq2. PHEV replicated actively in ALI-PRECs, causing cytopathic changes and progressive mucociliary disruption. Transcriptome analysis revealed downregulation of cilia-associated genes such as CILK1, DNAH11, LRRC-23, -49, and -51, and acidic sialomucin CD164L2. PHEV also activated antiviral signaling pathways, significantly increasing the expression of interferon-stimulated genes (RSAD2, MX1, IFIT, and ISG15) and chemokine genes (CCL5 and CXCL10), highlighting inflammatory regulation. This study contributes to elucidating the molecular mechanisms of the innate immune response to PHEV infection of the airway epithelium, emphasizing the critical roles of the mucociliary, interferon, and chemokine responses.


Subject(s)
Betacoronavirus 1 , Epithelial Cells , Gene Expression Profiling , Interferons , Animals , Swine , Epithelial Cells/virology , Epithelial Cells/immunology , Interferons/genetics , Interferons/metabolism , Interferons/immunology , Betacoronavirus 1/immunology , Betacoronavirus 1/genetics , Immunity, Innate , Virus Replication , Coronavirus Infections/immunology , Coronavirus Infections/virology , Coronavirus Infections/veterinary , Cytokines/metabolism , Cytokines/genetics , Cytokines/immunology , Transcriptome , Respiratory Mucosa/virology , Respiratory Mucosa/immunology , Swine Diseases/virology , Swine Diseases/immunology , Swine Diseases/genetics , Cells, Cultured , Deltacoronavirus
9.
Nat Commun ; 15(1): 4920, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858353

ABSTRACT

The differentiation of the stroma is a hallmark event during postnatal uterine development. However, the spatiotemporal changes that occur during this process and the underlying regulatory mechanisms remain elusive. Here, we comprehensively delineated the dynamic development of the neonatal uterus at single-cell resolution and characterized two distinct stromal subpopulations, inner and outer stroma. Furthermore, single-cell RNA sequencing revealed that uterine ablation of Pr-set7, the sole methyltransferase catalyzing H4K20me1, led to a reduced proportion of the inner stroma due to massive cell death, thus impeding uterine development. By combining RNA sequencing and epigenetic profiling of H4K20me1, we demonstrated that PR-SET7-H4K20me1 either directly repressed the transcription of interferon stimulated genes or indirectly restricted the interferon response via silencing endogenous retroviruses. Declined H4K20me1 level caused viral mimicry responses and ZBP1-mediated apoptosis and necroptosis in stromal cells. Collectively, our study provides insight into the epigenetic machinery governing postnatal uterine stromal development mediated by PR-SET7.


Subject(s)
Epigenesis, Genetic , Histone-Lysine N-Methyltransferase , Stromal Cells , Uterus , Female , Animals , Uterus/metabolism , Stromal Cells/metabolism , Mice , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Interferons/metabolism , Interferons/genetics , Endogenous Retroviruses/genetics , Apoptosis/genetics , Mice, Inbred C57BL , Cell Death/genetics , Necroptosis/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Histones/metabolism , Single-Cell Analysis , Mice, Knockout , Cell Differentiation/genetics
10.
Curr Opin Immunol ; 87: 102430, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38824869

ABSTRACT

Lambda interferons (IFNλs), also termed type III interferons (IFNs) or interleukins-28/29, have been in the shadow of type I IFNs for a long time. Their common induction mechanisms and signalling cascades with type I IFNs have made difficult the unwinding of their unique nonredundant functions. However, this is now changing with mounting evidence supporting a major role of IFNλs as a specialized antiviral defense system in the body, mediating protection at mucosal barrier surfaces while limiting immunopathology. Here, we review the latest progress on the complex activities of IFNλs in the respiratory tract, focusing on their multiple effects in IFNλ receptor-expressing cells, the modulation of innate and adaptive immune responses in the context of infections and respiratory diseases, and their similarities and differences with type I IFNs. We also discuss their potential in therapeutic applications and the most recent developments in that direction.


Subject(s)
Adaptive Immunity , Immunity, Innate , Interferon Lambda , Interferons , Respiratory System , Humans , Animals , Interferons/metabolism , Interferons/immunology , Respiratory System/immunology , Respiratory System/metabolism , Signal Transduction/immunology , Interferon Type I/metabolism , Interferon Type I/immunology
12.
Elife ; 132024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941138

ABSTRACT

SARS-CoV-2 induces delayed type-I/III interferon production, allowing it to escape the early innate immune response. The delay has been attributed to a deficiency in the ability of cells to sense viral replication upon infection, which in turn hampers activation of the antiviral state in bystander cells. Here, we introduce a cellular automaton model to investigate the spatiotemporal spreading of viral infection as a function of virus and host-dependent parameters. The model suggests that the considerable person-to-person heterogeneity in SARS-CoV-2 infections is a consequence of high sensitivity to slight variations in biological parameters near a critical threshold. It further suggests that within-host viral proliferation can be curtailed by the presence of remarkably few cells that are primed for IFN production. Thus, the observed heterogeneity in defense readiness of cells reflects a remarkably cost-efficient strategy for protection.


Subject(s)
COVID-19 , SARS-CoV-2 , SARS-CoV-2/physiology , Humans , COVID-19/virology , COVID-19/immunology , Virus Replication , Immunity, Innate , Epithelial Cells/virology , Interferons/metabolism
13.
Vet Res ; 55(1): 83, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943190

ABSTRACT

Migratory birds are important vectors for virus transmission, how migratory birds recognize viruses and viruses are sustained in birds is still enigmatic. As an animal model for waterfowl among migratory birds, studying and dissecting the antiviral immunity and viral evasion in duck cells may pave a path to deciphering these puzzles. Here, we studied the mechanism of antiviral autophagy mediated by duck STING in DEF cells. The results collaborated that duck STING could significantly enhance LC3B-II/I turnover, LC3B-EGFP puncta formation, and mCherry/EGFP ratio, indicating that duck STING could induce autophagy. The autophagy induced by duck STING is not affected by shRNA knockdown of ATG5 expression, deletion of the C-terminal tail of STING, or TBK1 inhibitor BX795 treatment, indicating that duck STING activated non-classical selective autophagy is independent of interaction with TBK1, TBK1 phosphorylation, and interferon (IFN) signaling. The STING R235A mutant and Sar1A/B kinase mutant abolished duck STING induced autophagy, suggesting binding with cGAMP and COPII complex mediated transport are the critical prerequisite. Duck STING interacted with LC3B through LIR motifs to induce autophagy, the LIR 4/7 motif mutants of duck STING abolished the interaction with LC3B, and neither activated autophagy nor IFN expression, indicating that duck STING associates with LC3B directed autophagy and dictated innate immunity activation. Finally, we found that duck STING mediated autophagy significantly inhibited duck plague virus (DPV) infection via ubiquitously degraded viral proteins. Our study may shed light on one scenario about the control and evasion of diseases transmitted by migratory birds.


Subject(s)
Autophagy , Ducks , Signal Transduction , Animals , Mardivirus/physiology , Interferons/metabolism , Alphaherpesvirinae/physiology , Immunity, Innate , Membrane Proteins/metabolism , Membrane Proteins/genetics , Poxviridae Infections/veterinary , Poxviridae Infections/immunology , Poxviridae Infections/virology
14.
Nature ; 631(8019): 189-198, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38898278

ABSTRACT

The COVID-19 pandemic is an ongoing global health threat, yet our understanding of the dynamics of early cellular responses to this disease remains limited1. Here in our SARS-CoV-2 human challenge study, we used single-cell multi-omics profiling of nasopharyngeal swabs and blood to temporally resolve abortive, transient and sustained infections in seronegative individuals challenged with pre-Alpha SARS-CoV-2. Our analyses revealed rapid changes in cell-type proportions and dozens of highly dynamic cellular response states in epithelial and immune cells associated with specific time points and infection status. We observed that the interferon response in blood preceded the nasopharyngeal response. Moreover, nasopharyngeal immune infiltration occurred early in samples from individuals with only transient infection and later in samples from individuals with sustained infection. High expression of HLA-DQA2 before inoculation was associated with preventing sustained infection. Ciliated cells showed multiple immune responses and were most permissive for viral replication, whereas nasopharyngeal T cells and macrophages were infected non-productively. We resolved 54 T cell states, including acutely activated T cells that clonally expanded while carrying convergent SARS-CoV-2 motifs. Our new computational pipeline Cell2TCR identifies activated antigen-responding T cells based on a gene expression signature and clusters these into clonotype groups and motifs. Overall, our detailed time series data can serve as a Rosetta stone for epithelial and immune cell responses and reveals early dynamic responses associated with protection against infection.


Subject(s)
COVID-19 , Nasopharynx , SARS-CoV-2 , Single-Cell Analysis , T-Lymphocytes , Humans , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Nasopharynx/virology , Nasopharynx/immunology , T-Lymphocytes/immunology , T-Lymphocytes/virology , Interferons/immunology , Interferons/metabolism , Male , Female , Macrophages/immunology , Macrophages/virology , Virus Replication , Epithelial Cells/virology , Epithelial Cells/immunology , Time Factors , Adult
15.
Int J Mol Sci ; 25(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891862

ABSTRACT

RNA processing is a highly conserved mechanism that serves as a pivotal regulator of gene expression. Alternative processing generates transcripts that can still be translated but lead to potentially nonfunctional proteins. A plethora of respiratory viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), strategically manipulate the host's RNA processing machinery to circumvent antiviral responses. We integrated publicly available omics datasets to systematically analyze isoform-level expression and delineate the nascent peptide landscape of SARS-CoV-2-infected human cells. Our findings explore a suggested but uncharacterized mechanism, whereby SARS-CoV-2 infection induces the predominant expression of unproductive splicing isoforms in key IFN signaling, interferon-stimulated (ISGs), class I MHC, and splicing machinery genes, including IRF7, HLA-B, and HNRNPH1. In stark contrast, cytokine and chemokine genes, such as IL6 and TNF, predominantly express productive (protein-coding) splicing isoforms in response to SARS-CoV-2 infection. We postulate that SARS-CoV-2 employs an unreported tactic of exploiting the host splicing machinery to bolster viral replication and subvert the immune response by selectively upregulating unproductive splicing isoforms from antigen presentation and antiviral response genes. Our study sheds new light on the molecular interplay between SARS-CoV-2 and the host immune system, offering a foundation for the development of novel therapeutic strategies to combat COVID-19.


Subject(s)
Alternative Splicing , COVID-19 , Interferons , Protein Isoforms , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/virology , COVID-19/genetics , COVID-19/immunology , Protein Isoforms/genetics , Protein Isoforms/metabolism , Interferons/metabolism , Interferons/genetics , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism
16.
Emerg Microbes Infect ; 13(1): 2372344, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38916407

ABSTRACT

The Orthopoxvirus (OPXV) genus of the Poxviridae includes human pathogens variola virus (VARV), monkeypox virus (MPXV), vaccinia virus (VACV), and a number of zoonotic viruses. A number of Bcl-2-like proteins of VACV are involved in escaping the host innate immunity. However, little work has been devoted to the evolution and function of their orthologues in other OPXVs. Here, we found that MPXV protein P2, encoded by the P2L gene, and P2 orthologues from other OPXVs, such as VACV protein N2, localize to the nucleus and antagonize interferon (IFN) production. Exceptions to this were the truncated P2 orthologues in camelpox virus (CMLV) and taterapox virus (TATV) that lacked the nuclear localization signal (NLS). Mechanistically, the NLS of MPXV P2 interacted with karyopherin α-2 (KPNA2) to facilitate P2 nuclear translocation, and competitively inhibited KPNA2-mediated IRF3 nuclear translocation and downstream IFN production. Deletion of the NLS in P2 or orthologues significantly enhanced IRF3 nuclear translocation and innate immune responses, thereby reducing viral replication. Moreover, deletion of NLS from N2 in VACV attenuated viral replication and virulence in mice. These data demonstrate that the NLS-mediated translocation of P2 is critical for P2-induced inhibition of innate immunity. Our findings contribute to an in-depth understanding of the mechanisms of OPXV P2 orthologue in innate immune evasion.


Subject(s)
Immunity, Innate , Interferon Regulatory Factor-3 , Monkeypox virus , Nuclear Localization Signals , Viral Proteins , Animals , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics , Mice , Humans , Viral Proteins/genetics , Viral Proteins/metabolism , Viral Proteins/immunology , Nuclear Localization Signals/genetics , Monkeypox virus/genetics , Monkeypox virus/immunology , HEK293 Cells , alpha Karyopherins/genetics , alpha Karyopherins/metabolism , Immune Evasion , Cell Nucleus/metabolism , Interferons/genetics , Interferons/immunology , Interferons/metabolism , Poxviridae Infections/immunology , Poxviridae Infections/virology , Poxviridae Infections/veterinary , Mice, Inbred C57BL
17.
Mol Cell ; 84(13): 2423-2435.e5, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38917796

ABSTRACT

The innate immune cGAS-STING pathway is activated by cytosolic double-stranded DNA (dsDNA), a ubiquitous danger signal, to produce interferon, a potent anti-viral and anti-cancer cytokine. However, STING activation must be tightly controlled because aberrant interferon production leads to debilitating interferonopathies. Here, we discover PELI2 as a crucial negative regulator of STING. Mechanistically, PELI2 inhibits the transcription factor IRF3 by binding to phosphorylated Thr354 and Thr356 on the C-terminal tail of STING, leading to ubiquitination and inhibition of the kinase TBK1. PELI2 sets a threshold for STING activation that tolerates low levels of cytosolic dsDNA, such as that caused by silenced TREX1, RNASEH2B, BRCA1, or SETX. When this threshold is reached, such as during viral infection, STING-induced interferon production temporarily downregulates PELI2, creating a positive feedback loop allowing a robust immune response. Lupus patients have insufficient PELI2 levels and high basal interferon production, suggesting that PELI2 dysregulation may drive the onset of lupus and other interferonopathies.


Subject(s)
Interferon Regulatory Factor-3 , Membrane Proteins , Protein Serine-Threonine Kinases , Signal Transduction , Ubiquitination , Humans , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Phosphorylation , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics , Animals , HEK293 Cells , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/metabolism , Lupus Erythematosus, Systemic/virology , Immunity, Innate , Host-Pathogen Interactions , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Mice , Interferons/metabolism , Interferons/immunology , Interferons/genetics , Feedback, Physiological , Mice, Inbred C57BL , Exodeoxyribonucleases , Phosphoproteins
18.
Virulence ; 15(1): 2359470, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38918890

ABSTRACT

Influenza A virus (IAV) is the leading cause of highly contagious respiratory infections, which poses a serious threat to public health. The non-structural protein 1 (NS1) is encoded by segment 8 of IAV genome and is expressed in high levels in host cells upon IAV infection. It is the determinant of virulence and has multiple functions by targeting type Ι interferon (IFN-I) and type III interferon (IFN-III) production, disrupting cell apoptosis and autophagy in IAV-infected cells, and regulating the host fitness of influenza viruses. This review will summarize the current research on the NS1 including the structure and related biological functions of the NS1 as well as the interaction between the NS1 and host cells. It is hoped that this will provide some scientific basis for the prevention and control of the influenza virus.


Subject(s)
Influenza A virus , Influenza, Human , Viral Nonstructural Proteins , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Humans , Influenza A virus/genetics , Influenza A virus/pathogenicity , Influenza A virus/physiology , Influenza, Human/virology , Animals , Autophagy , Virulence , Host-Pathogen Interactions , Apoptosis , Interferons/metabolism , Interferons/immunology , Interferons/genetics
19.
Mol Cell ; 84(13): 2436-2454.e10, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38925114

ABSTRACT

Signal transduction proteins containing a pLxIS motif induce interferon (IFN) responses central to antiviral immunity. Apart from their established roles in activating the IFN regulator factor (IRF) transcription factors, the existence of additional pathways and functions associated with the pLxIS motif is unknown. Using a synthetic biology-based platform, we identified two orphan pLxIS-containing proteins that stimulate IFN responses independent of all known pattern-recognition receptor pathways. We further uncovered a diversity of pLxIS signaling mechanisms, where the pLxIS motif represents one component of a multi-motif signaling entity, which has variable functions in activating IRF3, the TRAF6 ubiquitin ligase, IκB kinases, mitogen-activated protein kinases, and metabolic activities. The most diverse pLxIS signaling mechanisms were associated with the highest antiviral activities in human cells. The flexibility of domains that regulate IFN signaling may explain their prevalence in nature.


Subject(s)
Interferon Regulatory Factor-3 , Interferons , Signal Transduction , TNF Receptor-Associated Factor 6 , Humans , Interferons/metabolism , HEK293 Cells , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics , TNF Receptor-Associated Factor 6/metabolism , TNF Receptor-Associated Factor 6/genetics , I-kappa B Kinase/metabolism , I-kappa B Kinase/genetics , Protein Domains , Animals , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Amino Acid Motifs , Mitogen-Activated Protein Kinases/metabolism
20.
Am J Hum Genet ; 111(7): 1352-1369, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38866022

ABSTRACT

Primary proteasomopathies have recently emerged as a new class of rare early-onset neurodevelopmental disorders (NDDs) caused by pathogenic variants in the PSMB1, PSMC1, PSMC3, or PSMD12 proteasome genes. Proteasomes are large multi-subunit protein complexes that maintain cellular protein homeostasis by clearing ubiquitin-tagged damaged, misfolded, or unnecessary proteins. In this study, we have identified PSMD11 as an additional proteasome gene in which pathogenic variation is associated with an NDD-causing proteasomopathy. PSMD11 loss-of-function variants caused early-onset syndromic intellectual disability and neurodevelopmental delay with recurrent obesity in 10 unrelated children. Our findings demonstrate that the cognitive impairment observed in these individuals could be recapitulated in Drosophila melanogaster with depletion of the PMSD11 ortholog Rpn6, which compromised reversal learning. Our investigations in subject samples further revealed that PSMD11 loss of function resulted in impaired 26S proteasome assembly and the acquisition of a persistent type I interferon (IFN) gene signature, mediated by the integrated stress response (ISR) protein kinase R (PKR). In summary, these data identify PSMD11 as an additional member of the growing family of genes associated with neurodevelopmental proteasomopathies and provide insights into proteasomal biology in human health.


Subject(s)
Drosophila melanogaster , Intellectual Disability , Loss of Function Mutation , Neurodevelopmental Disorders , Obesity , Phenotype , Proteasome Endopeptidase Complex , Humans , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Obesity/genetics , Animals , Male , Child , Female , Drosophila melanogaster/genetics , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Child, Preschool , Adolescent , Interferons/metabolism , Interferons/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...