Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.968
Filter
1.
J Vis Exp ; (209)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39141543

ABSTRACT

The intestine is a complex organ composed of the small and the large intestines. The small intestine can be further divided into duodenum, jejunum, and ileum. Each anatomical region of the intestine has a unique function that is reflected by differences in cellular structure. Investigating changes in the intestine requires an in-depth analysis of different tissue regions and cellular alterations. To study the intestine and visualize large pieces of tissue, researchers commonly use a technique known as intestinal Swiss rolls. In this technique, the intestine is divided into each anatomical region and fixed in a flat orientation. Then, the tissue is carefully rolled and processed for paraffin embedding. Proper tissue fixation and orientation is an often-overlooked laboratory technique but is critically important for downstream analysis. Additionally, improper Swiss rolling of intestinal tissue can damage the fragile intestinal epithelium, leading to poor tissue quality for immunostaining. Ensuring well-fixed and properly oriented tissue with intact cellular structures is a crucial step that ensures optimal visualization of intestinal cells. We present a cost-effective and simple method for making Swiss rolls to include all sections of the intestine in a single paraffin-embedded block. We also describe optimized immunofluorescence staining of intestinal tissue to study various aspects of the intestinal epithelium. The following protocol provides researchers with a comprehensive guide to obtaining high-quality immunofluorescence images through intestinal tissue fixation, Swiss-roll technique, and immunostaining. Employing these refined approaches preserves the intricate morphology of the intestinal epithelium and fosters a deeper understanding of intestinal physiology and pathobiology.


Subject(s)
Fluorescent Antibody Technique , Paraffin Embedding , Paraffin Embedding/methods , Animals , Fluorescent Antibody Technique/methods , Intestines , Mice , Intestinal Mucosa/cytology
2.
Sci Adv ; 10(32): eadl1584, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39110797

ABSTRACT

Histone acetyltransferases KAT2A and KAT2B are paralogs highly expressed in the intestinal epithelium, but their functions are not well understood. In this study, double knockout of murine Kat2 genes in the intestinal epithelium was lethal, resulting in robust activation of interferon signaling and interferon-associated phenotypes including the loss of intestinal stem cells. Use of pharmacological agents and sterile organoid cultures indicated a cell-intrinsic double-stranded RNA trigger for interferon signaling. Acetyl-proteomics and sequencing of immunoprecipitated double-stranded RNA were used to interrogate the mechanism behind this response, which identified mitochondria-encoded double-stranded RNA as the source of intrinsic interferon signaling. Kat2a and Kat2b therefore play an essential role in regulating mitochondrial functions and maintaining intestinal health.


Subject(s)
Histone Acetyltransferases , Interferons , Mice, Knockout , RNA, Double-Stranded , Signal Transduction , Stem Cells , Animals , RNA, Double-Stranded/metabolism , Mice , Stem Cells/metabolism , Stem Cells/cytology , Interferons/metabolism , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/genetics , Intestinal Mucosa/metabolism , Intestinal Mucosa/cytology , Mitochondria/metabolism , Cell Self Renewal/genetics , Intestines/cytology
3.
J Exp Med ; 221(10)2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39150450

ABSTRACT

Intestinal stem cells at the crypt divide and give rise to progenitor cells that proliferate and differentiate into various mature cell types in the transit-amplifying (TA) zone. Here, we showed that the transcription factor ARID3A regulates intestinal epithelial cell proliferation and differentiation at the TA progenitors. ARID3A forms an expression gradient from the villus tip to the upper crypt mediated by TGF-ß and WNT. Intestinal-specific deletion of Arid3a reduces crypt proliferation, predominantly in TA cells. Bulk and single-cell transcriptomic analysis shows increased enterocyte and reduced secretory differentiation in the Arid3a cKO intestine, accompanied by enriched upper-villus gene signatures of both cell lineages. We find that the enhanced epithelial differentiation in the Arid3a-deficient intestine is caused by increased binding and transcription of HNF1 and HNF4. Finally, we show that loss of Arid3a impairs irradiation-induced regeneration with sustained cell death and reprogramming. Our findings imply that Arid3a functions to fine-tune the proliferation-differentiation dynamics at the TA progenitors, which are essential for injury-induced regeneration.


Subject(s)
Cell Differentiation , Cell Proliferation , DNA-Binding Proteins , Hepatocyte Nuclear Factor 1-alpha , Intestinal Mucosa , Mice, Knockout , Regeneration , Transcription Factors , Animals , Intestinal Mucosa/metabolism , Intestinal Mucosa/cytology , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/deficiency , Hepatocyte Nuclear Factor 1-alpha/metabolism , Hepatocyte Nuclear Factor 1-alpha/genetics , Hepatocyte Nuclear Factor 4/metabolism , Hepatocyte Nuclear Factor 4/genetics , Stem Cells/metabolism , Stem Cells/cytology , Mice, Inbred C57BL , Transforming Growth Factor beta/metabolism , Epithelial Cells/metabolism , Enterocytes/metabolism , Enterocytes/cytology
4.
Int J Mol Sci ; 25(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39000465

ABSTRACT

The complexification of in vitro models requires the compatibility of cells with the same medium. Since immune cells are the most sensitive to growth conditions, growing intestinal epithelial cells in their usual medium seems to be necessary. This work was aimed at comparing the sensitivity of these epithelial cells to pro-inflammatory stimuli but also to dietary polyphenols in both DMEM and RPMI-1640 media. Co-cultures of Caco-2 and HT29-MTX cells were grown for 21 days in the two media before their stimulation with a cocktail of TNF-α (20 ng/mL), IL-1ß (1 ng/mL), and IFN-γ (10 ng/mL) or with LPS (10 ng/mL) from E. coli (O111:B4). The role of catechins (15 µM), a dietary polyphenol, was evaluated after its incubation with the cells before their stimulation for 6 h. The RPMI-1640 medium did not alter the intensity of the inflammatory response observed with the cytokines. By contrast, LPS failed to stimulate the co-culture in inserts regardless of the medium used. Lastly, catechins were unable to prevent the pro-inflammatory response observed with the cytokines in the two media. The preservation of the response of this model of intestinal epithelium in RPMI-1640 medium is promising when considering its complexification to evaluate the complex cellular crosstalk leading to intestinal homeostasis.


Subject(s)
Coculture Techniques , Intestinal Mucosa , Lipopolysaccharides , Polyphenols , Humans , Coculture Techniques/methods , Polyphenols/pharmacology , Caco-2 Cells , Intestinal Mucosa/metabolism , Intestinal Mucosa/cytology , Intestinal Mucosa/drug effects , Lipopolysaccharides/pharmacology , HT29 Cells , Culture Media/chemistry , Culture Media/pharmacology , Cytokines/metabolism , Catechin/pharmacology , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Inflammation/metabolism , Inflammation/pathology
5.
PLoS One ; 19(7): e0300666, 2024.
Article in English | MEDLINE | ID: mdl-39052651

ABSTRACT

Mechanistic investigation of host-microbe interactions in the human gut are hindered by difficulty of co-culturing microbes with intestinal epithelial cells. On one hand the gut bacteria are a mix of facultative, aerotolerant or obligate anaerobes, while the intestinal epithelium requires oxygen for growth and function. Thus, a coculture system that can recreate these contrasting oxygen requirements is critical step towards our understanding microbial-host interactions in the human gut. Here, we demonstrate Intestinal Organoid Physoxic Coculture (IOPC) system, a simple and cost-effective method for coculturing anaerobic intestinal bacteria with human intestinal organoids (HIOs). Using commensal anaerobes with varying degrees of oxygen tolerance, such as nano-aerobe Bacteroides thetaiotaomicron and strict anaerobe Blautia sp., we demonstrate that IOPC can successfully support 24-48 hours HIO-microbe coculture. The IOPC recapitulates the contrasting oxygen conditions across the intestinal epithelium seen in vivo. The IOPC cultured HIOs showed increased barrier integrity, and induced expression of immunomodulatory genes. A transcriptomic analysis suggests that HIOs from different donors show differences in the magnitude of their response to coculture with anaerobic bacteria. Thus, the IOPC system provides a robust coculture setup for investigating host-microbe interactions in complex, patient-derived intestinal tissues, that can facilitate the study of mechanisms underlying the role of the microbiome in health and disease.


Subject(s)
Coculture Techniques , Intestinal Mucosa , Organoids , Oxygen , Humans , Organoids/microbiology , Organoids/metabolism , Oxygen/metabolism , Coculture Techniques/methods , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Intestinal Mucosa/cytology , Gastrointestinal Microbiome , Host Microbial Interactions , Bacteria, Anaerobic/growth & development , Bacteria, Anaerobic/metabolism , Intestines/microbiology , Intestines/cytology , Bacteroides thetaiotaomicron/metabolism
6.
Int J Mol Sci ; 25(14)2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39063188

ABSTRACT

Impairment of the intestinal epithelial barrier is frequently seen as collateral damage in various local and systemic inflammatory conditions. The inflammatory process is characterized by reciprocal interactions between the host intestinal epithelium and mucosal innate immune cells, e.g., macrophages. This article provides step-by-step instructions on how to set up a murine enteroid-macrophage co-culture by culturing cellular elements in proximity separated by a porous membrane. Unlike previously published co-culture systems, we have combined enteroids grown from C57BL6j mice with syngeneic bone marrow-derived macrophages to preclude potential allo-reactions between immune cells and epithelium. Transformation of intestinal crypts into proliferative enteroids was achieved by cultivation in Wnt3a-Noggin-R-Spondin-conditioned medium supplemented with ROCK inhibitor Y-27632. The differentiated phenotype was promoted by the use of the Wnt3-deprived EGF-Noggin-R-Spondin medium. The resulting co-culture of primary cells can be employed as a basic model to better understand the reciprocal relationship between intestinal epithelium and macrophages. It can be used for in vitro modelling of mucosal inflammation, mimicked by stimulation of macrophages either while being in co-culture or before being introduced into co-culture, to simulate enterogenic sepsis or systemic conditions affecting the intestinal tract.


Subject(s)
Coculture Techniques , Macrophages , Mice, Inbred C57BL , Animals , Coculture Techniques/methods , Macrophages/metabolism , Macrophages/cytology , Mice , Intestinal Mucosa/metabolism , Intestinal Mucosa/cytology , Organoids/cytology , Organoids/metabolism , Cell Differentiation , Culture Media, Conditioned/pharmacology , Cells, Cultured
8.
J Vis Exp ; (208)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39007612

ABSTRACT

Single cell transcriptomics has revolutionized our understanding of the cell biology of the human body. State-of-the-art human small intestinal organoid cultures provide ex vivo model systems that bridge the gap between animal models and clinical studies. The application of single cell transcriptomics to human intestinal organoid (HIO) models is revealing previously unrecognized cell biology, biochemistry, and physiology of the GI tract. The advanced single cell transcriptomics platforms use microfluidic partitioning and barcoding to generate cDNA libraries. These barcoded cDNAs can be easily sequenced by next generation sequencing platforms and used by various visualization tools to generate maps. Here, we describe methods to culture and differentiate human small intestinal HIOs in different formats and procedures for isolating viable cells from these formats that are suitable for use in single-cell transcriptional profiling platforms. These protocols and procedures facilitate the use of small intestinal HIOs to obtain an increased understanding of the cellular response of human intestinal epithelium at the transcriptional level in the context of a variety of different environments.


Subject(s)
Intestinal Mucosa , Intestine, Small , Organoids , Single-Cell Analysis , Humans , Organoids/cytology , Organoids/metabolism , Intestine, Small/cytology , Intestine, Small/metabolism , Single-Cell Analysis/methods , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Gene Expression Profiling/methods , Transcriptome/genetics
9.
Biofabrication ; 16(4)2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39029501

ABSTRACT

Reconstructing the microscale villous organisation and functionality of the small intestine is essential for developingin vitroplatforms tailored for absorption studies as well as for investigating intestinal morphogenesis in development and disease. However, the current fabrication techniques able to mimic the villus-crypt axis poses significant challenges in terms of reconstruction of the complex 3D microarchitecture. These challenges extend beyond mere structural intricacies to encompass the incorporation of diverse cell types and the management of intricate fluid dynamics within the system. Here, we introduce a novel microfluidic device calledIn-Crypts, which integrates a cell-instructive membrane aimed at inducing and guiding Caco-2 cells morphogenesis. Patterned topographical cues embossed onto the porous membrane induce the formation of a well-organized intestinal epithelium, characterized by proliferating crypt-like domains and differentiated villus-like regions. Notably, our cell-instructive porous membrane effectively sustains stem cells development, faithfully replicating the niche environment ofin vivointestinal crypts thus mirroring the cell biogeography observedin vivo. Moreover, by introducing dynamic fluid flow, we provide a faithful recapitulation of the native microenvironmental shear stress experienced by the intestinal epithelium. This stress plays a crucial role in influencing cell behaviour, differentiation, and overall functionality, thus offering a highly realistic model for studying intestinal physiology and pathology. The resulting intestinal epithelium exhibits significantly denser regions of mucus and microvilli, characteristic typically absent in static cultures, upregulating more than 1.5 of the amount expressed in the classical flattened configuration, enhanced epithelial cell differentiation and increased adsorptive surface area. Hence, the innovative design ofIn-Cryptsproves the critical role of employing a cell-instructive membrane in argument the physiological relevance of organs-on-chips. This aspect, among others, will contribute to a more comprehensive understanding of organism function, directly impacting drug discovery and development.


Subject(s)
Lab-On-A-Chip Devices , Morphogenesis , Humans , Caco-2 Cells , Intestinal Mucosa/metabolism , Intestinal Mucosa/cytology , Cell Differentiation , Membranes, Artificial , Tissue Engineering
10.
mBio ; 15(8): e0131624, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-38953637

ABSTRACT

Human intestinal enteroids (HIEs) are gaining recognition as physiologically relevant models of the intestinal epithelium. While HIEs from adults are used extensively in biomedical research, few studies have used HIEs from infants. Considering the dramatic developmental changes that occur during infancy, it is important to establish models that represent infant intestinal characteristics and physiological responses. We established jejunal HIEs from infant surgical samples and performed comparisons to jejunal HIEs from adults using RNA sequencing (RNA-Seq) and morphologic analyses. We then validated differences in key pathways through functional studies and determined whether these cultures recapitulate known features of the infant intestinal epithelium. RNA-Seq analysis showed significant differences in the transcriptome of infant and adult HIEs, including differences in genes and pathways associated with cell differentiation and proliferation, tissue development, lipid metabolism, innate immunity, and biological adhesion. Validating these results, we observed a higher abundance of cells expressing specific enterocyte, goblet cell, and enteroendocrine cell markers in differentiated infant HIE monolayers, and greater numbers of proliferative cells in undifferentiated 3D cultures. Compared to adult HIEs, infant HIEs portray characteristics of an immature gastrointestinal epithelium including significantly shorter cell height, lower epithelial barrier integrity, and lower innate immune responses to infection with an oral poliovirus vaccine. HIEs established from infant intestinal tissues reflect characteristics of the infant gut and are distinct from adult cultures. Our data support the use of infant HIEs as an ex vivo model to advance studies of infant-specific diseases and drug discovery for this population. IMPORTANCE: Tissue or biopsy stem cell-derived human intestinal enteroids are increasingly recognized as physiologically relevant models of the human gastrointestinal epithelium. While enteroids from adults and fetal tissues have been extensively used for studying many infectious and non-infectious diseases, there are few reports on enteroids from infants. We show that infant enteroids exhibit both transcriptomic and morphological differences compared to adult cultures. They also differ in functional responses to barrier disruption and innate immune responses to infection, suggesting that infant and adult enteroids are distinct model systems. Considering the dramatic changes in body composition and physiology that begin during infancy, tools that appropriately reflect intestinal development and diseases are critical. Infant enteroids exhibit key features of the infant gastrointestinal epithelium. This study is significant in establishing infant enteroids as age-appropriate models for infant intestinal physiology, infant-specific diseases, and responses to pathogens.


Subject(s)
Intestinal Mucosa , Humans , Infant , Intestinal Mucosa/cytology , Intestinal Mucosa/immunology , Adult , Cell Differentiation , Jejunum/cytology , Jejunum/immunology , Transcriptome , Organoids , Immunity, Innate , Female , Male , Infant, Newborn , Enterocytes
11.
J Vis Exp ; (208)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38949314

ABSTRACT

Advancing knowledge of gastrointestinal physiology and its diseases critically depends on the development of precise, species-specific in vitro models that faithfully mimic in vivo intestinal tissues. This is particularly vital for investigating host-pathogen interactions in bovines, which are significant reservoirs for pathogens that pose serious public health risks. Traditional 3D organoids offer limited access to the intestinal epithelium's apical surface, a hurdle overcome by the advent of 2D monolayer cultures. These cultures, derived from organoid cells, provide an exposed luminal surface for more accessible study. In this research, a detailed protocol is introduced for creating and sustaining 2D monolayer cultures from cells of bovine small and large intestinal organoids. This method includes protocols for assessing membrane integrity through transepithelial electrical resistance and paracellular permeability alongside immunocytochemistry staining techniques. These protocols lay the groundwork for establishing and characterizing a 2D bovine monolayer culture system, pushing the boundaries of these method applications in biomedical and translational research of public health importance. Employing this innovative approach enables the development of physiologically pertinent in vitro models for exploring both normal and diseased states of cattle intestinal physiology. The implications for biomedical and agricultural advancements are profound, paving the way for more effective treatments for intestinal ailments in cattle, thereby enhancing both animal welfare and food safety.


Subject(s)
Intestine, Small , Organoids , Animals , Cattle , Organoids/cytology , Intestine, Small/cytology , Intestine, Large , Intestinal Mucosa/cytology
12.
Sci Rep ; 14(1): 15195, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956443

ABSTRACT

The intestinal epithelium dynamically controls cell cycle, yet no experimental platform exists for directly analyzing cell cycle phases in non-immortalized human intestinal epithelial cells (IECs). Here, we present two reporters and a complete platform for analyzing cell cycle phases in live primary human IECs. We interrogate the transcriptional identity of IECs grown on soft collagen, develop two fluorescent cell cycle reporter IEC lines, design and 3D print a collagen press to make chamber slides for optimal imaging while supporting primary human IEC growth, live image cell cycle dynamics, then assemble a computational pipeline building upon free-to-use programs for semi-automated analysis of cell cycle phases. The PIP-FUCCI construct allows for assigning cell cycle phase from a single image of living cells, and our PIP-H2A construct allows for semi-automated direct quantification of cell cycle phase lengths using our publicly available computational pipeline. Treating PIP-FUCCI IECs with oligomycin demonstrates that inhibiting mitochondrial respiration lengthens G1 phase, and PIP-H2A cells allow us to measure that oligomycin differentially lengthens S and G2/M phases across heterogeneous IECs. These platforms provide opportunities for future studies on pharmaceutical effects on the intestinal epithelium, cell cycle regulation, and more.


Subject(s)
Cell Cycle , Epithelial Cells , Intestinal Mucosa , Humans , Epithelial Cells/cytology , Epithelial Cells/metabolism , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Oligomycins/pharmacology , Cells, Cultured
13.
PLoS One ; 19(6): e0304526, 2024.
Article in English | MEDLINE | ID: mdl-38857221

ABSTRACT

In vitro models, such as primary cells and continuous cell lines routinely used for evaluating drug candidates, have limitations in their translational relevance to human diseases. Organotypic cultures are increasingly being used to assess therapeutics for various cancers and infectious diseases. Monitoring drug cytotoxicity in cell cultures is crucial in drug development, and several commercially available kits for cytotoxicity assessment offer distinct advantages and limitations. Given the complexity of organoid cultures, including donor-driven variability, we investigated drug-treated, tissue stem cell-derived human intestinal organoid responses with commonly used cell cytotoxicity assay kits. Using seven different compounds, we compared the cytotoxicity assay performance of two different leaky membrane-based and two metabolism-based assays. Significant variability was seen in reported viability outcomes across assays and organoid lines. High baseline activity of lactate dehydrogenase (LDH) in four human intestinal organoid lines required modification of the standard LDH assay protocol. Additionally, the LDH assay reported unique resilience to damage in a genetically-modified line contrasting results compared to other assays. This study highlights factors that can impact the measurement of cell cytotoxicity in intestinal organoid models, which are emerging as valuable new tools for research and pre-clinical drug testing and suggest the need for using multiple assay types to ensure reliable cytotoxicity assessment.


Subject(s)
L-Lactate Dehydrogenase , Organoids , Humans , Organoids/drug effects , Organoids/metabolism , Organoids/cytology , L-Lactate Dehydrogenase/metabolism , Cell Survival/drug effects , Intestines/cytology , Intestinal Mucosa/drug effects , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism
14.
BMC Res Notes ; 17(1): 154, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840260

ABSTRACT

OBJECTIVE: The IPEC-J2 cell line is used as an in vitro small intestine model for swine, but it is also used as a model for the human intestine, presenting a relatively unique setting. By combining electric cell-substrate impedance sensing, with next-generation-sequencing technology, we showed that mRNA gene expression profiles and related pathways can depend on the growth phase of IPEC-J2 cells. Our investigative approach welcomes scientists to reproduce or modify our protocols and endorses putting their gene expression data in the context of the respective growth phase of the cells. RESULTS: Three time points are presented: (TP1) 1 h after medium change (= 6 h after seeding of cells), (TP2) the time point of the first derivative maximum of the cell growth curve, and a third point at the beginning of the plateau phase (TP3). Significantly outstanding at TP1 compared to TP2 was upregulated PLEKHN1, further FOSB and DEGS2 were significantly downregulated at TP2 compared to TP3. Any provided data can be used to improve next-generation experiments with IPEC-J2 cells.


Subject(s)
Cell Proliferation , Gene Expression Profiling , RNA, Messenger , Animals , Cell Line , RNA, Messenger/genetics , RNA, Messenger/metabolism , Swine , Gene Expression Profiling/methods , Cell Proliferation/genetics , Intestine, Small/metabolism , Intestine, Small/cytology , Intestinal Mucosa/metabolism , Intestinal Mucosa/cytology , Transcriptome/genetics
15.
Cell ; 187(12): 2898-2900, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38848672

ABSTRACT

Epithelial folding is a fundamental biological process that requires epithelial interactions with the underlying mesenchyme. In this issue of Cell, Huycke et al. investigate intestinal villus formation. They discover that water-droplet-like behavior of mesenchymal cells drives their coalescence into uniformly patterned aggregates, which generate forces on the epithelium to initiate folding.


Subject(s)
Epithelium , Mesoderm , Animals , Humans , Epithelial Cells/metabolism , Epithelial Cells/cytology , Intestinal Mucosa/metabolism , Intestinal Mucosa/cytology , Mesoderm/metabolism , Mesoderm/cytology , Epithelium/metabolism
16.
Cell ; 187(12): 2900-2902, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38848673

ABSTRACT

In tissue homeostasis, intestinal stem cells (ISCs) undergo continuous self-renewal to sustain rapid cellular turnover. In this issue of Cell, Capdevila et al.1 and Malagola, Vasciaveo, et al.2 identify a new ISC population in the upper crypt that can generate Lgr5+ stem cells during homeostasis.


Subject(s)
Intestines , Stem Cells , Stem Cells/cytology , Stem Cells/metabolism , Intestines/cytology , Animals , Humans , Homeostasis , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Receptors, G-Protein-Coupled/metabolism , Mice , Cell Differentiation
17.
Cell ; 187(12): 3039-3055.e14, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38848677

ABSTRACT

In the prevailing model, Lgr5+ cells are the only intestinal stem cells (ISCs) that sustain homeostatic epithelial regeneration by upward migration of progeny through elusive upper crypt transit-amplifying (TA) intermediates. Here, we identify a proliferative upper crypt population marked by Fgfbp1, in the location of putative TA cells, that is transcriptionally distinct from Lgr5+ cells. Using a kinetic reporter for time-resolved fate mapping and Fgfbp1-CreERT2 lineage tracing, we establish that Fgfbp1+ cells are multi-potent and give rise to Lgr5+ cells, consistent with their ISC function. Fgfbp1+ cells also sustain epithelial regeneration following Lgr5+ cell depletion. We demonstrate that FGFBP1, produced by the upper crypt cells, is an essential factor for crypt proliferation and epithelial homeostasis. Our findings support a model in which tissue regeneration originates from upper crypt Fgfbp1+ cells that generate progeny propagating bi-directionally along the crypt-villus axis and serve as a source of Lgr5+ cells in the crypt base.


Subject(s)
Intestinal Mucosa , Receptors, G-Protein-Coupled , Receptors, G-Protein-Coupled/metabolism , Animals , Mice , Intestinal Mucosa/metabolism , Intestinal Mucosa/cytology , Stem Cells/metabolism , Stem Cells/cytology , Cell Lineage , Regeneration , Cell Proliferation , Epithelial Cells/metabolism , Epithelial Cells/cytology , Mice, Inbred C57BL , Homeostasis
18.
Front Immunol ; 15: 1400739, 2024.
Article in English | MEDLINE | ID: mdl-38863701

ABSTRACT

Known for their distinct antigen-sampling abilities, microfold cells, or M cells, have been well characterized in the gut and other mucosa including the lungs and nasal-associated lymphoid tissue (NALT). More recently, however, they have been identified in tissues where they were not initially suspected to reside, which raises the following question: what external and internal factors dictate differentiation toward this specific role? In this discussion, we will focus on murine studies to determine how these cells are identified (e.g., markers and function) and ask the broader question of factors triggering M-cell localization and patterning. Then, through the consideration of unconventional M cells, which include villous M cells, Type II taste cells, and medullary thymic epithelial M cells (microfold mTECs), we will establish the M cell as not just a player in mucosal immunity but as a versatile niche cell that adapts to its home tissue. To this end, we will consider the lymphoid structure relationship and apical stimuli to better discuss how the differing cellular programming and the physical environment within each tissue yield these cells and their unique organization. Thus, by exploring this constellation of M cells, we hope to better understand the multifaceted nature of this cell in its different anatomical locales.


Subject(s)
Immunity, Mucosal , Animals , Mice , Lymphoid Tissue/immunology , Lymphoid Tissue/cytology , Humans , Epithelial Cells/immunology , Cell Differentiation , Intestinal Mucosa/immunology , Intestinal Mucosa/cytology , Stem Cell Niche , M Cells
19.
Clin Transl Gastroenterol ; 15(7): e00725, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38888240

ABSTRACT

INTRODUCTION: The diagnosis of eosinophilic gastrointestinal diseases is largely based on mucosal eosinophil counts, but thresholds and normal ranges beyond the esophagus are debated, calling for much-needed methodological standardization. We aimed to develop a standardized workflow for duodenal cell quantification and estimate duodenal eosinophil and mast cell numbers in healthy controls. METHODS: Software-based histological cell quantification using free-sized or fixed-sized regions was developed and applied to digitized hematoxylin and eosin (H&E)-stained slides from 58 individuals (healthy controls [HCs] and patients with functional dyspepsia). Intraclass correlation coefficients (ICCs) compared inter-rater reliability between software-based and microscopic quantification. Reproducibility of the software-based method was validated in an independent cohort of 37 control and functional dyspepsia subjects. Eosinophil identification on H&E staining was compared to immunohistochemistry (IHC). Normal eosinophil (H&E) and mast cell (cKit) ranges were determined in 70 adult HCs. RESULTS: Eosinophil quantification on digitized slides demonstrated excellent (ICC = 0.909) and significantly improved reproducibility over microscopic evaluation (ICC = 0.796, P = 0.0014), validated in an independent cohort (ICC = 0.910). Duodenal eosinophils were more abundant around crypts than in villi ( P < 0.0001), while counts were similar on matched H&E- and IHC-stained slides ( P = 0.55). Mean ± SD (95th percentile) duodenal eosinophils and mast cells in HC were 228.8/mm 2 ± 94.7 (402.8/mm 2 ) and 419.5/mm 2 ± 132.2 (707.6/mm 2 ), respectively. DISCUSSION: We developed and validated a standardized approach to duodenal histological cell quantification, generalizable to various mucosal cell types. Implementation of software-based quantification identified 400 eosinophils/mm 2 and 700 mast cells/mm 2 as thresholds for abnormal duodenal infiltration.


Subject(s)
Duodenum , Eosinophils , Mast Cells , Software , Humans , Eosinophils/pathology , Eosinophils/cytology , Duodenum/pathology , Duodenum/cytology , Mast Cells/pathology , Reproducibility of Results , Adult , Male , Female , Middle Aged , Eosinophilia/pathology , Eosinophilia/diagnosis , Cell Count , Leukocyte Count/methods , Immunohistochemistry , Dyspepsia/pathology , Dyspepsia/diagnosis , Intestinal Mucosa/pathology , Intestinal Mucosa/cytology , Aged , Case-Control Studies , Young Adult , Observer Variation
20.
Biofabrication ; 16(4)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38914075

ABSTRACT

Accurate reproduction of human intestinal structure and functionin vitrois of great significance for understanding the development and disease occurrence of the gut. However, mostin vitrostudies are often confined to 2D models, 2.5D organ chips or 3D organoids, which cannot fully recapitulate the tissue architecture, microenvironment and cell compartmentalization foundin vivo. Herein, a centimeter-scale intestine tissue that contains intestinal features, such as hollow tubular structure, capillaries and tightly connected epithelium with invivo-likering folds, crypt-villi, and microvilli is constructed by 3D embedding bioprinting. In our strategy, a novel photocurable bioink composed of methacrylated gelatin, methacrylated sodium alginate and poly (ethylene glycol) diacrylate is developed for the fabrication of intestinal model. The Caco-2 cells implanted in the lumen are induced by the topological structures of the model to derive microvilli, crypt-villi, and tight junctions, simulating the intestinal epithelial barrier. The human umbilical vein endothelial cells encapsulated within the model gradually form microvessels, mimicking the dense capillary network in the intestine. This intestine-like tissue, which closely resembles the structure and cell arrangement of the human gut, can act as a platform to predict the therapeutic and toxic side effects of new drugs on the intestine.


Subject(s)
Bioprinting , Capillaries , Human Umbilical Vein Endothelial Cells , Intestines , Printing, Three-Dimensional , Humans , Caco-2 Cells , Capillaries/cytology , Intestines/cytology , Tissue Engineering , Alginates/chemistry , Polyethylene Glycols/chemistry , Tissue Scaffolds/chemistry , Intestinal Mucosa/cytology , Gelatin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL