Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 690
Filter
1.
Steroids ; 211: 109503, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39208922

ABSTRACT

Anabolic-androgenic steroids (AAS) abuse is linked to some abnormalities in several tissues including the kidney. However, the precise molecular mediators involved in AAS-induced kidney disorder remain elusive. The main objective of the present study was to investigate the effect of Nandrolone decanoate on kidney injury alone or in combination with moderate exercise and its related mechanisms. Thirty-two male Wistar rats were subdivided randomly into four groups. control (Con), Nandrolone (10 mg/kg)(N), Exercise (Exe), Nandrolone + Exercise (N+Exe). RESULTS: After 6 weeks, nandrolone treatment led to a significant increase in functional parameters such as serum cystatin c, urea, creatinine, albuminuria and Albumin/ creatinine ratio indicating kidney dysfunction. Moreover, nandrolone treatment increased vacuolization, focal inflammation, hemorragia, cast formation fibrosis in the renal tissue of rats. miRNA-146a increased in kidney tissue after nandrolone exposure by using RT-PCR which may be considered idealtheranomiRNAcandidates for diagnosis and treatment. Western blotting indicated that IRAK1, TRAF6, TNF-α, NF-κB, iNOS and TGF-ß protein expressions were considerably elevated in the kidneys of nandrolone treated rats. Moderate exercise could alleviate the renal dysfunction, histological abnormalities and aforementioned proteins. Our findings suggested that nandrolone consumption can cause damage to kidney tissue probably through miRNA-146a targeting IRAK1 and TRAF6 via activation of the NF-κB and TGF-ß pathway. These results provide future lines of research in the identification of theranoMiRNAs related to nandrolone treatment, which can be ameliorated by moderate exercise.


Subject(s)
Interleukin-1 Receptor-Associated Kinases , MicroRNAs , NF-kappa B , Nandrolone Decanoate , Physical Conditioning, Animal , Rats, Wistar , TNF Receptor-Associated Factor 6 , Animals , Male , MicroRNAs/genetics , MicroRNAs/metabolism , NF-kappa B/metabolism , Rats , TNF Receptor-Associated Factor 6/metabolism , TNF Receptor-Associated Factor 6/genetics , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/genetics , Nandrolone/pharmacology , Nandrolone/adverse effects , Signal Transduction/drug effects , Kidney/metabolism , Kidney/drug effects , Kidney/pathology
2.
J Autoimmun ; 148: 103300, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39116634

ABSTRACT

The mechanisms of endotoxin tolerance (ET), which down-regulate inflammation, are well described in response to exogenous toll-like receptor ligands, but few studies have focused on ET-associated mechanisms in inflammatory disease. As blocking TNF can attenuate the development of ET, the effect of anti-TNF on the expression of key ET-associated molecules in inflammatory auto-immune disease was measured; changes in inflammatory gene expression were confirmed using an ET bioassay. The expression of immunomodulatory molecules was measured in a murine model of arthritis treated with anti-TNF and the expression of ET-associated molecules was measured in whole blood in rheumatoid arthritis (RA) and ankylosing spondylitis (AS) patients, before and after therapy. The expression of ET-associated genes was also measured in RA patient monocytes before and after therapy, in anti-TNF responders and non-responders. Tnfaip3, Ptpn6 and Irak3 were differentially expressed in affected paws, spleens, lymph nodes and circulating leucocytes in experimental murine arthritis treated with anti-TNF. Prior to therapy, the expression of TNFAIP3, INPP5D, PTPN6, CD38 and SIGIRR in whole blood differed between human healthy controls and RA or AS patients. In blood monocytes from RA patients, the expression of TNFAIP3 was significantly reduced by anti-TNF therapy in non-responders. Prior to therapy, anti-TNF non-responders had higher expression of TNFAIP3 and SLPI, compared to responders. Although the expression of TNFAIP3 was significantly higher in RA non-responders prior to treatment, the post-treatment reduction to a level similar to responders did not coincide with a clinical response to therapy.


Subject(s)
Arthritis, Rheumatoid , Endotoxins , Immune Tolerance , Spondylitis, Ankylosing , Tumor Necrosis Factor alpha-Induced Protein 3 , Tumor Necrosis Factor-alpha , Animals , Humans , Mice , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/immunology , Immune Tolerance/drug effects , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Endotoxins/immunology , Spondylitis, Ankylosing/drug therapy , Spondylitis, Ankylosing/immunology , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Male , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/genetics , Female , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Arthritis, Experimental/immunology , Arthritis, Experimental/drug therapy , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Monocytes/immunology , Monocytes/metabolism , Monocytes/drug effects , Middle Aged , Adult , Inflammation/immunology , Disease Models, Animal
3.
Clin Immunol ; 266: 110327, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39053866

ABSTRACT

This study retrospectively investigated the impact of interleukin-1 receptor-associated kinase-3 (IRAK-3/IRAK-M) silencing by methylation on the likelihood of multiple sclerosis (MS) activity. This cross-sectional study included 90 patients with MS: 45 with active disease (Group 1), 45 in remission (Group 2), and 45 healthy controls. The study included quantitation of IRAK-3 methylation index (MI%), IRAK-3 mRNA, and myeloid differentiation factor88 (MyD88) and assessment of NF-κB activity. IRAK-3 MI% was significantly higher in group 1 compared to group 2, accompanied by lower IRAK-3 mRNA expression, elevated circulating MyD88, and increased NF-κB activity. IRAK-3 MI% correlated negatively with its transcript and positively with MyD88 and NF-κB activity. A logistic regression model was created to predict active demyelination. The C-index was 0.924, which indicates a very strong prediction model. Within the limitations of current work, IRAK-3 methylation level seems to be a promising candidate biomarker for identifying MS patients at risk of relapse.


Subject(s)
Interleukin-1 Receptor-Associated Kinases , Multiple Sclerosis , Myeloid Differentiation Factor 88 , Humans , Interleukin-1 Receptor-Associated Kinases/genetics , Interleukin-1 Receptor-Associated Kinases/metabolism , Female , Male , Adult , Multiple Sclerosis/genetics , Multiple Sclerosis/blood , Multiple Sclerosis/immunology , Myeloid Differentiation Factor 88/genetics , Middle Aged , Cross-Sectional Studies , NF-kappa B/metabolism , NF-kappa B/genetics , Recurrence , Retrospective Studies , DNA Methylation , Biomarkers/blood , RNA, Messenger/genetics , RNA, Messenger/metabolism , Young Adult
4.
Sci Rep ; 14(1): 16393, 2024 07 16.
Article in English | MEDLINE | ID: mdl-39014006

ABSTRACT

The search for dementia treatments, including treatments for neuropsychiatric lupus (NPSLE), has not yet uncovered useful therapeutic targets that mitigate underlying inflammation. Currently, NPSLE's limited treatment options are often accompanied by severe toxicity. Blocking toll-like receptor (TLR) and IL-1 receptor signal transduction by inhibiting interleukin-1 receptor-associated kinase 4 (IRAK4) offers a new pathway for intervention. Using a pre-clinical NPSLE model, we compare lupus-like B6.MRL-Faslpr (MRL) mice with B6.MRL-Faslpr-IRAK4 kinase-dead (MRL-IRAK4-KD) mice, which are were less prone to 'general' lupus-like symptoms. We demonstrate that lupus-prone mice with a mutation in the kinase domain of IRAK4 no longer display typical lupus hallmarks such as splenomegaly, inflammation, production of hormones, and anti-double-stranded (ds)DNA antibody. water maze behavioral testing, which measures contextual associative learning, revealed that mice without functional IRAK4 displayed a recovery in memory acquisition deficits. RNA-seq approach revealed that cytokine and hormone signaling converge on the JAK/STAT pathways in the mouse hippocampus. Ultimately, the targets identified in this work may result in broad clinical value that can fill the significant scientific and therapeutic gaps precluding development of cures for dementia.


Subject(s)
Interleukin-1 Receptor-Associated Kinases , Lupus Vasculitis, Central Nervous System , Animals , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/genetics , Mice , Lupus Vasculitis, Central Nervous System/immunology , Lupus Vasculitis, Central Nervous System/metabolism , Disease Models, Animal , Female , Signal Transduction
5.
Immunobiology ; 229(5): 152835, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38986278

ABSTRACT

Podocytes maintain renal filtration integrity when the glomerular filtration barrier (GFB) is integrated. Impairment or attrition of podocytes, leading to compromised GFB permeability, constitutes the primary etiology of proteinuria and is a hallmark pathological feature of diabetic nephropathy (DN). This study centers on Heterogeneous Nuclear Ribonucleoprotein I (HNRNP I), an RNA-binding protein, delineating its role in facilitating DN-induced renal damage by modulating podocyte health. Comparative analyses in renal biopsy specimens from DN patients and high-glucose-challenged podocyte models in vitro revealed a marked downregulation of HNRNP I expression relative to normal renal tissues and podocytes. In vitro assays demonstrated that high-glucose conditions precipitated a significant reduction in podocyte viability and an escalation in markers indicative of apoptosis. Conversely, HNRNP I overexpression was found to restore podocyte viability and attenuate apoptotic indices. IRAK1, a gene encoding a protein integral to inflammatory signaling, was shown to interact with HNRNP I, which promotes IRAK1 degradation. This interaction culminates in suppressing the PI3K/AKT/mTOR signaling pathway, thereby diminishing podocyte apoptosis and mitigating renal damage in DN. This investigation unveils the mechanistic role of HNRNP I in DN for the first time, potentially informing novel therapeutic strategies for DN renal impairment.


Subject(s)
Apoptosis , Diabetic Nephropathies , Interleukin-1 Receptor-Associated Kinases , Podocytes , Signal Transduction , Podocytes/metabolism , Podocytes/pathology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/etiology , Diabetic Nephropathies/pathology , Humans , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/genetics , Proteolysis , Inflammation , TOR Serine-Threonine Kinases/metabolism , Glucose/metabolism , Heterogeneous Nuclear Ribonucleoprotein A1/metabolism , Heterogeneous Nuclear Ribonucleoprotein A1/genetics
6.
Sci Rep ; 14(1): 15009, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951638

ABSTRACT

Ulcerative colitis (UC) is a chronic inflammatory bowel disease with intricate pathogenesis and varied presentation. Accurate diagnostic tools are imperative to detect and manage UC. This study sought to construct a robust diagnostic model using gene expression profiles and to identify key genes that differentiate UC patients from healthy controls. Gene expression profiles from eight cohorts, encompassing a total of 335 UC patients and 129 healthy controls, were analyzed. A total of 7530 gene sets were computed using the GSEA method. Subsequent batch correction, PCA plots, and intersection analysis identified crucial pathways and genes. Machine learning, incorporating 101 algorithm combinations, was employed to develop diagnostic models. Verification was done using four external cohorts, adding depth to the sample repertoire. Evaluation of immune cell infiltration was undertaken through single-sample GSEA. All statistical analyses were conducted using R (Version: 4.2.2), with significance set at a P value below 0.05. Employing the GSEA method, 7530 gene sets were computed. From this, 19 intersecting pathways were discerned to be consistently upregulated across all cohorts, which pertained to cell adhesion, development, metabolism, immune response, and protein regulation. This corresponded to 83 unique genes. Machine learning insights culminated in the LASSO regression model, which outperformed others with an average AUC of 0.942. This model's efficacy was further ratified across four external cohorts, with AUC values ranging from 0.694 to 0.873 and significant Kappa statistics indicating its predictive accuracy. The LASSO logistic regression model highlighted 13 genes, with LCN2, ASS1, and IRAK3 emerging as pivotal. Notably, LCN2 showcased significantly heightened expression in active UC patients compared to both non-active patients and healthy controls (P < 0.05). Investigations into the correlation between these genes and immune cell infiltration in UC highlighted activated dendritic cells, with statistically significant positive correlations noted for LCN2 and IRAK3 across multiple datasets. Through comprehensive gene expression analysis and machine learning, a potent LASSO-based diagnostic model for UC was developed. Genes such as LCN2, ASS1, and IRAK3 hold potential as both diagnostic markers and therapeutic targets, offering a promising direction for future UC research and clinical application.


Subject(s)
Colitis, Ulcerative , Machine Learning , Humans , Colitis, Ulcerative/genetics , Colitis, Ulcerative/diagnosis , Algorithms , Gene Expression Profiling/methods , Transcriptome , Interleukin-1 Receptor-Associated Kinases/genetics , Male , Female , Lipocalin-2/genetics , Case-Control Studies , Biomarkers , Adult
7.
Eur J Pharmacol ; 978: 176773, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38936453

ABSTRACT

The interleukin-1 receptor-associated kinase (IRAK) family is a group of serine-threonine kinases that regulates various cellular processes via toll-like receptor (TLR)/interleukin-1 receptor (IL1R)-mediated signaling. The IRAK family comprises four members, including IRAK1, IRAK2, IRAK3, and IRAK4, which play an important role in the expression of various inflammatory genes, thereby contributing to the inflammatory response. IRAKs are key proteins in chronic and acute liver diseases, and recent evidence has implicated IRAK family proteins (IRAK1, IRAK3, and IRAK4) in the progression of liver-related disorders, including alcoholic liver disease, non-alcoholic steatohepatitis, hepatitis virus infection, acute liver failure, liver ischemia-reperfusion injury, and hepatocellular carcinoma. In this article, we provide a comprehensive review of the role of IRAK family proteins and their associated inflammatory signaling pathways in the pathogenesis of liver diseases. The purpose of this study is to explore whether IRAK family proteins can serve as the main target for the treatment of liver related diseases.


Subject(s)
Interleukin-1 Receptor-Associated Kinases , Liver Diseases , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/genetics , Humans , Liver Diseases/metabolism , Animals , Signal Transduction
8.
Dis Model Mech ; 17(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38881329

ABSTRACT

MECP2 duplication syndrome (MDS) is a neurodevelopmental disorder caused by tandem duplication of the MECP2 locus and its surrounding genes, including IRAK1. Current MDS mouse models involve transgenic expression of MECP2 only, limiting their applicability to the study of the disease. Herein, we show that an efficient and precise CRISPR/Cas9 fusion proximity-based approach can be utilized to generate an Irak1-Mecp2 tandem duplication mouse model ('Mecp2 Dup'). The Mecp2 Dup mouse model recapitulates the genomic landscape of human MDS by harboring a 160 kb tandem duplication encompassing Mecp2 and Irak1, representing the minimal disease-causing duplication, and the neighboring genes Opn1mw and Tex28. The Mecp2 Dup model exhibits neuro-behavioral abnormalities, and an abnormal immune response to infection not previously observed in other mouse models, possibly owing to Irak1 overexpression. The Mecp2 Dup model thus provides a tool to investigate MDS disease mechanisms and develop potential therapies applicable to patients.


Subject(s)
Disease Models, Animal , Gene Duplication , Interleukin-1 Receptor-Associated Kinases , Mental Retardation, X-Linked , Methyl-CpG-Binding Protein 2 , Animals , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Interleukin-1 Receptor-Associated Kinases/genetics , Interleukin-1 Receptor-Associated Kinases/metabolism , Mental Retardation, X-Linked/genetics , Mental Retardation, X-Linked/pathology , Humans , Mice, Inbred C57BL , Mice , CRISPR-Cas Systems/genetics , Behavior, Animal , Male
9.
J Immunol ; 213(3): 362-372, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38847613

ABSTRACT

IL-1R-associated kinases (IRAKs) are signal transducers of the TLR/IL-1R-MyD88-TRAF6 pathways. Vertebrates possess two IRAK lineages, IRAK1/2/3 and IRAK4. In mammals, IRAK4/IRAK1 and IRAK4/IRAK2 are pathway enhancers, whereas IRAK3 is a repressor. However, in bony fish, IRAK2 is absent, and it remains elusive how fish IRAK1/3/4 functionally differ from their mammalian counterparts. In this study, we explored this using the zebrafish model. First, we showed that in human 293T cells, zebrafish IRAK1 and IRAK4 were components of the Myddosome (MyD88-IRAK4-IRAK1) complex, with IRAK1 serving as a potent pathway enhancer. Then, we discovered two zebrafish IRAK3 variants: one (IRAK3a) contains an N-terminal Death domain, a middle pseudokinase domain, and a C-terminal TRAF6-binding domain, whereas the other (IRAK3b) lost both the kinase and TRAF6-binding domains. This truncation of IRAK3 variants could be a conserved phenomenon in fish, because it is also observed in trout and grass carp. We proceeded to show that zebrafish IRAK3a acts as a pathway enhancer by binding with MyD88 and TRAF6, but its activity is milder than IRAK1, possibly because it has no kinase activity. Zebrafish IRAK3b, however, plays a sheer negative role, apparently because of its lack of kinase and TRAF6-binding domains. Moreover, zebrafish IRAK3a/3b inhibit the activity of IRAK1/4, not by interacting with IRAK1/4 but possibly by competing for MyD88 and TRAF6. Finally, we have verified the essential activities of zebrafish IRAK1/3a/3b/4 in zebrafish cells and embryos. In summary, to our knowledge, our findings provide new insights into the molecular functions of fish IRAKs and the evolution of the IRAK functional modes in vertebrates.


Subject(s)
Interleukin-1 Receptor-Associated Kinases , Myeloid Differentiation Factor 88 , Signal Transduction , TNF Receptor-Associated Factor 6 , Zebrafish Proteins , Zebrafish , Animals , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/genetics , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , TNF Receptor-Associated Factor 6/metabolism , TNF Receptor-Associated Factor 6/genetics , Humans , Signal Transduction/immunology , HEK293 Cells , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics
10.
Clin Immunol ; 265: 110268, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38838930

ABSTRACT

PURPOSE: To report a case of a five-month-old Chinese infant who died of interleukin-1 receptor-associated kinase-4 (IRAK-4) deficiency presenting with rapid and progressive Pseudomonas aeruginosa sepsis. METHODS: The genetic etiology of IRAK-4 deficiency was confirmed through trio-whole exome sequencing and Sanger sequencing. Functional consequences were invested using an in vitro minigene splicing assay. RESULTS: Trio-whole exome sequencing of genomic DNA identified two novel compound heterozygous mutations, IRAK-4 (NM_016123.3): c.942-1G > A and c.644_651+ 6delTTGCAGCAGTAAGT in the proband, which originated from his symptom-free parents. These mutations were predicted to cause frameshifts and generate three truncated proteins without enzyme activity. CONCLUSIONS: Our findings expand the range of IRAK-4 mutations and provide functional support for the pathogenic effects of splice-site mutations. Additionally, this case highlights the importance of considering the underlying genetic defects of immunity when dealing with unusually overwhelming infections in previously healthy children and emphasizes the necessity for timely treatment with wide-spectrum antimicrobials.


Subject(s)
Interleukin-1 Receptor-Associated Kinases , Pseudomonas Infections , Pseudomonas aeruginosa , Sepsis , Humans , Interleukin-1 Receptor-Associated Kinases/genetics , Interleukin-1 Receptor-Associated Kinases/deficiency , Pseudomonas aeruginosa/genetics , Pseudomonas Infections/genetics , Male , Infant , Sepsis/genetics , Sepsis/microbiology , Primary Immunodeficiency Diseases/genetics , Loss of Function Mutation , Heterozygote , Exome Sequencing , Immunologic Deficiency Syndromes/genetics
12.
Cell Death Dis ; 15(6): 390, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830885

ABSTRACT

Glioma is the most common and aggressive type of primary malignant brain tumor. The N6-methyladenosine (m6A) modification widely exists in eukaryotic cells and plays an important role in the occurrence and development of human tumors. However, the function and mechanism of heterogeneous nuclear ribonucleoprotein C (HNRNPC), an RNA-binding protein and m6A reader in gliomas remains to be comprehensively and extensively explored. Herein, we found that HNRNPC mRNA and protein overexpression were associated with a poor prognosis for patients with gliomas, based on the data from TCGA, the CGGA, and the TMAs. Biologically, HNRNPC knockdown markedly repressed malignant phenotypes of glioma in vitro and in vivo, whereas ectopic HNRNPC expression had the opposite effect. Integrative RNA sequencing and MeRIP sequencing analyses identified interleukin-1 receptor-associated kinase 1 (IRAK1) as a downstream target of HNRNPC. The glioma public datasets and tissue microarrays (TMAs) data indicated that IRAK1 overexpression was associated with poor prognosis, and IRAK1 knockdown significantly repressed malignant biological behavior in vitro. Mechanistically, HNRNPC maintains the mRNA stability of IRAK1 in an m6A-dependent manner, resulting in activation of the mitogen-activated protein kinase (MAPK) signaling pathway, which was necessary for the malignant behavior of glioma. Our findings demonstrate the HNRNPC-IRAK1-MAPK axis as a crucial carcinogenic factor for glioma and the novel underlying mechanism of IRAK1 upregulation, which provides a rationale for therapeutically targeting epitranscriptomic modulators in glioma.


Subject(s)
Disease Progression , Glioma , Heterogeneous-Nuclear Ribonucleoprotein Group C , Interleukin-1 Receptor-Associated Kinases , MAP Kinase Signaling System , RNA, Messenger , Humans , Glioma/genetics , Glioma/pathology , Glioma/metabolism , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Heterogeneous-Nuclear Ribonucleoprotein Group C/metabolism , Heterogeneous-Nuclear Ribonucleoprotein Group C/genetics , Cell Line, Tumor , MAP Kinase Signaling System/genetics , Mice , RNA Stability/genetics , Mice, Nude , Animals , Gene Expression Regulation, Neoplastic , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Female , Male , Adenosine/analogs & derivatives , Adenosine/metabolism , Prognosis
13.
Sci Transl Med ; 16(750): eadi4125, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38838135

ABSTRACT

Chronic inflammation is a constitutive component of many age-related diseases, including age-related macular degeneration (AMD). Here, we identified interleukin-1 receptor-associated kinase M (IRAK-M) as a key immunoregulator in retinal pigment epithelium (RPE) that declines during the aging process. Rare genetic variants of IRAK3, which encodes IRAK-M, were associated with an increased likelihood of developing AMD. In human samples and mouse models, IRAK-M abundance in the RPE declined with advancing age or exposure to oxidative stress and was further reduced in AMD. Irak3-knockout mice exhibited an increased incidence of outer retinal degeneration at earlier ages, which was further exacerbated by oxidative stressors. The absence of IRAK-M led to a disruption in RPE cell homeostasis, characterized by compromised mitochondrial function, cellular senescence, and aberrant cytokine production. IRAK-M overexpression protected RPE cells against oxidative or immune stressors. Subretinal delivery of adeno-associated virus (AAV)-expressing human IRAK3 rescued light-induced outer retinal degeneration in wild-type mice and attenuated age-related spontaneous retinal degeneration in Irak3-knockout mice. Our data show that replenishment of IRAK-M in the RPE may redress dysregulated pro-inflammatory processes in AMD, suggesting a potential treatment for retinal degeneration.


Subject(s)
Interleukin-1 Receptor-Associated Kinases , Mice, Knockout , Oxidative Stress , Retinal Degeneration , Retinal Pigment Epithelium , Animals , Humans , Male , Mice , Cellular Senescence , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/genetics , Macular Degeneration/metabolism , Macular Degeneration/pathology , Macular Degeneration/genetics , Mice, Inbred C57BL , Mitochondria/metabolism , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Retinal Degeneration/genetics , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology
15.
Cell Death Differ ; 31(6): 753-767, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38605168

ABSTRACT

Myddosome is an oligomeric complex required for the transmission of inflammatory signals from TLR/IL1Rs and consists of MyD88 and IRAK family kinases. However, the molecular basis for the self-assemble of Myddosome proteins and regulation of intracellular signaling remains poorly understood. Here, we identify OTUD5 acts as an essential regulator for MyD88 oligomerization and Myddosome formation. OTUD5 directly interacts with MyD88 and cleaves its K11-linked polyubiquitin chains at Lys95, Lys231 and Lys250. This polyubiquitin cleavage enhances MyD88 oligomerization after LPS stimulation, which subsequently promotes the recruitment of downstream IRAK4 and IRAK2 to form Myddosome and the activation of NF-κB and MAPK signaling and production of inflammatory cytokines. Consistently, Otud5-deficient mice are less susceptible to LPS- and CLP-induced sepsis. Taken together, our findings reveal a positive regulatory role of OTUD5 in MyD88 oligomerization and Myddosome formation, which provides new sights into the treatment of inflammatory diseases.


Subject(s)
Inflammation , Myeloid Differentiation Factor 88 , Animals , Humans , Mice , HEK293 Cells , Inflammation/metabolism , Inflammation/pathology , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/genetics , Lipopolysaccharides/pharmacology , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/metabolism , Signal Transduction
16.
Exp Neurol ; 377: 114794, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38685307

ABSTRACT

BACKGROUND: Interleukin-1 receptor-associated kinase 4 (IRAK4) plays an important role in immune modulation in various central nervous system disorders. However, IRAK4 has not been reported in epilepsy models in animal and clinical studies, nor has its involvement in regulating pyroptosis in epilepsy. METHOD: First, we performed transcriptome sequencing, quantitative real-time polymerase chain reaction, and western blot analysis on the hippocampal tissues of refractory epilepsy patients to measure the mRNA and protein levels of IRAK4 and pyroptosis-related proteins. Second, we successfully established a pentylenetetrazol (PTZ)-induced seizure mouse model. We conducted behavioral tests, electroencephalography, virus injection, and molecular biology experiments to investigate the role of IRAK4 in seizure activity regulation. RESULTS: IRAK4 is upregulated in the hippocampus of epilepsy patients and PTZ-induced seizure model mice. IRAK4 expression is observed in the hilar neurons of PTZ-induced mice. Knocking down IRAK4 in PTZ-induced mice downregulated pyroptosis-related protein expression and alleviated seizure activity. Overexpressing IRAK4 in naive mice upregulated pyroptosis-related protein expression and increased PTZ-induced abnormal neuronal discharges. IRAK4 and NF-κB were found to bind to each other in patient hippocampal tissue samples. Pyrrolidine dithiocarbamate reversed the pyroptosis-related protein expression increase caused by PTZ. PF-06650833 alleviated seizure activity and inhibited pyroptosis in PTZ-induced seizure mice. CONCLUSION: IRAK4 plays a key role in the pathological process of epilepsy, and its potential mechanism may be related to pyroptosis mediated by the NF-κB/NLRP3 signaling pathway. PF-06650833 has potential as a therapeutic agent for alleviating epilepsy.


Subject(s)
Epilepsy , Hippocampus , Interleukin-1 Receptor-Associated Kinases , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Neurons , Pyroptosis , Seizures , Signal Transduction , Animals , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/genetics , Hippocampus/metabolism , Hippocampus/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis/drug effects , Pyroptosis/physiology , Mice , Signal Transduction/drug effects , Signal Transduction/physiology , Humans , NF-kappa B/metabolism , Male , Seizures/metabolism , Seizures/chemically induced , Neurons/metabolism , Neurons/drug effects , Epilepsy/metabolism , Epilepsy/chemically induced , Female , Mice, Inbred C57BL , Adult , Pentylenetetrazole/toxicity , Young Adult , Adolescent , Child
17.
Blood ; 143(23): 2414-2424, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38457657

ABSTRACT

ABSTRACT: Hyperactivation of the NF-κB cascade propagates oncogenic signaling and proinflammation, which together augments disease burden in myeloproliferative neoplasms (MPNs). Here, we systematically ablate NF-κB signaling effectors to identify core dependencies using a series of primary samples and syngeneic and patient-derived xenograft (PDX) mouse models. Conditional knockout of Rela attenuated Jak2V617F- and MPLW515L-driven onset of polycythemia vera and myelofibrosis disease hallmarks, respectively. In PDXs, RELA knockout diminished leukemic engraftment and bone marrow fibrosis while extending survival. Knockout of upstream effector Myd88 also alleviated disease burden; conversely, perturbation of negative regulator miR-146a microRNA induced earlier lethality and exacerbated disease. Perturbation of NF-κB effectors further skewed the abundance and distribution of hematopoietic multipotent progenitors. Finally, pharmacological targeting of interleukin-1 receptor-associated kinase 4 (IRAK4) with inhibitor CA-4948 suppressed disease burden and inflammatory cytokines specifically in MPN without inducing toxicity in nondiseased models. These findings highlight vulnerabilities in MPN that are exploitable with emerging therapeutic approaches.


Subject(s)
Myeloproliferative Disorders , NF-kappa B , Signal Transduction , Animals , Mice , Humans , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/pathology , Myeloproliferative Disorders/metabolism , NF-kappa B/metabolism , Mice, Knockout , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/genetics , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics
18.
Clin Immunol ; 261: 110167, 2024 04.
Article in English | MEDLINE | ID: mdl-38453127

ABSTRACT

Excessive inflammatory response and increased oxidative stress play an essential role in the pathophysiology of ischemia/reperfusion (I/R)-induced acute kidney injury (IRI-AKI). Emerging evidence suggests that lipoxin A4 (LXA4), as an endogenous negative regulator in inflammation, can ameliorate several I/R injuries. However, the mechanisms and effects of LXA4 on IRI-AKI remain unknown. In this study, A bilateral renal I/R mouse model was used to evaluate the role of LXA4 in wild-type, IRG1 knockout, and IRAK-M knockout mice. Our results showed that LXA4, as well as 5-LOX and ALXR, were quickly induced, and subsequently decreased by renal I/R. LXA4 pretreatment improved renal I/R-induced renal function impairment and renal damage and inhibited inflammatory responses and oxidative stresses in mice kidneys. Notably, LXA4 inhibited I/R-induced the activation of TLR4 signal pathway including decreased phosphorylation of TAK1, p36, and p65, but did not affect TLR4 and p-IRAK-1. The analysis of transcriptomic sequencing data and immunoblotting suggested that innate immune signal molecules interleukin-1 receptor-associated kinase-M (IRAK-M) and immunoresponsive gene 1 (IRG1) might be the key targets of LXA4. Further, the knockout of IRG1 or IRAK-M abolished the beneficial effects of LXA4 on IRI-AKI. In addition, IRG1 deficiency reversed the up-regulation of IRAK-M by LXA4, while IRAK-M knockout had no impact on the IRG1 expression, indicating that IRAK-M is a downstream molecule of IRG1. Mechanistically, we found that LXA4-promoted IRG1-itaconate not only enhanced Nrf2 activation and increased HO-1 and NQO1, but also upregulated IRAK-M, which interacted with TRAF6 by competing with IRAK-1, resulting in deactivation of TLR4 downstream signal in IRI-AKI. These data suggested that LXA4 protected against IRI-AKI via promoting IRG1/Itaconate-Nrf2 and IRAK-M-TRAF6 signaling pathways, providing the rationale for a novel strategy for preventing and treating IRI-AKI.


Subject(s)
Acute Kidney Injury , Lipoxins , Reperfusion Injury , Succinates , Mice , Animals , NF-E2-Related Factor 2/metabolism , TNF Receptor-Associated Factor 6/metabolism , TNF Receptor-Associated Factor 6/pharmacology , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Interleukin-1 Receptor-Associated Kinases/genetics , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/pharmacology , Signal Transduction , Kidney/metabolism , Reperfusion Injury/prevention & control , Reperfusion Injury/metabolism , Acute Kidney Injury/prevention & control
19.
Dev Comp Immunol ; 156: 105159, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38492902

ABSTRACT

Stress-induced immunosuppression (SIIS) is one of the common problems in intensive poultry production, which brings enormous economic losses to the poultry industry. Accumulating evidence has shown that microRNAs (miRNAs) were important regulators of gene expression in the immune system. However, the miRNA-mediated molecular mechanisms underlying SIIS in chickens are still poorly understood. This study aimed to investigate the biological functions and regulatory mechanism of miRNAs in chicken SIIS. A stress-induced immunosuppression model was successfully established via daily injection of dexamethasone and analyzed miRNA expression in spleen. Seventy-four differentially expressed miRNAs (DEMs) was identified, and 229 target genes of the DEMs were predicted. Functional enrichment analysis the target genes revealed pathways related to immunity, such as MAPK signaling pathway and FoxO signaling pathway. The candidate miRNA, gga-miR-146a-5p, was found to be significantly downregulated in the Dex-induced chicken spleen, and we found that Dex stimulation significantly inhibited the expression of gga-miR-146a-5p in Chicken macrophages (HD11). Flow cytometry, 5-ethynyl-2'-deoxyuridine (EdU), cell counting kit-8 (CCK-8) and other assays indicated that gga-miR-146a-5p can promote the proliferation and inhibit apoptosis of HD11 cells. A dual-luciferase reporter assay suggested that the Interleukin 1 receptor associated kinase 2 (IRAK2) gene, which encoded a transcriptional factor, was a direct target of gga-miR-146a-5p, gga-miR-146a-5p suppressed the post-transcriptional activity of IRAK2. These findings not only improve our understanding of the specific functions of miRNAs in avian stress but also provide potential targets for genetic improvement of stress resistance in poultry.


Subject(s)
Chickens , Dexamethasone , Macrophages , MicroRNAs , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Chickens/immunology , Chickens/genetics , Macrophages/immunology , Macrophages/metabolism , Dexamethasone/pharmacology , Apoptosis , Immune Tolerance , Gene Expression Regulation , Immunosuppression Therapy , Avian Proteins/genetics , Avian Proteins/metabolism , Spleen/immunology , Spleen/metabolism , Signal Transduction , Stress, Physiological/immunology , Cell Line , Interleukin-1 Receptor-Associated Kinases/genetics , Interleukin-1 Receptor-Associated Kinases/metabolism , Cell Proliferation
20.
Mol Neurobiol ; 61(10): 7603-7610, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38421467

ABSTRACT

Microglial activation plays a crucial role in the disease progression in amyotrophic lateral sclerosis (ALS). Interleukin receptor-associated kinases-M (IRAK-M) is an important negative regulatory factor in the Toll-like receptor 4 (TLR4) pathway during microglia activation, and its mechanism in this process is still unclear. In the present study, we aimed to investigate the dynamic changes of IRAK-M and its protective effects for motor neurons in SOD1-G93A mouse model of ALS. qPCR (Real-time Quantitative PCR Detecting System) were used to examine the mRNA levels of IRAK-M in the spinal cord in both SOD1-G93A mice and their age-matched wild type (WT) littermates at 60, 100 and 140 days of age. We established an adeno-associated virus 9 (AAV9)-based platform by which IRAK-M was targeted mostly to microglial cells to investigate whether this approach could provide a protection in the SOD1-G93A mouse. Compared with age-matched WT mice, IRAK-M mRNA level was elevated at 100 and 140 days in the anterior horn region of spinal cords in the SOD1-G93A mouse. AAV9-IRAK-M treated SOD1-G93A mice showed reduction of IL-1ß mRNA levels and significant improvements in the numbers of spinal motor neurons in spinal cord. Mice also showed previously reduction of muscle atrophy. Our data revealed the dynamic changes of IRAK-M during ALS pathological progression and demonstrated that an AAV9-IRAK-M delivery was an effective and translatable therapeutic approach for ALS. These findings may help identify potential molecular targets for ALS therapy.


Subject(s)
Amyotrophic Lateral Sclerosis , Interleukin-1 Receptor-Associated Kinases , Mice, Transgenic , Microglia , Spinal Cord , Animals , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , Microglia/metabolism , Microglia/pathology , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/genetics , Spinal Cord/pathology , Spinal Cord/metabolism , Motor Neurons/pathology , Motor Neurons/metabolism , Dependovirus/genetics , Mice , RNA, Messenger/metabolism , RNA, Messenger/genetics , Interleukin-1beta/metabolism , Disease Models, Animal , Mice, Inbred C57BL , Humans , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL