Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 10.228
1.
J Neuroinflammation ; 21(1): 143, 2024 May 31.
Article En | MEDLINE | ID: mdl-38822367

The dysregulation of pro- and anti-inflammatory processes in the brain has been linked to the pathogenesis of major depressive disorder (MDD), although the precise mechanisms remain unclear. In this study, we discovered that microglial conditional knockout of Pdcd4 conferred protection against LPS-induced hyperactivation of microglia and depressive-like behavior in mice. Mechanically, microglial Pdcd4 plays a role in promoting neuroinflammatory responses triggered by LPS by inhibiting Daxx-mediated PPARγ nucleus translocation, leading to the suppression of anti-inflammatory cytokine IL-10 expression. Finally, the antidepressant effect of microglial Pdcd4 knockout under LPS-challenged conditions was abolished by intracerebroventricular injection of the IL-10 neutralizing antibody IL-10Rα. Our study elucidates the distinct involvement of microglial Pdcd4 in neuroinflammation, suggesting its potential as a therapeutic target for neuroinflammation-related depression.


Co-Repressor Proteins , Interleukin-10 , Mice, Knockout , Microglia , Neuroinflammatory Diseases , PPAR gamma , Signal Transduction , Animals , Male , Mice , Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/deficiency , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Depression/metabolism , Depression/etiology , Interleukin-10/metabolism , Interleukin-10/deficiency , Interleukin-10/genetics , Lipopolysaccharides/toxicity , Mice, Inbred C57BL , Microglia/metabolism , Microglia/drug effects , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Neuroinflammatory Diseases/metabolism , PPAR gamma/metabolism , PPAR gamma/genetics , Signal Transduction/physiology , Signal Transduction/drug effects
2.
Int Heart J ; 65(3): 498-505, 2024.
Article En | MEDLINE | ID: mdl-38825494

This study aimed to explore the expression of long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) in patients with acute myocardial infarction (AMI) and its inflammatory regulation mechanism through miR-211/interleukin 10 (IL-10) axis.A total of 75 participants were enrolled in this study: 25 healthy people in the control group, 25 patients with stable angina pectoris (SAP) in the SAP group, and 25 patients with AMI in the AMI group. Real-time qPCR was used to detect mRNA expression levels of NEAT1, miR-211, and IL-10. The interaction between miR-211, NEAT1, and IL-10 was confirmed by dual-luciferase reporter assay, and protein expression was detected using western blot.High expression of NEAT1 in peripheral blood mononuclear cells (PBMCs) of patients with AMI was negatively related to serum creatine kinase-MB (CK-MB), cardiac troponin I (cTnI), tumor necrosis factor-α (TNF-α), IL-6, and IL-1ß and was positively correlated with left ventricular ejection fraction (LVEF). In THP-1 cells, miR-211 was confirmed to target and inhibit IL-10 expression. NEAT1 knockdown and miR-211-mimic markedly decreased IL-10 protein levels, whereas anti-miR-211 markedly increased IL-10 protein levels. Importantly, miR-211 level was negatively related to NEAT1 and IL-10 levels, whereas IL-10 level was positively related to the level of NEAT1 expression in PBMCs of patients with AMI.LncRNA NEAT1 was highly expressed in PBMCs of patients with AMI, and NEAT1 suppressed inflammation via miR-211/IL-10 axis in PBMCs of patients with AMI.


Interleukin-10 , Leukocytes, Mononuclear , MicroRNAs , Myocardial Infarction , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/blood , MicroRNAs/blood , MicroRNAs/genetics , Interleukin-10/blood , Interleukin-10/metabolism , Myocardial Infarction/blood , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Leukocytes, Mononuclear/metabolism , Male , Female , Middle Aged , Aged , Inflammation/genetics , Inflammation/blood , Inflammation/metabolism , Case-Control Studies
3.
Gut Microbes ; 16(1): 2363020, 2024.
Article En | MEDLINE | ID: mdl-38841892

CD4+ T cells play a critical role in regulating autoimmune diseases, and intestinal microbial metabolites control various immune responses. Granzyme B (GzmB)-producing CD4+ T cells have been recently reported to participate in the pathogenesis of autoimmune diseases. Here, we found that GzmbB-deficient CD4+ T cells induced more severe colitis in Rag1-/- mice than wild-type (WT) CD4+ T cells. Germ-free (GF) mice exhibited a lower expression of GzmB in intestinal CD4+ T cells compared to specific pathogen-free (SPF) mice. Intestinal microbial metabolite butyrate increased GzmB expression in CD4+ T cells, especially in IL-10-producing Th1 cells, through HDAC inhibition and GPR43, but not GPR41 and GPR109a. Butyrate-treated GzmB-deficient CD4+ T cells demonstrated more severe colitis compared to butyrate-treated WT CD4+ T cells in the T cell transfer model. Butyrate altered intestinal microbiota composition, but altered microbiota did not mediate butyrate induction of intestinal CD4+ T cell expression of GzmB in mice. Blimp1 was involved in the butyrate induction of GzmB in IL-10-producing Th1 cells. Glucose metabolism, including glycolysis and pyruvate oxidation, mediated butyrate induction of GzmB in Th1 cells. In addition, we found that IKZF3 and NR2F6 regulated GzmB expression induced by butyrate. Together, our studies underscored the critical role of GzmB in mediating gut bacterial metabolite butyrate regulation of T cell tolerance at the mucosal surface.


Butyrates , Colitis , Gastrointestinal Microbiome , Granzymes , Interleukin-10 , Mice, Inbred C57BL , Th1 Cells , Animals , Interleukin-10/metabolism , Interleukin-10/genetics , Interleukin-10/immunology , Th1 Cells/immunology , Mice , Gastrointestinal Microbiome/drug effects , Butyrates/metabolism , Butyrates/pharmacology , Granzymes/metabolism , Colitis/immunology , Colitis/microbiology , Colitis/metabolism , Mice, Knockout , Positive Regulatory Domain I-Binding Factor 1/metabolism , Positive Regulatory Domain I-Binding Factor 1/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Immune Tolerance , Homeodomain Proteins
4.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(5): 514-519, 2024 May.
Article Zh | MEDLINE | ID: mdl-38845499

OBJECTIVE: To investigate the effect of mild hypothermia on macrophage polarization in lipopolysaccharide (LPS)-induced acute lung injury (ALI) mice and to clarify its role in lung injury. METHODS: According to a random number table method, 18 male C57BL/6 mice were divided into sham operation group (Sham group), ALI normothermic model group (NT group) and ALI mild hypothermia treatment group (HT group), with 6 mice in each group. The ALI model in mice was established by the method of tracheal instillation of LPS, and temperature control was administered at 1 hour after surgery. The anus temperature in NT group was kept at 36-38?centigrade, while the anus temperature in HT group was kept at 32-34?centigrade. The target anus temperature in both groups were maintained for 6 hours and then slowly rewarmed to 36-38 centigrade. The Sham group was infused with an equal amount of physiological saline through the trachea without temperature control. After 24 hours of modeling, serum was collected and mice were sacrificed to obtain lung tissue. Pathological changes in lung tissue were observed under light microscopy and semi-quantitative lung injury score was performed. Enzyme linked immunosorbent assay (ELISA) was used to detect the serum levels of interleukins (IL-1ß, IL-10). Real-time quantitative polymerase chain reaction (RT-qPCR) was used to test the indicators of macrophage polarization, such as the mRNA expressions of CD86, IL-6, CD206 and arginase 1 (Arg1) in the lung tissue. The protein expression of M1 macrophage marker inducible nitric oxide synthase (iNOS) and M2 macrophage marker Arg1 were detected by Western blotting. RESULTS: Compared with the Sham group, the NT group appeared significant pulmonary hemorrhage and edema, thickened lung septum, inflammatory cell infiltration, and lung injury score was significantly increased; serum IL-1ß level was significantly elevated; IL-10 level was increased without statistical significance; the expressions of CD86 mRNA, IL-6 mRNA and iNOS protein were significantly elevated, and CD206 mRNA was significantly decreased; the mRNA and protein expressions of Arg1 decreased, but there were no significant differences. Compared with the NT group, the pathological injury of lung tissue in HT group was significantly reduced, and the lung injury score was significantly decreased (4.78±0.96 vs. 8.56±1.98, P < 0.01); serum IL-1ß level was decreased (ng/L: 13.52±1.95 vs. 27.18±3.87, P < 0.01), and IL-10 level was significantly increased (ng/L: 42.59±15.79 vs. 14.62±4.47, P < 0.01); IL-6 mRNA expression was decreased in lung tissue (2-ΔΔCt: 3.37±0.92 vs. 10.04±0.91, P < 0.05), the expression of M1 macrophage markers CD86 mRNA and iNOS protein were significantly decreased [CD86 mRNA (2-ΔΔCt): 0.52±0.16 vs. 1.95±0.33, iNOS protein (iNOS/ß-actin): 0.57±0.19 vs. 1.11±0.27, both P < 0.05], the expression of M2 macrophage markers CD206 mRNA, Arg1 mRNA and Arg1 protein were significantly increased [CD206 mRNA (2-ΔΔCt): 3.99±0.17 vs. 0.34±0.17, Arg1 mRNA (2-ΔΔCt): 2.33±0.73 vs. 0.94±0.23, Arg1 protein (Arg1/ß-actin): 0.96±0.09 vs. 0.31±0.11, all P < 0.05]. CONCLUSIONS: Mild hypothermia can alleviate the inflammatory response and protect lung tissue in ALI mice, which may be related to the inhibition of M1 macrophage polarization and promotion of M2 macrophage polarization.


Acute Lung Injury , Lipopolysaccharides , Macrophages , Mice, Inbred C57BL , Animals , Acute Lung Injury/therapy , Male , Mice , Macrophages/metabolism , Lipopolysaccharides/adverse effects , Nitric Oxide Synthase Type II/metabolism , Interleukin-10/metabolism , Interleukin-6/metabolism , Hypothermia, Induced , Interleukin-1beta/metabolism , Disease Models, Animal
5.
Nat Commun ; 15(1): 4309, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38830846

The efficacy of costimulation blockade with CTLA4-Ig (belatacept) in transplantation is limited due to T cell-mediated rejection, which also persists after induction with anti-thymocyte globulin (ATG). Here, we investigate why ATG fails to prevent costimulation blockade-resistant rejection and how this barrier can be overcome. ATG did not prevent graft rejection in a murine heart transplant model of CTLA4-Ig therapy and induced a pro-inflammatory cytokine environment. While ATG improved the balance between regulatory T cells (Treg) and effector T cells in the spleen, it had no such effect within cardiac allografts. Neutralizing IL-6 alleviated graft inflammation, increased intragraft Treg frequencies, and enhanced intragraft IL-10 and Th2-cytokine expression. IL-6 blockade together with ATG allowed CTLA4-Ig therapy to achieve long-term, rejection-free heart allograft survival. This beneficial effect was abolished upon Treg depletion. Combining ATG with IL-6 blockade prevents costimulation blockade-resistant rejection, thereby eliminating a major impediment to clinical use of costimulation blockers in transplantation.


Abatacept , Antilymphocyte Serum , Graft Rejection , Graft Survival , Heart Transplantation , Interleukin-6 , Mice, Inbred C57BL , T-Lymphocytes, Regulatory , Animals , Graft Rejection/immunology , Graft Rejection/prevention & control , Interleukin-6/metabolism , Heart Transplantation/adverse effects , Mice , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Abatacept/pharmacology , Abatacept/therapeutic use , Antilymphocyte Serum/pharmacology , Antilymphocyte Serum/therapeutic use , Graft Survival/drug effects , Graft Survival/immunology , Mice, Inbred BALB C , Allografts/immunology , Male , Immunosuppressive Agents/pharmacology , Lymphocyte Depletion , Interleukin-10/metabolism , Interleukin-10/immunology
6.
Fa Yi Xue Za Zhi ; 40(2): 179-185, 2024 Apr 25.
Article En, Zh | MEDLINE | ID: mdl-38847034

OBJECTIVES: To detect the expression changes of interleukin-10 (IL-10) and transforming growth factor-ß1 (TGF-ß1) during the development of deep vein thrombosis in mice, and to explore the application value of them in thrombus age estimation. METHODS: The mice in the experimental group were subjected to ligation of inferior vena cava. The mice were sacrificed by excessive anesthesia at 1 d, 3 d, 5 d, 7 d, 10 d, 14 d and 21 d after ligation, respectively. The inferior vena cava segment with thrombosis was extracted below the ligation point. The mice in the control group were not ligated, and the inferior vena cava segment at the same position as the experimental group was extracted. The expression changes of IL-10 and TGF-ß1 were detected by immunohistochemistry (IHC), Western blotting and real-time qPCR. RESULTS: IHC results revealed that IL-10 was mainly expressed in monocytes in thrombosis and TGF-ß1 was mainly expressed in monocytes and fibroblast-like cells in thrombosis. Western blotting and real-time qPCR showed that the relative expression levels of IL-10 and TGF-ß1 in each experimental group were higher than those in the control group. The mRNA and protein levels of IL-10 reached the peak at 7 d and 10 d after ligation, respectively. The mRNA expression level at 7 d after ligation was 4.72±0.15 times that of the control group, and the protein expression level at 10 d after ligation was 7.15±0.28 times that of the control group. The mRNA and protein levels of TGF-ß1 reached the peak at 10 d and 14 d after ligation, respectively. The mRNA expression level at 10 d after ligation was 2.58±0.14 times that of the control group, and the protein expression level at 14 d after ligation was 4.34±0.19 times that of the control group. CONCLUSIONS: The expressions of IL-10 and TGF-ß1 during the evolution of deep vein thrombosis present time-dependent sequential changes, and the expression levels of IL-10 and TGF-ß1 can provide a reference basis for thrombus age estimation.


Disease Models, Animal , Immunohistochemistry , Interleukin-10 , Transforming Growth Factor beta1 , Vena Cava, Inferior , Venous Thrombosis , Animals , Interleukin-10/metabolism , Interleukin-10/genetics , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Venous Thrombosis/metabolism , Venous Thrombosis/etiology , Mice , Vena Cava, Inferior/metabolism , Vena Cava, Inferior/pathology , Male , Time Factors , Monocytes/metabolism , Blotting, Western , RNA, Messenger/metabolism , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Ligation , Fibroblasts/metabolism
7.
Front Immunol ; 15: 1404297, 2024.
Article En | MEDLINE | ID: mdl-38751432

Introduction: Recently, the use of botanicals as an alternative to coccidiostats has been an appealing approach for controlling coccidiosis. Therefore, this study was conducted to evaluate the potential role of aqueous methanolic extract (200 mg/kg) of Krameria lappacea (roots) (KLRE) against infection induced by Eimeria papillata. Methods: A total of 25 male C57BL/6 mice were divided into five groups (I, II, III, IV, and V). On 1st day of the experiment, all groups except groups I (control) and II (non-infected-treated group with KLRE), were inoculated orally with 103 sporulated E. papillata oocysts. On the day of infection, group IV was treated with KLRE. Group V served as an infected-treated group and was treated with amprolium (coccidiostat). Results: Treatment with extract and coccidiostat was continued for five consecutive days. While not reaching the efficacy level of the reference drug (amprolium), KLRE exhibited notable anticoccidial activity as assessed by key criteria, including oocyst suppression rate, total parasitic stages, and maintenance of nutrient homeostasis. The presence of phenolic and flavonoid compounds in KLRE is thought to be responsible for its positive effects. The Eimeria infection increased the oxidative damage in the jejunum. KLRE treatment significantly increased the activity of catalase and superoxide dismutase. On the contrary, KLRE decreased the level of malondialdehyde and nitric oxide. Moreover, KLRE treatment decreased macrophage infiltration in the mice jejunal tissue, as well as the extent of CD4 T cells and NFkB. E. papillata caused a state of systemic inflammatory response as revealed by the upregulation of inducible nitric oxide synthase (iNOs)-mRNA. Upon treatment with KLRE, the activity of iNOs was reduced from 3.63 to 1.46 fold. Moreover, KLRE was able to downregulate the expression of pro-inflammatory cytokines interferon-γ, nuclear factor kappa B, and interleukin-10 -mRNA by 1.63, 1.64, and 1.38 fold, respectively. Moreover, KLRE showed a significant reduction in the expression of IL-10 protein level from 104.27 ± 8.41 pg/ml to 62.18 ± 3.63 pg/ml. Conclusion: Collectively, K. lappacea is a promising herbal medicine that could ameliorate the oxidative stress and inflammation of jejunum, induced by E. papillata infection in mice.


Antioxidants , CD4-Positive T-Lymphocytes , Coccidiosis , Coccidiostats , Eimeria , Interleukin-10 , Mice, Inbred C57BL , Plant Extracts , Plant Roots , Animals , Plant Extracts/pharmacology , Coccidiosis/drug therapy , Coccidiosis/immunology , Coccidiosis/parasitology , Mice , Male , Interleukin-10/metabolism , Antioxidants/pharmacology , Eimeria/drug effects , Plant Roots/chemistry , Coccidiostats/pharmacology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , Disease Models, Animal
8.
BMC Gastroenterol ; 24(1): 163, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745150

BACKGROUND: The liver regeneration is a highly complicated process depending on the close cooperations between the hepatocytes and non-parenchymal cells involving various inflammatory cells. Here, we explored the role of myeloid-derived suppressor cells (MDSCs) in the processes of liver regeneration and liver fibrosis after liver injury. METHODS: We established four liver injury models of mice including CCl4-induced liver injury model, bile duct ligation (BDL) model, concanavalin A (Con A)-induced hepatitis model, and lipopolysaccharide (LPS)-induced hepatitis model. The intrahepatic levels of MDSCs (CD11b+Gr-1+) after the liver injury were detected by flow cytometry. The effects of MDSCs on liver tissues were analyzed in the transwell co-culture system, in which the MDSCs cytokines including IL-10, VEGF, and TGF-ß were measured by ELISA assay and followed by being blocked with specific antibodies. RESULTS: The intrahepatic infiltrations of MDSCs with surface marker of CD11b+Gr-1+ remarkably increased after the establishment of four liver injury models. The blood served as the primary reservoir for hepatic recruitment of MDSCs during the liver injury, while the bone marrow appeared play a compensated role in increasing the number of MDSCs at the late stage of the inflammation. The recruited MDSCs in injured liver were mainly the M-MDSCs (CD11b+Ly6G-Ly6Chigh) featured by high expression levels of cytokines including IL-10, VEGF, and TGF-ß. Co-culture of the liver tissues with MDSCs significantly promoted the proliferation of both hepatocytes and hepatic stellate cells (HSCs). CONCLUSIONS: The dramatically and quickly infiltrated CD11b+Gr-1+ MDSCs in injured liver not only exerted pro-proliferative effects on hepatocytes, but also accounted for the activation of profibrotic HSCs.


CD11b Antigen , Liver Cirrhosis , Liver Regeneration , Mice, Inbred C57BL , Myeloid-Derived Suppressor Cells , Animals , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/immunology , Mice , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Liver Regeneration/physiology , CD11b Antigen/metabolism , Male , Disease Models, Animal , Liver/pathology , Liver/metabolism , Vascular Endothelial Growth Factor A/metabolism , Carbon Tetrachloride , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/immunology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/physiopathology , Concanavalin A , Ligation , Lipopolysaccharides , Interleukin-10/metabolism , Transforming Growth Factor beta/metabolism , Hepatic Stellate Cells/metabolism , Coculture Techniques , Hepatocytes/metabolism , Hepatocytes/pathology , Bile Ducts
9.
J Biomed Mater Res B Appl Biomater ; 112(6): e35411, 2024 Jun.
Article En | MEDLINE | ID: mdl-38773758

The ultimate goal of tissue engineering is to repair and regenerate damaged tissue or organ. Achieving this goal requires blood vessel networks to supply oxygen and nutrients to new forming tissues. Macrophages are part of the immune system whose behavior plays a significant role in angiogenesis and blood vessel formation. On the other hand, macrophages are versatile cells that change their behavior in response to environmental stimuli. Given that implantation of a biomaterial is followed by inflammation; therefore, we reasoned that this inflammatory condition in tissue spaces modulates the final phenotype of macrophages. Also, we hypothesized that anti-inflammatory glucocorticoid dexamethasone improves modulating macrophages behavior. To check these concepts, we investigated the macrophages that had matured in an inflammatory media. Furthermore, we examined macrophages' behavior after maturation on a dexamethasone-containing scaffold and analyzed how the behavioral change of maturing macrophages stimulates other macrophages in the same environment. In this study, the expression of pro-inflammatory markers TNFa and NFκB1 along with pro-healing markers IL-10 and CD163 were investigated to study the behavior of macrophages. Our results showed that macrophages that were matured in the inflammatory media in vitro increase expression of IL-10, which in turn decreased the expression of pro-inflammatory markers TNFa and NFκB in maturing macrophages. Also, macrophages that were matured on dexamethasone-containing scaffolds decreased the expression of IL-10, TNFa, and NFκB and increase the expression of CD163 compared to the control group. Moreover, the modulation of anti-inflammatory response in maturing macrophages on dexamethasone-containing scaffold resulted in increased expression of TNFa and CD163 by other macrophages in the same media. The results obtained in this study, proposing strategies to improve healing through controlling the behavior of maturing macrophages and present a promising perspective for inflammation control using tissue engineering scaffolds.


Dexamethasone , Interleukin-10 , Macrophages , Polyesters , Tissue Scaffolds , Dexamethasone/pharmacology , Interleukin-10/metabolism , Macrophages/metabolism , Macrophages/drug effects , Tissue Scaffolds/chemistry , Polyesters/chemistry , Polyesters/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Humans , Animals , Inflammation/metabolism , Mice
10.
Cells ; 13(10)2024 May 10.
Article En | MEDLINE | ID: mdl-38786036

Inflammation contributes to the onset and exacerbation of numerous age-related diseases, often manifesting as a chronic condition during aging. Given that cellular senescence fosters local and systemic inflammation, senotherapeutic interventions could potentially aid in managing or even reducing inflammation. Here, we investigated the immunomodulatory effects of the senotherapeutic Peptide 14 (Pep 14) in human peripheral blood mononuclear cells (PBMCs), monocytes, and macrophages. We found that, despite failing to significantly influence T cell activation and proliferation, the peptide promoted a Th2/Treg gene expression and cytokine signature in PBMCs, characterized by increased expression of the transcription factors GATA3 and FOXP3, as well as the cytokines IL-4 and IL-10. These observations were partially confirmed through ELISA, in which we observed increased IL-10 release by resting and PHA-stimulated PBMCs. In monocytes from the U-937 cell line, Pep 14 induced apoptosis in lipopolysaccharide (LPS)-stimulated cells and upregulated IL-10 expression. Furthermore, Pep 14 prevented LPS-induced activation and promoted an M2-like polarization in U-937-derived macrophages, evidenced by decreased expression of M1 markers and increased expression of M2 markers. We also showed that the conditioned media from Pep 14-treated macrophages enhanced fibroblast migration, indicative of a functional M2 phenotype. Taken together, our findings suggest that Pep 14 modulates immune cell function towards an anti-inflammatory and regenerative phenotype, highlighting its potential as a therapeutic intervention to alleviate immunosenescence-associated dysregulation.


Macrophages , Monocytes , Th1 Cells , Humans , Monocytes/drug effects , Monocytes/metabolism , Macrophages/drug effects , Macrophages/metabolism , Th1 Cells/drug effects , Th1 Cells/immunology , Th1 Cells/metabolism , Peptides/pharmacology , Lipopolysaccharides/pharmacology , Cytokines/metabolism , Interleukin-10/metabolism , Lymphocyte Activation/drug effects , Cell Proliferation/drug effects , Apoptosis/drug effects
11.
Cells ; 13(10)2024 May 17.
Article En | MEDLINE | ID: mdl-38786082

Lung transplantation results are compromised by ischemia-reperfusion injury and alloimmune responses. Ex vivo lung perfusion (EVLP) is used to assess marginal donor lungs before transplantation but is also an excellent platform to apply novel therapeutics. We investigated donor lung immunomodulation using genetically engineered mesenchymal stromal cells with augmented production of human anti-inflammatory hIL-10 (MSCsIL-10). Pig lungs were placed on EVLP for 6 h and randomized to control (n = 7), intravascular delivery of 20 × 106 (n = 5, low dose) or 40 × 106 human MSCs IL-10 (n = 6, high dose). Subsequently, single-lung transplantation was performed, and recipient pigs were monitored for 3 days. hIL-10 secretion was measured during EVLP and after transplantation, and immunological effects were assessed by cytokine profile, T and myeloid cell characterization and mixed lymphocyte reaction. MSCIL-10 therapy rapidly increased hIL-10 during EVLP and resulted in transient hIL-10 elevation after lung transplantation. MSCIL-10 delivery did not affect lung function but was associated with dose-related immunomodulatory effects, with the low dose resulting in a beneficial decrease in apoptosis and lower macrophage activation, but the high MSCIL-10 dose resulting in inflammation and cytotoxic CD8+ T cell activation. MSCIL-10 therapy during EVLP results in a rapid and transient perioperative hIL-10 increase and has a therapeutic window for its immunomodulatory effects.


Immunomodulation , Interleukin-10 , Lung Transplantation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Lung Transplantation/methods , Animals , Interleukin-10/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/cytology , Swine , Mesenchymal Stem Cell Transplantation/methods , Humans , Genetic Engineering , Lung/metabolism , Lung/pathology , Lung/immunology
12.
Cancer Rep (Hoboken) ; 7(5): e2064, 2024 May.
Article En | MEDLINE | ID: mdl-38711262

BACKGROUND: Breast cancer (BC) is the most commonly diagnosed female cancer. Homeobox protein MEIS2, a key transcription factor, is involved in the regulation of many developmental and cellular processes. However, the role of MEIS2 in the development of breast cancer is still unclear. AIMS: We aimed to examine the role of myeloid ecotropic insertion site (MEIS2) in breast cancer and the association of MEIS2 with breast cancer clinical stages and pathological grades. We revealed the underlying mechanism by which MEIS2 affected breast cancer cell growth and tumor development. METHODS AND RESULTS: Using human BC cell lines, clinical samples and animal xenograft model, we reveal that MEIS2 functions as a tumor suppressor in breast cancer. The expression of MEIS2 is inversely correlated with BC clinical stages and pathological grades. MEIS2 knockdown (MEIS2-KD) promotes while MEIS2 overexpression suppresses breast cancer cell proliferation and tumor development in vitro and in animal xenograft models, respectively. To determine the biological function of MEIS2, we screen the expression of a group of MEIS2 potential targeting genes in stable-established cell lines. Results show that the knockdown of MEIS2 in breast cancer cells up-regulates the IL10 expression, but MEIS2 overexpression opposed the effect on IL10 expression. Furthermore, the suppressive role of MEIS2 in breast cancer cell proliferation is associated with the IL10 expression and myeloid cells infiltration. CONCLUSION: Our study demonstrates that the tumor suppressor of MEIS2 in breast cancer progression is partially via down regulating the expression of IL10 and promoting myeloid cells infiltration. Targeting MEIS2 would be a potentially therapeutic avenue for BC.


Breast Neoplasms , Cell Proliferation , Gene Expression Regulation, Neoplastic , Homeodomain Proteins , Interleukin-10 , Transcription Factors , Humans , Female , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Animals , Mice , Transcription Factors/genetics , Transcription Factors/metabolism , Interleukin-10/metabolism , Interleukin-10/genetics , Cell Line, Tumor , Down-Regulation , Xenograft Model Antitumor Assays , Mice, Nude
13.
Nat Commun ; 15(1): 4232, 2024 May 18.
Article En | MEDLINE | ID: mdl-38762479

Toll-like receptor 9 (TLR9) recognizes bacterial, viral and self DNA and play an important role in immunity and inflammation. However, the role of TLR9 in obesity is less well-studied. Here, we generate B-cell-specific Tlr9-deficient (Tlr9fl/fl/Cd19Cre+/-, KO) B6 mice and model obesity using a high-fat diet. Compared with control mice, B-cell-specific-Tlr9-deficient mice exhibited increased fat tissue inflammation, weight gain, and impaired glucose and insulin tolerance. Furthermore, the frequencies of IL-10-producing-B cells and marginal zone B cells were reduced, and those of follicular and germinal center B cells were increased. This was associated with increased frequencies of IFNγ-producing-T cells and increased follicular helper cells. In addition, gut microbiota from the KO mice induced a pro-inflammatory state leading to immunological and metabolic dysregulation when transferred to germ-free mice. Using 16 S rRNA gene sequencing, we identify altered gut microbial communities including reduced Lachnospiraceae, which may play a role in altered metabolism in KO mice. We identify an important network involving Tlr9, Irf4 and Il-10 interconnecting metabolic homeostasis, with the function of B and T cells, and gut microbiota in obesity.


B-Lymphocytes , Diet, High-Fat , Dysbiosis , Gastrointestinal Microbiome , Inflammation , Interleukin-10 , Mice, Knockout , Obesity , Toll-Like Receptor 9 , Animals , Obesity/immunology , Obesity/microbiology , Obesity/metabolism , Dysbiosis/immunology , Dysbiosis/microbiology , Toll-Like Receptor 9/metabolism , Toll-Like Receptor 9/genetics , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Inflammation/metabolism , Mice , Diet, High-Fat/adverse effects , Interleukin-10/metabolism , Male , Mice, Inbred C57BL , Disease Models, Animal , Interferon Regulatory Factors
15.
Int J Mol Sci ; 25(10)2024 May 18.
Article En | MEDLINE | ID: mdl-38791551

Rotavirus is the main cause of acute diarrhea in children up to five years of age. In this regard, probiotics are commonly used to treat or prevent gastroenteritis including viral infections. The anti-rotavirus effect of Bifidobacterium longum and Chlorella sorokiniana, by reducing viral infectivity and improving IFN-type I response, has been previously reported. The present study aimed to study the effect of B. longum and/or C. sorokiniana on modulating the antiviral cellular immune response mediated by IFN-γ, IL-10, SOCS3, STAT1, and STAT2 genes in rotavirus-infected cells. To determine the mRNA relative expression of these genes, HT-29 cells were treated with B. longum and C. sorokiniana alone or in combination, followed by rotavirus infection. In addition, infected cells were treated with B. longum and/or C. sorokiniana. Cellular RNA was purified, used for cDNA synthesis, and amplified by qPCR. Our results demonstrated that the combination of B. longum and C. sorokiniana stimulates the antiviral cellular immune response by upregulating IFN-γ and may block pro-inflammatory cytokines by upregulating IL-10 and SOCS3. The results of our study indicated that B. longum, C. sorokiniana, or their combination improve antiviral cellular immune response and might modulate pro-inflammatory responses.


Bifidobacterium longum , Chlorella , Interferon-gamma , Interleukin-10 , Probiotics , Rotavirus Infections , Rotavirus , Suppressor of Cytokine Signaling 3 Protein , Humans , Interleukin-10/metabolism , Suppressor of Cytokine Signaling 3 Protein/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics , Interferon-gamma/metabolism , Probiotics/pharmacology , Rotavirus Infections/immunology , Rotavirus Infections/virology , Chlorella/virology , HT29 Cells , STAT1 Transcription Factor/metabolism
16.
Sci Rep ; 14(1): 12163, 2024 05 28.
Article En | MEDLINE | ID: mdl-38806553

Hepatocellular carcinoma (HCC) is a significant contributor to morbidity and mortality worldwide. The interaction between receptors and ligands is the primary mode of intercellular signaling and plays a vital role in the progression of HCC. This study aimed to identify the macrophage-related receptor ligand marker genes associated with HCC and further explored the molecular immune mechanisms attributed to altered biomarkers. Single-cell RNA sequencing data containing primary and recurrent samples were downloaded from the China National GeneBank. Cell types were first identified to explore differences between immune cells from different sample sources. CellChat analysis was used to infer and analyze intercellular communication networks quantitatively. Three molecular subtypes were constructed based on the screened twenty macrophage-associated receptor ligand genes. Bulk RNA-Seq data were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus databases. After the screening, the minor absolute shrinkage and selection operator (LASSO) regression model was employed to identify key markers. After collecting peripheral blood and clinical information from patients, an enzyme-linked immunosorbent assay (ELISA) was used to detect the correlation between key markers and IL-10, one of the macrophage markers. After developing a new HCC risk adjustment model and conducting analysis, it was found that there were significant differences in immune status and gene mutations between the high-risk and low-risk groups of patients based on macrophage-associated receptor and ligand genes. This study identified SPP1, ANGPT2, and NCL as key biological targets for HCC. The drug-gene interaction network analysis identified wortmannin, ribavirin, and tarnafloxin as potential therapeutic drugs for the three key markers. In a clinical cohort study, patients with immune checkpoint inhibitor (ICI) resistance had significantly higher expression levels of OPN, ANGPT2, NCL, and IL-10 than patients with ICI-responsiveness. These three key markers were positively correlated with the expression level of IL-10. The signature based on macrophage-associated receptor and ligand genes can accurately predict the prognosis of patients with HCC and the sensitivity to immunotherapy. These results may help guide the development of targeted prevention and personalized treatment of HCC.


Biomarkers, Tumor , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Prognosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Ligands , Male , Female , Middle Aged , Gene Expression Regulation, Neoplastic , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Interleukin-10/genetics , Interleukin-10/metabolism , Macrophages/metabolism , Macrophages/immunology , Multiomics
17.
Turk J Med Sci ; 54(1): 348-356, 2024.
Article En | MEDLINE | ID: mdl-38812655

Background/aim: Laser biostimulation therapy (LBT) is suggested to have positive effects on periodontal healing. This study evaluated LBT with nonsurgical periodontal therapy (NSPT) in diabetes mellitus (DM) and systemic health (SH) conditions. Materials and methods: Thirty periodontitis patients (15 with DM and 15 with SH) were included in the study, which had a split-mouth design, by applying LBT in the mouth of the same systemic condition. Thus, 4 study groups were formed, as 1) NSPT - DM: NSPT alone in DM, 2) NSPT + LBT - DM: NSPT + LBT application in DM, 3) NSPT - SH: NSPT alone in SH, and 4) NSPT + LBT - SH: NSPT + LBT application in SH. NSPT was performed on days 15, 30, 37, 44, 51, 58, and 65. LBT was performed 6 times on days 30, 37, 44, 51, 58, and 65 with an Nd:YAG laser. The plaque index (PI), gingival index (GI), bleeding on probing (BOP), probing pocket depth (PPD), and clinical attachment level (CAL) were assessed as the clinical parameters and recorded at baseline and days 30, 37, and 72. Gingival crevicular fluid levels of interleukin 1 beta (IL-1ß) and IL-10 were evaluated by ELISA as the biochemical parameters at baseline and on days 30, 37, and 72. Results: Clinical parameters had improved in all of the groups on day 72 (p < 0.01). PPD and CAL improved more in the DM group with NSPT and LBT group than in the DM group with NSPT without LBT on day 37 (p < 0.05). IL-1ß decreased and IL-10 increased in all of the groups on day 72 (p < 0.01). This change was more evident in the DM group with NSPT and LBT than in the DM group with NSPT without LBT on day 7 (p < 0.05). Conclusion: These results revealed the short-term impacts of LBT on periodontal healing, which return to ineffectiveness with repeated irradiation. Therefore, it may be speculated that LBT via the protocol herein may have a short-term antiinflammatory contribution to NSPT, only in impaired healing conditions such as DM.


Periodontitis , Humans , Male , Female , Middle Aged , Adult , Case-Control Studies , Periodontitis/therapy , Gingival Crevicular Fluid/chemistry , Periodontal Index , Low-Level Light Therapy/methods , Interleukin-1beta/metabolism , Interleukin-1beta/analysis , Laser Therapy/methods , Interleukin-10/metabolism , Interleukin-10/analysis
18.
J Immunother Cancer ; 12(5)2024 May 23.
Article En | MEDLINE | ID: mdl-38782541

BACKGROUND: Accumulating evidence demonstrates that an increased tumor-associated macrophage abundance is often associated with poor prognosis in colorectal cancer (CRC). The mechanism underlying the effect of tumor-derived exosomes on M2 macrophage polarization remains elusive. RESULTS: The novel circular RNA circPOLQ exhibited significantly higher expression in CRC tissues than in paired normal tissues. Higher circPOLQ expression was associated with poorer prognosis in patients with CRC. In vitro and in vivo experiments showed that tumor-derived exosomal circPOLQ did not directly regulate CRC cell development but promoted CRC metastatic nodule formation by enhancing M2 macrophage polarization. circPOLQ activated the interleukin-10/signal transducer and activator of transcription 3 axis by targeting miR-379-3 p to promote M2 macrophage polarization. CONCLUSION: circPOLQ can enter macrophages via CRC cell-derived exosomes and promote CRC metastatic nodule formation by enhancing M2 macrophage polarization. These findings reveal a tumor-derived exosome-mediated tumor-macrophage interaction potentially affecting CRC metastatic nodule formation.


Colorectal Neoplasms , Exosomes , Interleukin-10 , Macrophages , RNA, Circular , STAT3 Transcription Factor , Animals , Female , Humans , Male , Mice , Cell Line, Tumor , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Exosomes/metabolism , Interleukin-10/metabolism , Macrophage Activation , Macrophages/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Signal Transduction , STAT3 Transcription Factor/metabolism , Tumor-Associated Macrophages/metabolism
19.
Ren Fail ; 46(1): 2356023, 2024 Dec.
Article En | MEDLINE | ID: mdl-38785317

Glycyrrhizin (GL) has immunoregulatory effects on various inflammatory diseases including hepatitis and nephritis. However, the mechanisms underlying the anti-inflammatory effect of GL on renal inflammation are not fully understood. Hepatorenal syndrome (HRS) is a functional acute renal impairment that occurs in severe liver disease, and we found that kidney injury also occurs in Con A-induced experimental hepatitis in mice. We previously found that GL can alleviate Con A-induced hepatitis by regulating the expression of IL-25 in the liver. We wanted to investigate whether GL can alleviate Con A-induced nephritis by regulating IL-25. IL-25 regulates inflammation by modulating type 2 immune responses, but the mechanism by which IL-25 affects kidney disease remains unclear. In this study, we found that the administration of GL enhanced the expression of IL-25 in renal tissues; the latter promoted the generation of type 2 macrophages (M2), which inhibited inflammation in the kidney caused by Con A challenge. IL-25 promoted the secretion of the inhibitory cytokine IL-10 by macrophages but inhibited the expression of the inflammatory cytokine IL-1ß by macrophages. Moreover, IL-25 downregulated the Con A-mediated expression of Toll-like receptor (TLR) 4 on macrophages. By comparing the roles of TLR2 and TLR4, we found that TLR4 is required for the immunoregulatory effect of IL-25 on macrophages. Our data revealed that GL has anti-inflammatory effects on Con A-induced kidney injury and that the GL/IL-25/M2 axis participates in the anti-inflammatory process. This study suggested that GL is a potential therapeutic for protecting against acute kidney injury.


Disease Models, Animal , Glycyrrhizic Acid , Kidney , Macrophages , Animals , Glycyrrhizic Acid/pharmacology , Glycyrrhizic Acid/therapeutic use , Mice , Macrophages/metabolism , Macrophages/drug effects , Male , Kidney/pathology , Kidney/metabolism , Toll-Like Receptor 2/metabolism , Interleukins/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation/metabolism , Interleukin-10/metabolism , Toll-Like Receptor 4/metabolism , Signal Transduction/drug effects , Interleukin-1beta/metabolism , Hepatorenal Syndrome/etiology , Hepatorenal Syndrome/drug therapy , Hepatorenal Syndrome/metabolism , Mice, Inbred C57BL , Nephritis/drug therapy , Nephritis/metabolism , Nephritis/etiology , Nephritis/prevention & control
20.
Int J Rheum Dis ; 27(5): e15174, 2024 May.
Article En | MEDLINE | ID: mdl-38720423

OBJECTIVES: This study investigates the role of TNF-induced protein 3 (TNFAIP3) and CCAAT/enhancer-binding protein ß (C/EBPß) in alveolar macrophages (AMs) of patients with systemic sclerosis-associated interstitial lung disease (SSc-ILD) and their influence on pulmonary fibrosis. METHODS: Transfection of HEK293T cells and AMs with plasmids carrying TNFAIP3 and C/EBPß was performed, followed by co-culturing AMs with pulmonary fibroblasts. Immunoblotting analysis was then utilized to assess the expression of TNFAIP3, C/EBPß, and collagen type 1 (Col1). Quantitative PCR analysis was conducted to quantify the mRNA levels of C/EBPß, IL-10, and TGF-ß1. STRING database analysis, and immunoprecipitation assays were employed to investigate the interactions between TNFAIP3 and C/EBPß. RESULTS: TNFAIP3 expression was significantly reduced in SSc-ILD AMs, correlating with increased Col1 production in fibroblasts. Overexpression of TNFAIP3 inhibited this pro-fibrotic activity. Conversely, C/EBPß expression was elevated in SSc-ILD AMs, and its reduction through TNFAIP3 restoration decreased pro-fibrotic cytokines IL-10 and TGFß1 levels. Protein-protein interaction studies confirmed the regulatory relationship between TNFAIP3 and C/EBPß. CONCLUSIONS: This study highlights the important role of TNFAIP3 in regulating pulmonary fibrosis in SSc-ILD by modulating C/EBPß expression in AMs. These findings suggest that targeting TNFAIP3 could be a potential therapeutic strategy for managing SSc-ILD patients.


CCAAT-Enhancer-Binding Protein-beta , Coculture Techniques , Fibroblasts , Lung Diseases, Interstitial , Macrophages, Alveolar , Scleroderma, Systemic , Tumor Necrosis Factor alpha-Induced Protein 3 , Female , Humans , Male , Middle Aged , CCAAT-Enhancer-Binding Protein-beta/metabolism , CCAAT-Enhancer-Binding Protein-beta/genetics , Collagen Type I/metabolism , Collagen Type I/genetics , Fibroblasts/metabolism , HEK293 Cells , Interleukin-10/metabolism , Interleukin-10/genetics , Lung/metabolism , Lung/pathology , Lung Diseases, Interstitial/metabolism , Lung Diseases, Interstitial/etiology , Macrophages, Alveolar/metabolism , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/etiology , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/complications , Signal Transduction , Transforming Growth Factor beta1/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Adult , Aged
...