Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 721
Filter
1.
Mol Med Rep ; 30(3)2024 Sep.
Article in English | MEDLINE | ID: mdl-38994759

ABSTRACT

Spinal diseases, including intervertebral disc degeneration (IDD), ankylosing spondylitis, spinal cord injury and other non­infectious spinal diseases, severely affect the quality of life of patients. Current treatments for IDD and other spinal diseases can only relieve symptoms and do not completely cure the disease. Therefore, there is an urgent need to explore the causes of these diseases and develop new treatment approaches. Long non­coding RNA (lncRNA), a form of non­coding RNA, is abundant in diverse sources, has numerous functions, and plays an important role in the occurrence and development of spinal diseases such as IDD. However, the mechanism of action of lncRNAs has not been fully elucidated, and significant challenges remain in the use of lncRNAs as new therapeutic targets. The present article reviews the sources, classification and functions of lncRNAs, and introduces the role of lncRNAs in spinal diseases, such as IDD, and their therapeutic potential.


Subject(s)
RNA, Long Noncoding , Spinal Diseases , RNA, Long Noncoding/genetics , Humans , Spinal Diseases/genetics , Spinal Diseases/therapy , Spondylitis, Ankylosing/genetics , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/therapy , Animals , Spinal Cord Injuries/genetics , Spinal Cord Injuries/therapy , Spinal Cord Injuries/metabolism , Gene Expression Regulation
2.
BMC Musculoskelet Disord ; 25(1): 537, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997667

ABSTRACT

BACKGROUND: Human intervertebral disk degeneration (IVDD) is a sophisticated degenerative pathological process. A key cause of IVDD progression is nucleus pulposus cell (NPC) degeneration, which contributes to excessive endoplasmic reticulum stress in the intervertebral disk. However, the mechanisms underlying IVDD and NPC degeneration remain unclear. METHODS: We used interleukin (IL)-1ß stimulation to establish an NPC-degenerated IVDD model and investigated whether human urine-derived stem cell (USC) exosomes could prevent IL-1ß-induced NPC degeneration using western blotting, quantitative real-time polymerase chain reaction, flow cytometry, and transcriptome sequencing techniques. RESULTS: We successfully extracted and identified USCs and exosomes from human urine. IL-1ß substantially downregulated NPC viability and induced NPC degeneration while modulating the expression of SOX-9, collagen II, and aggrecan. Exosomes from USCs could rescue IL-1ß-induced NPC degeneration and restore the expression levels of SOX-9, collagen II, and aggrecan. CONCLUSIONS: USC-derived exosomes can prevent NPCs from degeneration following IL-1ß stimulation. This finding can aid the development of a potential treatment strategy for IVDD.


Subject(s)
Exosomes , Interleukin-1beta , Intervertebral Disc Degeneration , Nucleus Pulposus , SOX9 Transcription Factor , Humans , Interleukin-1beta/metabolism , Exosomes/metabolism , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/therapy , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Nucleus Pulposus/cytology , Nucleus Pulposus/drug effects , SOX9 Transcription Factor/metabolism , SOX9 Transcription Factor/genetics , Animals , Stem Cells/metabolism , Cells, Cultured , Aggrecans/metabolism , Aggrecans/genetics , Male , Urine/cytology , Urine/chemistry , Female , Collagen Type II/metabolism
3.
Nat Commun ; 15(1): 5736, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982049

ABSTRACT

Excessive exercise is an etiological factor of intervertebral disc degeneration (IVDD). Engineered extracellular vesicles (EVs) exhibit excellent therapeutic potential for disease-modifying treatments. Herein, we fabricate an exercise self-powered triboelectric-responsive microneedle (MN) assay with the sustainable release of optogenetically engineered EVs for IVDD repair. Mechanically, exercise promotes cytosolic DNA sensing-mediated inflammatory activation in senescent nucleus pulposus (NP) cells (the master cell population for IVD homeostasis maintenance), which accelerates IVDD. TREX1 serves as a crucial nuclease, and disassembly of TRAM1-TREX1 complex disrupts the subcellular localization of TREX1, triggering TREX1-dependent genomic DNA damage during NP cell senescence. Optogenetically engineered EVs deliver TRAM1 protein into senescent NP cells, which effectively reconstructs the elimination function of TREX1. Triboelectric nanogenerator (TENG) harvests mechanical energy and triggers the controllable release of engineered EVs. Notably, an optogenetically engineered EV-based targeting treatment strategy is used for the treatment of IVDD, showing promising clinical potential for the treatment of degeneration-associated disorders.


Subject(s)
Extracellular Vesicles , Intervertebral Disc Degeneration , Needles , Nucleus Pulposus , Optogenetics , Intervertebral Disc Degeneration/therapy , Intervertebral Disc Degeneration/metabolism , Extracellular Vesicles/metabolism , Animals , Nucleus Pulposus/metabolism , Optogenetics/methods , Optogenetics/instrumentation , Humans , Phosphoproteins/metabolism , Phosphoproteins/genetics , Cellular Senescence , Exodeoxyribonucleases/metabolism , Exodeoxyribonucleases/genetics , Rats , DNA Damage , Mice , Male , Disease Models, Animal , Rats, Sprague-Dawley
4.
Cells ; 13(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38891119

ABSTRACT

Although discectomy is commonly performed for lumbar intervertebral disc (IVD) herniation, the capacity for tissue repair after surgery is limited, resulting in residual lower back pain, recurrence of IVD herniation, and progression of IVD degeneration. Cell-based therapies, as one-step procedures, are desirable for enhancing IVD repair. This study aimed to investigate the therapeutic efficacy of a combination of newly developed ultra-purified alginate (UPAL) gel and bone marrow aspirate concentrate (BMAC) implantation for IVD repair after discectomy. Prior to an in vivo study, the cell concentration abilities of three commercially available preparation kits for creating the BMAC were compared by measuring the number of bone marrow mesenchymal stem cells harvested from the bone marrow of rabbits. Subsequently, canine-derived BMAC was tested in a canine model using a kit which had the highest concentration rate. At 24 weeks after implantation, we evaluated the changes in the magnetic resonance imaging (MRI) signals as well as histological degeneration grade and immunohistochemical analysis results for type II and type I collagen-positive cells in the treated IVDs. In all quantitative evaluations, such as MRI and histological and immunohistochemical analyses of IVD degeneration, BMAC-UPAL implantation significantly suppressed the progression of IVD degeneration compared to discectomy and UPAL alone. This preclinical proof-of-concept study demonstrated the potential efficacy of BMAC-UPAL gel as a therapeutic strategy for implementation after discectomy, which was superior to UPAL and discectomy alone in terms of tissue repair and regenerative potential.


Subject(s)
Alginates , Disease Models, Animal , Intervertebral Disc Degeneration , Intervertebral Disc , Animals , Dogs , Alginates/chemistry , Alginates/pharmacology , Intervertebral Disc/surgery , Intervertebral Disc/pathology , Intervertebral Disc/drug effects , Rabbits , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/surgery , Intervertebral Disc Degeneration/therapy , Proof of Concept Study , Gels , Bone Marrow Cells/cytology , Mesenchymal Stem Cells/cytology , Magnetic Resonance Imaging , Male , Bone Marrow Transplantation/methods
5.
Int J Nanomedicine ; 19: 4735-4757, 2024.
Article in English | MEDLINE | ID: mdl-38813390

ABSTRACT

As a major cause of low back pain, intervertebral disc degeneration is an increasingly prevalent chronic disease worldwide that leads to huge annual financial losses. The intervertebral disc consists of the inner nucleus pulposus, outer annulus fibrosus, and sandwiched cartilage endplates. All these factors collectively participate in maintaining the structure and physiological functions of the disc. During the unavoidable degeneration stage, the degenerated discs are surrounded by a harsh microenvironment characterized by acidic, oxidative, inflammatory, and chaotic cytokine expression. Loss of stem cell markers, imbalance of the extracellular matrix, increase in inflammation, sensory hyperinnervation, and vascularization have been considered as the reasons for the progression of intervertebral disc degeneration. The current treatment approaches include conservative therapy and surgery, both of which have drawbacks. Novel stimuli-responsive delivery systems are more promising future therapeutic options than traditional treatments. By combining bioactive agents with specially designed hydrogels, scaffolds, microspheres, and nanoparticles, novel stimuli-responsive delivery systems can realize the targeted and sustained release of drugs, which can both reduce systematic adverse effects and maximize therapeutic efficacy. Trigger factors are categorized into internal (pH, reactive oxygen species, enzymes, etc.) and external stimuli (photo, ultrasound, magnetic, etc.) based on their intrinsic properties. This review systematically summarizes novel stimuli-responsive delivery systems for intervertebral disc degeneration, shedding new light on intervertebral disc therapy.


Subject(s)
Intervertebral Disc Degeneration , Humans , Intervertebral Disc Degeneration/therapy , Drug Delivery Systems/methods , Animals , Nanoparticles/chemistry , Hydrogels/chemistry , Intervertebral Disc/drug effects , Reactive Oxygen Species/metabolism
6.
Acupunct Med ; 42(3): 146-154, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38702866

ABSTRACT

BACKGROUND: Cervical spondylosis (CS) is a prevalent disorder that can have a major negative impact on quality of life. Traditional conservative treatment has limited efficacy, and electroacupuncture (EA) is a novel treatment option. We investigated the application and molecular mechanism of EA treatment in a rat model of cervical intervertebral disk degeneration (CIDD). METHODS: The CIDD rat model was established, following which rats in the electroacupuncture (EA) group received EA. For overexpression of IL-22 or inhibition of JAK2-STAT3 signaling, the rats were injected intraperitoneally with recombinant IL-22 protein (p-IL-22) or the JAK2-STAT3 (Janus kinase 2-signal transducer and activator of transcription protein 3) inhibitor AG490 after model establishment. Rat nucleus pulposus (NP) cells were isolated and cultured. Cell counting kit-8 and flow cytometry were used to analyze the viability and apoptosis of the NP cells. Expression of IL-22, JAK2 and STAT3 was determined using RT-qPCR. Expression of IL-22/JAK2-STAT3 pathway and apoptosis related proteins was detected by Western blotting (WB). RESULTS: EA protected the NP tissues of CIDD rats by regulating the IL-22/JAK2-STAT3 pathway. Overexpression of IL-22 significantly promoted the expression of tumor necrosis factor (TNF)-α, IL-6, IL-1ß, matrix metalloproteinase (MMP)3 and MMP13 compared with the EA group. WB demonstrated that the expression of IL-22, p-JAK2, p-STAT3, caspase-3 and Bax in NP cells of the EA group was significantly reduced and Bcl-2 elevated compared with the model group. EA regulated cytokines and MMP through activation of IL-22/JAK2-STAT3 signaling in CIDD rat NP cells. CONCLUSION: We demonstrated that EA affected apoptosis by regulating the IL-22/JAK2-STAT3 pathway in NP cells and reducing inflammatory factors in the CIDD rat model. The results extend our knowledge of the mechanisms of action underlying the effects of EA as a potential treatment approach for CS in clinical practice.


Subject(s)
Apoptosis , Disease Models, Animal , Electroacupuncture , Interleukin-22 , Interleukins , Intervertebral Disc Degeneration , Janus Kinase 2 , Nucleus Pulposus , Rats, Sprague-Dawley , STAT3 Transcription Factor , Signal Transduction , Animals , Intervertebral Disc Degeneration/therapy , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/genetics , Nucleus Pulposus/metabolism , Nucleus Pulposus/cytology , Janus Kinase 2/metabolism , Janus Kinase 2/genetics , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Rats , Interleukins/metabolism , Interleukins/genetics , Male , Humans , Cervical Vertebrae
7.
Ageing Res Rev ; 98: 102323, 2024 07.
Article in English | MEDLINE | ID: mdl-38734147

ABSTRACT

Oxidative stress is one of the main driving mechanisms of intervertebral disc degeneration(IDD). Oxidative stress has been associated with inflammation in the intervertebral disc, cellular senescence, autophagy, and epigenetics of intervertebral disc cells. It and the above pathological mechanisms are closely linked through the common hub reactive oxygen species(ROS), and promote each other in the process of disc degeneration and promote the development of the disease. This reveals the important role of oxidative stress in the process of IDD, and the importance and great potential of IDD therapy targeting oxidative stress. The efficacy of traditional therapy is unstable or cannot be maintained. In recent years, due to the rise of materials science, many bioactive functional materials have been applied in the treatment of IDD, and through the combination with traditional drugs, satisfactory efficacy has been achieved. At present, the research review of antioxidant bioactive materials in the treatment of IDD is not complete. Based on the existing studies, the mechanism of oxidative stress in IDD and the common antioxidant therapy were summarized in this paper, and the strategies based on emerging bioactive materials were reviewed.


Subject(s)
Antioxidants , Intervertebral Disc Degeneration , Oxidative Stress , Oxidative Stress/physiology , Oxidative Stress/drug effects , Humans , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/therapy , Intervertebral Disc Degeneration/drug therapy , Antioxidants/therapeutic use , Antioxidants/pharmacology , Animals , Reactive Oxygen Species/metabolism , Intervertebral Disc/metabolism , Intervertebral Disc/drug effects
8.
ACS Appl Mater Interfaces ; 16(22): 28263-28275, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38788694

ABSTRACT

Intervertebral disc degeneration (IDD) is a progressive condition and stands as one of the primary causes of low back pain. Cell therapy that uses nucleus pulposus (NP)-like cells derived from human induced pluripotent stem cells (hiPSCs) holds great promise as a treatment for IDD. However, the conventional two-dimensional (2D) monolayer cultures oversimplify cell-cell interactions, leading to suboptimal differentiation efficiency and potential loss of phenotype. While three-dimensional (3D) culture systems like Matrigel improve hiPSC differentiation efficiency, they are limited by animal-derived materials for translation, poorly defined composition, short-term degradation, and high cost. In this study, we introduce a new 3D scaffold fabricated using medical-grade chitosan with a high degree of deacetylation. The scaffold features a highly interconnected porous structure, near-neutral surface charge, and exceptional degradation stability, benefiting iPSC adhesion and proliferation. This scaffold remarkably enhances the differentiation efficiency and allows uninterrupted differentiation for up to 25 days without subculturing. Notably, cells differentiated on the chitosan scaffold exhibited increased cell survival rates and upregulated gene expression associated with extracellular matrix secretion under a chemically defined condition mimicking the challenging microenvironment of intervertebral discs. These characteristics qualify the chitosan scaffold-cell construct for direct implantation, serving as both a structural support and a cellular source for enhanced stem cell therapy for IDD.


Subject(s)
Cell Differentiation , Chitosan , Induced Pluripotent Stem Cells , Nucleus Pulposus , Tissue Scaffolds , Chitosan/chemistry , Cell Differentiation/drug effects , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Nucleus Pulposus/cytology , Humans , Tissue Scaffolds/chemistry , Intervertebral Disc Degeneration/therapy , Intervertebral Disc Degeneration/pathology , Cells, Cultured , Cell Survival/drug effects
9.
J Nanobiotechnology ; 22(1): 292, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802882

ABSTRACT

BACKGROUND: The use of gene therapy to deliver microRNAs (miRNAs) has gradually translated to preclinical application for the treatment of intervertebral disc degeneration (IDD). However, the effects of miRNAs are hindered by the short half-life time and the poor cellular uptake, owing to the lack of efficient delivery systems. Here, we investigated nucleus pulposus cell (NPC) specific aptamer-decorated polymeric nanoparticles that can load miR-150-5p for IDD treatment. METHODS: The role of miR-150-5p during disc development and degeneration was examined by miR-150-5p knockout (KO) mice. Histological analysis was undertaken in disc specimens. The functional mechanism of miR-150-5p in IDD development was investigated by qRT-PCR assay, Western blot, coimmunoprecipitation and immunofluorescence. NPC specific aptamer-decorated nanoparticles was designed, and its penetration, stability and safety were evaluated. IDD progression was assessed by radiological analysis including X-ray and MRI, after the annulus fibrosus needle puncture surgery with miR-150-5p manipulation by intradiscal injection of nanoparticles. The investigations into the interaction between aptamer and receptor were conducted using mass spectrometry, molecular docking and molecular dynamics simulations. RESULTS: We investigated NPC-specific aptamer-decorated polymeric nanoparticles that can bind to miR-150-5p for IDD treatment. Furthermore, we detected that nanoparticle-loaded miR-150-5p inhibitors alleviated NPC senescence in vitro, and the effects of the nanoparticles were sustained for more than 3 months in vivo. The microenvironment of NPCs improves the endo/lysosomal escape of miRNAs, greatly inhibiting the secretion of senescence-associated factors and the subsequent degeneration of NPCs. Importantly, nanoparticles delivering miR-150-5p inhibitors attenuated needle puncture-induced IDD in mouse models by targeting FBXW11 and inhibiting TAK1 ubiquitination, resulting in the downregulation of NF-kB signaling pathway activity. CONCLUSIONS: NPC-targeting nanoparticles delivering miR-150-5p show favorable therapeutic efficacy and safety and may constitute a promising treatment for IDD.


Subject(s)
Intervertebral Disc Degeneration , Mice, Knockout , MicroRNAs , Nanoparticles , Nucleus Pulposus , MicroRNAs/metabolism , MicroRNAs/genetics , Animals , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/therapy , Intervertebral Disc Degeneration/drug therapy , Nucleus Pulposus/metabolism , Nanoparticles/chemistry , Mice , Male , Humans , Mice, Inbred C57BL
10.
Biomaterials ; 308: 122562, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38583365

ABSTRACT

Painful musculoskeletal disorders such as intervertebral disc (IVD) degeneration associated with chronic low back pain (termed "Discogenic back pain", DBP), are a significant socio-economic burden worldwide and contribute to the growing opioid crisis. Yet there are very few if any successful interventions that can restore the tissue's structure and function while also addressing the symptomatic pain. Here we have developed a novel non-viral gene therapy, using engineered extracellular vesicles (eEVs) to deliver the developmental transcription factor FOXF1 to the degenerated IVD in an in vivo model. Injured IVDs treated with eEVs loaded with FOXF1 demonstrated robust sex-specific reductions in pain behaviors compared to control groups. Furthermore, significant restoration of IVD structure and function in animals treated with FOXF1 eEVs were observed, with significant increases in disc height, tissue hydration, proteoglycan content, and mechanical properties. This is the first study to successfully restore tissue function while modulating pain behaviors in an animal model of DBP using eEV-based non-viral delivery of transcription factor genes. Such a strategy can be readily translated to other painful musculoskeletal disorders.


Subject(s)
Extracellular Vesicles , Genetic Therapy , Intervertebral Disc Degeneration , Animals , Extracellular Vesicles/metabolism , Genetic Therapy/methods , Female , Male , Intervertebral Disc Degeneration/therapy , Intervertebral Disc Degeneration/genetics , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Intervertebral Disc/pathology , Rats, Sprague-Dawley , Back Pain/therapy , Back Pain/genetics , Low Back Pain/therapy
11.
Sci Rep ; 14(1): 9777, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684854

ABSTRACT

Few non-surgical, longitudinal studies have evaluated the relations between spinal degeneration, lumbar multifidus muscle (LMM) quality, and clinical outcomes. None have assessed the potential mediating role of the LMM between degenerative pathology and 12-month clinical outcomes. This prospective cohort study used baseline and 12-month follow-up data from 569 patients conservatively managed for low back or back-related leg pain to estimate the effects of aggregate degenerative lumbar MRI findings and LMM quality on 12-month low back and leg pain intensity (0-10) and disability (0-23) outcomes, and explored the mediating role of LMM quality between degenerative findings and 12-month clinical outcomes. Adjusted mixed effects generalized linear models separately estimated the effect of aggregate spinal pathology and LMM quality. Mediation models estimated the direct and indirect effects of pathology on leg pain, and pathology and LMM quality on leg pain, respectively. Multivariable analysis identified a leg pain rating change of 0.99 [0.14; 1.84] (unstandardized beta coefficients [95% CI]) in the presence of ≥ 4 pathologies, and a disability rating change of - 0.65 [- 0.14; - 1.16] for each 10% increase in muscle quality, but no effect on back pain intensity. Muscle quality had a non-significant mediating role (13.4%) between pathology and leg pain intensity. The number of different pathologies present demonstrated a small effect on 12-month leg pain intensity outcomes, while higher LMM quality had a direct effect on 12-month disability ratings but no mediating effect between pathology and leg pain. The relations between degenerative pathology, LMM quality, and pain-related outcomes appear complex and may include independent pathways.


Subject(s)
Low Back Pain , Paraspinal Muscles , Humans , Female , Male , Paraspinal Muscles/pathology , Paraspinal Muscles/diagnostic imaging , Low Back Pain/therapy , Middle Aged , Prospective Studies , Leg/pathology , Aged , Lumbar Vertebrae/pathology , Lumbar Vertebrae/diagnostic imaging , Treatment Outcome , Magnetic Resonance Imaging , Adult , Conservative Treatment/methods , Pain Measurement , Intervertebral Disc Degeneration/therapy , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/diagnostic imaging
12.
Int Immunopharmacol ; 132: 112028, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38593507

ABSTRACT

Extracellular vesicles (EVs) derived from Mesenchymal Stromal Cells (MSCs) have shown promising therapeutic potential for multiple diseases, including intervertebral disc degeneration (IDD). Nevertheless, the limited production and unstable quality of EVs hindered the clinical application of EVs in IDD. Selenomethionine (Se-Met), the major form of organic selenium present in the cereal diet, showed various beneficial effects, including antioxidant, immunomodulatory and anti-apoptotic effects. In the current study, Se-Met was employed to treat MSCs to investigate whether Se-Met can facilitate the secretion of EVs by MSCs and optimize their therapeutic effects on IDD. On the one hand, Se-Met promoted the production of EVs by enhancing the autophagy activity of MSCs. On the other hand, Se-Met pretreated MSC-derived EVs (Se-EVs) exhibited an enhanced protective effects on alleviating nucleus pulposus cells (NPCs) senescence and attenuating IDD compared with EVs isolated from control MSCs (C-EVs) in vitro and in vivo. Moreover, we performed a miRNA microarray sequencing analysis on EVs to explore the potential mechanism of the protective effects of EVs. The result indicated that miR-125a-5p is markedly enriched in Se-EVs compared to C-EVs. Further in vitro and in vivo experiments revealed that knockdown of miR-125a-5p in Se-EVs (miRKD-Se-EVs) impeded the protective effects of Se-EVs, while overexpression of miR-125a-5p (miROE-Se-EVs) boosted the protective effects. In conclusion, Se-Met facilitated the MSC-derived EVs production and increased miR-125a-5p delivery in Se-EVs, thereby improving the protective effects of MSC-derived EVs on alleviating NPCs senescence and attenuating IDD.


Subject(s)
Extracellular Vesicles , Intervertebral Disc Degeneration , Mesenchymal Stem Cells , MicroRNAs , Selenomethionine , Intervertebral Disc Degeneration/therapy , Intervertebral Disc Degeneration/metabolism , Mesenchymal Stem Cells/metabolism , Extracellular Vesicles/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Selenomethionine/pharmacology , Humans , Nucleus Pulposus/metabolism , Cells, Cultured , Male , Cellular Senescence , Mesenchymal Stem Cell Transplantation , Autophagy , Rats, Sprague-Dawley , Rats
13.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(1): 88-97, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38433637

ABSTRACT

Lumbar intervertebral disc degeneration is a common pathological process in the spine,with the main clinical symptoms of low back pain,numbness of lower limbs,and defecation dysfunction.The occurrence and development of lumbar intervertebral disc degeneration are determined by multiple factors,and the pathophysiological and cellular mechanisms remain to be fully understood.Nucleus pulposus tissue engineering is a new biotherapy that combines biological histology with material science to treat diseases including lumbar intervertebral disc degeneration.Clinicians should fully learn the complex relationship between nucleus pulposus tissue engineering and lumbar intervertebral disc degeneration,which will facilitate the clinical treatment of lumbar intervertebral disc degeneration,the rehabilitation of lumbar intervertebral disc after treatment,and the prevention of this disease in the population.


Subject(s)
Intervertebral Disc Degeneration , Nucleus Pulposus , Humans , Intervertebral Disc Degeneration/therapy , Tissue Engineering , Spine
14.
Eur Spine J ; 33(5): 1713-1727, 2024 May.
Article in English | MEDLINE | ID: mdl-38416190

ABSTRACT

PURPOSE: To investigate the therapeutic potential of extracellular vesicles (EVs) derived from human nucleus pulposus cells (NPCs), with a specific emphasis on Tie2-enhanced NPCs, compared to EVs derived from human bone marrow-derived mesenchymal stromal cells (BM-MSCs) in a coccygeal intervertebral disc degeneration (IDD) rat model. METHODS: EVs were isolated from healthy human NPCs cultured under standard (NPCSTD-EVs) and Tie2-enhancing (NPCTie2+-EVs) conditions. EVs were characterized, and their potential was assessed in vitro on degenerative NPCs in terms of cell proliferation and senescence, with or without 10 ng/mL interleukin (IL)-1ß. Thereafter, 16 Sprague-Dawley rats underwent annular puncture of three contiguous coccygeal discs to develop IDD. Phosphate-buffered saline, NPCSTD-EVs, NPCTie2+-EVs, or BM-MSC-derived EVs were injected into injured discs, and animals were followed for 12 weeks until sacrifice. Behavioral tests, radiographic disc height index (DHI) measurements, evaluation of pain biomarkers, and histological analyses were performed to assess the outcomes of injected EVs. RESULTS: NPC-derived EVs exhibited the typical exosomal morphology and were efficiently internalized by degenerative NPCs, enhancing cell proliferation, and reducing senescence. In vivo, a single injection of NPC-derived EVs preserved DHI, attenuated degenerative changes, and notably reduced mechanical hypersensitivity. MSC-derived EVs showed marginal improvements over sham controls across all measured outcomes. CONCLUSION: Our results underscore the regenerative potential of young NPC-derived EVs, particularly NPCTie2+-EVs, surpassing MSC-derived counterparts. These findings raise questions about the validity of MSCs as both EV sources and cellular therapeutics against IDD. The study emphasizes the critical influence of cell type, source, and culture conditions in EV-based therapeutics.


Subject(s)
Extracellular Vesicles , Intervertebral Disc Degeneration , Mesenchymal Stem Cells , Nucleus Pulposus , Rats, Sprague-Dawley , Animals , Intervertebral Disc Degeneration/therapy , Extracellular Vesicles/transplantation , Extracellular Vesicles/metabolism , Mesenchymal Stem Cells/physiology , Nucleus Pulposus/metabolism , Rats , Humans , Male , Cells, Cultured , Pain
15.
Curr Pain Headache Rep ; 28(6): 501-506, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38407764

ABSTRACT

PURPOSE OF REVIEW: Bracing represents a prevalent conservative, non-surgical approach used in the management of chronic spinal conditions such as spondylosis, degenerative disc disease, and spondylolisthesis. A wide variety of orthoses are available to aid in addressing cervical, thoracic, lumbar, thoracic, and SI joint pain. In this review, we aim to comprehensively examine brace types with their current applications and implications of usage. RECENT FINDINGS: There are multiple cervical bracing options, such as soft and rigid collars, to assist in managing acute trauma and chronic degenerative conditions. The review highlights the nuanced decision-making process between hard and soft collars based on the severity of bone or ligamentous injury and neurological findings. Orthoses for low back pain are commonly used. The review highlights the challenges of chronic neck and lower back pain, emphasizing the importance of clinicians exploring all treatment strategies including braces which can improve function and reduce pain.


Subject(s)
Braces , Humans , Low Back Pain/therapy , Spinal Diseases/therapy , Orthotic Devices , Chronic Pain/therapy , Intervertebral Disc Degeneration/therapy , Chronic Disease , Neck Pain/therapy
16.
J Biomed Mater Res A ; 112(7): 973-987, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38308554

ABSTRACT

The degeneration of intervertebral disc (IVD) is a disease of the entire joint between two vertebrae in the spine caused by loss of extracellular matrix (ECM) integrity, to date with no cure. The various regenerative approaches proposed so far have led to very limited successes. An emerging opportunity arises from the use of decellularized ECM as a scaffolding material that, directly or in combination with other materials, has greatly facilitated the advancement of tissue engineering. Here we focused on the decellularized matrix obtained from human umbilical cord Wharton's jelly (DWJ) which retains several structural and bioactive molecules very similar to those of the IVD ECM. However, being a viscous gel, DWJ has limited ability to retain ordered structural features when considered as architecture scaffold. To overcome this limitation, we produced DWJ-based multifunctional hydrogels, in the form of 3D millicylinders containing different percentages of alginate, a seaweed-derived polysaccharide, and gelatin, denatured collagen, which may impart mechanical integrity to the biologically active DWJ. The developed protocol, based on a freezing step, leads to the consolidation of the entire polymeric dispersion mixture, followed by an ionic gelation step and a freeze-drying process. Finally, a porous, stable, easily storable, and suitable matrix for ex vivo experiments was obtained. The properties of the millicylinders (Wharton's jelly millicylinders [WJMs]) were then tested in culture of degenerated IVD cells isolated from disc tissues of patients undergoing surgical discectomy. We found that WJMs with the highest percentage of DWJ were effective in supporting cell migration, restoration of the IVD phenotype (increased expression of Collagen type 2, aggrecan, Sox9 and FOXO3a), anti-inflammatory action, and stem cell activity of resident progenitor/notochordal cells (increased number of CD24 positive cells). We are confident that the DWJ-based formulations proposed here can provide adequate stimuli to the cells present in the degenerated IVD to restart the anabolic machinery.


Subject(s)
Hydrogels , Intervertebral Disc , Regeneration , Wharton Jelly , Humans , Wharton Jelly/cytology , Hydrogels/chemistry , Hydrogels/pharmacology , Intervertebral Disc Degeneration/therapy , Intervertebral Disc Degeneration/pathology , Tissue Scaffolds/chemistry , Cells, Cultured
17.
Cell Transplant ; 33: 9636897231219733, 2024.
Article in English | MEDLINE | ID: mdl-38173231

ABSTRACT

Low back pain (LBP) is a leading cause of long-term disability globally. Intervertebral disk degeneration (IVDD) is mainly responsible for discogenic pain in LBP-affected young patients. There is no effective therapy to reverse disease severity and IVDD progression. This study investigates the effect of human peripheral blood-derived mononuclear cells (PBMCs) on pain relief and life quality improvement in IVDD patients. The enriched monocytes of the PBMCs could differentiate into CD14 and CD206 double-positive M2 macrophages in vitro. Preclinical evidence in rats showed that the transplanted PBMCs exhibited anti-inflammatory and moderate tissue-repair effects on controlling IVDD progress in the rat model. The PBMCs significantly steered the aggrecan and type II collagen expressions and attenuated the pro-inflammatory cytokines in the affected disk. Based on the animal results, 36 patients with chronic low back pain (CLBP) were included in clinical trials. The control group was conservative care only, and the experimental group was platelet-rich plasma (PRP) and PBMCs intradiscal injections. We first confirmed the single lumbar disk causing the discogenic pain by provocative discography or magnetic resonance imaging (MRI). Discogenic LBP participants received one intradiscal injection of autologous PBMCs and followed for 6 months. Our clinical trial showed that patients' LBP and disability were significantly ameliorated after the PBMCs transplantation rather than PRP. These preclinical and pilot clinical studies indicate that intradiscal injection of the enriched PBMCs might be a feasible and potential cell therapy to control pain and disability in IVDD patients.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Low Back Pain , Humans , Animals , Rats , Intervertebral Disc Degeneration/therapy , Intervertebral Disc/pathology , Low Back Pain/drug therapy , Low Back Pain/etiology , Injections/adverse effects , Anti-Inflammatory Agents/pharmacology , Treatment Outcome
18.
Biomacromolecules ; 25(2): 729-740, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38263676

ABSTRACT

Intervertebral disk degeneration is a common disease with an unknown etiology. Currently, tissue engineering is considered to be an important method for intervertebral disk repair. Although transplanted stem cells may disrupt the repair process because of apoptosis caused by the oxidative microenvironment. Herein, bone marrow mesenchymal stem cell (BMSC) and Neochlorogenic acid (Ncg) were encapsulated into a GelMA hydrogel as a carrier to protect transplanted stem cells. Ncg effectively inhibited the oxidative stress process and reduced the apoptosis rate. A 5% GelMA hydrogel had a large pore size and porosity that provided an enhanced survival space for cells. An in vivo assessment showed that treatment with GelMA + BMSC + Ncg produced greater repair of degenerated intervertebral disks than that found in other model groups. Thus, this study may help contribute to improving stem cell transplantation for treating intervertebral disk degeneration.


Subject(s)
Chlorogenic Acid/analogs & derivatives , Intervertebral Disc Degeneration , Intervertebral Disc , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Quinic Acid/analogs & derivatives , Humans , Intervertebral Disc Degeneration/therapy , Hydrogels/pharmacology , Mesenchymal Stem Cell Transplantation/methods , Bone Marrow Cells
19.
Cells ; 13(2)2024 01 15.
Article in English | MEDLINE | ID: mdl-38247844

ABSTRACT

The intervertebral disc (IVD) is a soft tissue that constitutes the spinal column together with the vertebrae, and consists of the central nucleus pulposus (gelatinous tissue) and the annulus fibrosus (rich in fibrous tissue) that surrounds the nucleus pulposus [...].


Subject(s)
Annulus Fibrosus , Intervertebral Disc Degeneration , Humans , Intervertebral Disc Degeneration/therapy , Spine , Food , Gelatin
20.
Mol Med ; 30(1): 7, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38200442

ABSTRACT

BACKGROUND: Intervertebral disc degeneration (IDD) is considered an important pathological basis for spinal degenerative diseases. Tissue engineering is a powerful therapeutic strategy that can effectively restore the normal biological properties of disc units. In this study, hydrogels loaded with growth/differentiation factor 5 (GDF5) and stem cells were combined to provide an effective strategy for nucleus pulposus regeneration. METHODS: Nucleus pulposus stem cells (NPSCs) were obtained by low-density inoculation and culture, and their stem cell characteristics were verified by flow cytometry and a tri-lineage-induced differentiation experiment. A decellularized nucleus pulposus matrix (DNPM) and chitosan hybrid hydrogel was prepared, and GDF5-loaded poly(lactic-co-glycolic acid) (PLGA) microspheres were incorporated into the hydrogels to obtain a composite hydrogels with GDF5-loaded microspheres. Taking bone marrow mesenchymal stem cells (BMSCs) as a reference, the effect of composite hydrogels with GDF5-loaded microspheres on the chondrogenic differentiation of NPSCs was evaluated. A model of intervertebral disc degeneration induced by acupuncture on the tail of rats was constructed, and the repair effect of composite hydrogels with GDF5-loaded microspheres combined with NPSCs on IDD was observed. RESULTS: Stem cell phenotype identification, stemness gene expression and tri-lineage-induced differentiation confirmed that NPSCs had characteristics similar to those of BMSCs. The rat DNPM and chitosan hybrid hydrogels had good mechanical properties, and the GDF5-loaded microspheres sustainably released GDF5. NPSCs grew normally in the composite hydrogels and gradually expressed a chondrocyte phenotype. Animal experiments showed that the composite hydrogels with GDF5-loaded microspheres combined with NPSCs effectively promoted nucleus pulposus regeneration and that the effect of the hydrogels on the repair of IDD was significantly better than that of BMSCs. CONCLUSION: GDF5-loaded microspheres combined with DNPM/chitosan composite hydrogels can effectively promote the differentiation of NPSCs into nucleus pulposus-like cells and effectively preventIDD.


Subject(s)
Chitosan , Intervertebral Disc Degeneration , Nucleus Pulposus , Animals , Rats , Hydrogels , Intervertebral Disc Degeneration/therapy , Microspheres , Stem Cells
SELECTION OF CITATIONS
SEARCH DETAIL