Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 360
Filter
1.
Sci Rep ; 14(1): 16618, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025875

ABSTRACT

Invasive pulmonary aspergillosis (IPA) in patients with diabetes mellitus has high incidence, especially in Type 2 diabetes mellitus (T2DM). The aim of this study was to evaluate the diagnostic efficacy of metagenomic next-generation sequencing (mNGS) for IPA in patients with T2DM. A total of 66 patients with T2DM were included, including 21 IPA and 45 non-IPA patients, from January 2022 to December 2022. The demographic characteristics, comorbidities, laboratory test results, antibiotic treatment response, and 30-day mortality rate of patients were analyzed. The diagnostic accuracy of mNGS and conventional methods was compared, including sensitivity, specificity, positive predictive value and negative predictive value. The sensitivity and specificity of mNGS were 66.7% and 100.0%, respectively, which were significantly higher than those of fluorescence staining (42.1% and 100%), serum 1,3-ß-D-glucan detection (38.1% and 90.9%), serum galactomannan detection (14.3% and 94.9%) and BALF galactomannan detection (47.3% and 70.7%). Although the sensitivity of BALF culture (75.0%) was higher than that of mNGS (66.7%), the turnover time of mNGS was significantly shorter than that of traditional culture (1.6 days vs. 5.0 days). The sensitivity of mNGS combined with BALF culture reached 100.0%. In addition, mNGS has a stronger ability to detect co-pathogens with IPA. 47.6% of T2DM patients with IPA were adjusted the initial antimicrobial therapy according to the mNGS results. This is the first study to focus on the diagnostic performance of mNGS in IPA infection in T2DM patients. MNGS can be used as a supplement to conventional methods for the diagnosis of IPA in patients with T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , High-Throughput Nucleotide Sequencing , Invasive Pulmonary Aspergillosis , Metagenomics , Humans , Diabetes Mellitus, Type 2/complications , Male , Female , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/microbiology , Middle Aged , High-Throughput Nucleotide Sequencing/methods , Metagenomics/methods , Aged , Galactose/analogs & derivatives , Mannans/blood , Mannans/analysis , Sensitivity and Specificity , Bronchoalveolar Lavage Fluid/microbiology
2.
Clin Lab ; 70(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38868875

ABSTRACT

BACKGROUND: Invasive pulmonary aspergillosis (IPA) is a deep fungal infection caused by invasion of Aspergillus mycelium into the lung parenchyma resulting in tissue destruction and necrosis, which occurs more often in im-munosuppressed populations. The severity of the disease and the rapid progression of the lung lesions puts pa¬tients at high risk of death and poor prognosis if the correct therapeutic intervention is not given as early as possible. METHODS: Here we report a case of IPA, which was initially diagnosed as community-acquired pneumonia in a local hospital. The symptoms did not improve after receiving anti-infective treatment. The patient was diagnosed with IPA after completing a chest CT examination and an electronic bronchoscopy, as well as pathogenetic examination of the bronchoalveolar lavage fluid and pathological examination of the left bronchial mass in the respiratory department of our hospital, which was finally diagnosed as IPA. After one week of administration of voriconazole for anti-fungal infection treatment, the patient's symptoms improved significantly, and a repeat chest CT suggested that the lung lesions were better than before. In order to raise clinicians' awareness of this disease, we also conducted a literature analysis. RESULTS: The final diagnosis of IPA was made by analyzing the patient's history, symptoms, signs, and relevant findings. CONCLUSIONS: When the patient's clinical symptoms and imaging manifestations are consistent with IPA, electronic bronchoscopy and pathogenetic and pathological examinations may be appropriately performed to clarify the na-ture of the lesion. More consideration should be given to the possibility of disease diagnosis to avoid misdiagnosis and underdiagnosis. Appropriate treatment should be given at an early stage.


Subject(s)
Antifungal Agents , Invasive Pulmonary Aspergillosis , Tomography, X-Ray Computed , Voriconazole , Humans , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/drug therapy , Invasive Pulmonary Aspergillosis/microbiology , Antifungal Agents/therapeutic use , Voriconazole/therapeutic use , Bronchoscopy , Male , Bronchoalveolar Lavage Fluid/microbiology , Middle Aged , Lung/diagnostic imaging , Lung/microbiology , Lung/pathology
3.
mBio ; 15(7): e0116624, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38934618

ABSTRACT

Contemporary antifungal therapies utilized to treat filamentous fungal infections are inhibited by intrinsic and emerging drug resistance. Consequently, there is an urgent need to develop novel antifungal compounds that are effective against drug-resistant filamentous fungi. Here, we utilized an Aspergillus fumigatus cell-based high-throughput screen to identify small molecules with antifungal activity that also potentiated triazole activity. The screen identified 16 hits with promising activity against A. fumigatus. A nonspirocyclic piperidine, herein named MBX-7591, exhibited synergy with triazole antifungal drugs and activity against pan-azole-resistant A. fumigatus isolates. MBX-7591 has additional potent activity against Rhizopus species and CO2-dependent activity against Cryptococcus neoformans. Chemical, genetic, and biochemical mode of action analyses revealed that MBX-7591 increases cell membrane saturation by decreasing oleic acid content. MBX-7591 has low toxicity in vivo and shows good efficacy in decreasing fungal burden in a murine model of invasive pulmonary aspergillosis. Taken together, our results suggest MBX-7591 is a promising hit with a novel mode of action for further antifungal drug development to combat the rising incidence of triazole-resistant filamentous fungal infections.IMPORTANCEThe incidence of infections caused by fungi continues to increase with advances in medical therapies. Unfortunately, antifungal drug development has not kept pace with the incidence and importance of fungal infections, with only three major classes of antifungal drugs currently available for use in the clinic. Filamentous fungi, also called molds, are particularly recalcitrant to contemporary antifungal therapies. Here, a recently developed Aspergillus fumigatus cell reporter strain was utilized to conduct a high-throughput screen to identify small molecules with antifungal activity. An emphasis was placed on small molecules that potentiated the activity of contemporary triazole antifungals and led to the discovery of MBX-7591. MBX-7591 potentiates triazole activity against drug-resistant molds such as A. fumigatus and has activity against Mucorales fungi. MBX-7591's mode of action involves inhibiting the conversion of saturated to unsaturated fatty acids, thereby impacting fungal membrane integrity. MBX-7591 is a novel small molecule with antifungal activity poised for lead development.


Subject(s)
Antifungal Agents , Aspergillus fumigatus , Drug Resistance, Fungal , Fatty Acids, Unsaturated , Microbial Sensitivity Tests , Triazoles , Aspergillus fumigatus/drug effects , Aspergillus fumigatus/genetics , Antifungal Agents/pharmacology , Triazoles/pharmacology , Mice , Animals , Fatty Acids, Unsaturated/pharmacology , Humans , High-Throughput Screening Assays , Drug Synergism , Rhizopus/drug effects , Rhizopus/genetics , Cryptococcus neoformans/drug effects , Cryptococcus neoformans/genetics , Piperidines/pharmacology , Disease Models, Animal , Invasive Pulmonary Aspergillosis/drug therapy , Invasive Pulmonary Aspergillosis/microbiology
4.
Mycopathologia ; 189(3): 44, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734862

ABSTRACT

A 50-year-old man, previously diagnosed with pulmonary tuberculosis and lung cavities, presented with symptoms including fever, shortness of breath, and cough. A pulmonary CT scan revealed multiple cavities, consolidation and tree-in-bud in the upper lungs. Further investigation through direct examination of bronchoalveolar lavage fluid showed septate hyphae with dichotomous acute branching. Subsequent isolation and morphological analysis identified the fungus as belonging to Aspergillus section Nigri. The patient was diagnosed with probable invasive pulmonary aspergillosis and successfully treated with a three-month oral voriconazole therapy. Phylogenetic analysis based on partial ß-tubulin, calmodulin and RNA polymerase second largest subunit sequences revealed that the isolate represents a putative new species related to Aspergillus brasiliensis, and is named Aspergillus hubkae here. Antifungal susceptibility testing demonstrated that the isolate is resistant to itraconazole but susceptible to voriconazole. This phenotypic and genetic characterization of A. hubkae, along with the associated case report, will serve as a valuable resource for future diagnoses of infections caused by this species. It will also contribute to more precise and effective patient management strategies in similar clinical scenarios.


Subject(s)
Antifungal Agents , Aspergillus , Invasive Pulmonary Aspergillosis , Microbial Sensitivity Tests , Phylogeny , Sequence Analysis, DNA , Voriconazole , Humans , Male , Middle Aged , Antifungal Agents/therapeutic use , Antifungal Agents/pharmacology , Aspergillus/isolation & purification , Aspergillus/genetics , Aspergillus/classification , Aspergillus/drug effects , Bronchoalveolar Lavage Fluid/microbiology , Cluster Analysis , DNA, Fungal/genetics , DNA, Fungal/chemistry , Invasive Pulmonary Aspergillosis/microbiology , Invasive Pulmonary Aspergillosis/drug therapy , Invasive Pulmonary Aspergillosis/diagnosis , Itraconazole/pharmacology , Microscopy , Tomography, X-Ray Computed , Treatment Outcome , Tubulin/genetics , Voriconazole/therapeutic use , Voriconazole/pharmacology
5.
J Mycol Med ; 34(2): 101481, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718721

ABSTRACT

Several lateral flow assays (LFA) capable of detecting Aspergillus fumigatus in serum and broncho-alveolar lavage fluid (BALF) within the hour, thereby potentially accelerating the screening process, are now commercially available. We prospectively compared three LFA targeting A. fumigatus on BALF collected from non-surgical intensive care patients between June 2022 and February 2023. The three LFA tested were Sõna Aspergillus galactomannan LFA (Immy), Fungadia Aspergillus antigen (Gadia), and AspLFD (OLM Diagnostics). We compared the results of these LFA with those of the galactomannan (GM) Platelia Aspergillus enzyme immunoassay (Bio-Rad), culture on Sabouraud medium and Aspergillus qPCR. We tested 97 BALF samples from 92 patients. In total 84 BALF samples tested negative with all three LFA, and four BALF samples tested positive with the AspLFD assay only (OLM). Only one BALF sample tested positive with the three LFA. In addition, three BALF samples tested positive only with the GM Platelia immunoassay. Four diagnosis of probable invasive aspergillosis were retained for the 92 patients tested. This prospective series included very few positive samples. From a practical point of view, the LFA from OLM presented the simplest protocol for use.


Subject(s)
Antigens, Fungal , Aspergillus fumigatus , Bronchoalveolar Lavage Fluid , Galactose , Invasive Pulmonary Aspergillosis , Mannans , Humans , Bronchoalveolar Lavage Fluid/microbiology , Bronchoalveolar Lavage Fluid/chemistry , Prospective Studies , Galactose/analogs & derivatives , Antigens, Fungal/analysis , Mannans/analysis , Male , Female , Aspergillus fumigatus/isolation & purification , Middle Aged , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/microbiology , Aged , Adult , Mass Screening/methods , Sensitivity and Specificity , Immunoassay/methods , Aged, 80 and over
6.
mBio ; 15(6): e0198223, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38651925

ABSTRACT

Invasive pulmonary aspergillosis is a severe fungal infection primarily affecting immunocompromised patients. Individuals with severe viral infections have recently been identified as vulnerable to developing invasive fungal infections. Both influenza-associated pulmonary aspergillosis (IAPA) and COVID-19-associated pulmonary aspergillosis (CAPA) are linked to high mortality rates, emphasizing the urgent need for an improved understanding of disease pathogenesis to unveil new molecular targets with diagnostic and therapeutic potential. The recent establishment of animal models replicating the co-infection context has offered crucial insights into the mechanisms that underlie susceptibility to disease. However, the development and progression of human viral-fungal co-infections exhibit a significant degree of interindividual variability, even among patients with similar clinical conditions. This observation implies a significant role for host genetics, but information regarding the genetic basis for viral-fungal co-infections is currently limited. In this review, we discuss how genetic factors known to affect either antiviral or antifungal immunity could potentially reveal pathogenetic mechanisms that predispose to IAPA or CAPA and influence the overall disease course. These insights are anticipated to foster further research in both pre-clinical models and human patients, aiming to elucidate the complex pathophysiology of viral-associated pulmonary aspergillosis and contributing to the identification of new diagnostic and therapeutic targets to improve the management of these co-infections.


Subject(s)
COVID-19 , Coinfection , Humans , Coinfection/microbiology , Coinfection/immunology , Coinfection/virology , COVID-19/immunology , COVID-19/complications , COVID-19/microbiology , COVID-19/virology , Animals , Pulmonary Aspergillosis/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Invasive Pulmonary Aspergillosis/immunology , Invasive Pulmonary Aspergillosis/microbiology
7.
Antimicrob Agents Chemother ; 68(3): e0163123, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38319077

ABSTRACT

SF001 is a next-generation polyene antifungal drug in development, designed to have increased specificity to fungal ergosterol, which is absent in humans, and decreased binding to cholesterol. SF001 demonstrates long-acting, potent, broad-spectrum fungicidal activity. The goal of the current study was to determine the pharmacodynamic index and target of SF001 in an immunocompromised mouse model of invasive pulmonary aspergillosis against six Aspergillus fumigatus isolates. Minimum inhibitory concentration (MIC) values ranged from 0.5 to 2.0 mg/L. Plasma and epithelial lining fluid (ELF) pharmacokinetics were performed following single intraperitoneal doses of 1, 4, 16, and 64 mg/kg. Treatment efficacy was assessed with each of the six fungal isolates using daily doses of SF001 ranging from 0.25 to 64 mg/kg/day over a 96-h treatment duration. Efficacy was assessed by A. fumigatus quantitative PCR of conidial equivalents from lung homogenates. Nonlinear regression analysis using the Hill equation demonstrated that the 24-h exposure-response relationships for both plasma and ELF area under the concentration/MIC and Cmax/MIC ratios were strong and relatively similar [coefficient of determination (R2) = 0.74-0.75). Exposure-response relationships included a median plasma 24-h Cmax/MIC target for stasis and 1-log kill endpoint of 0.5 and 0.6, respectively. The present studies demonstrated in vitro and in vivo SF001 potency against A. fumigatus. These results have potential relevance for SF001 clinical dose selection and evaluation of susceptibility breakpoints.


Subject(s)
Invasive Pulmonary Aspergillosis , Humans , Animals , Mice , Invasive Pulmonary Aspergillosis/drug therapy , Invasive Pulmonary Aspergillosis/microbiology , Antifungal Agents/therapeutic use , Antifungal Agents/pharmacokinetics , Aspergillus fumigatus , Lung/microbiology , Microbial Sensitivity Tests
9.
Mycoses ; 67(1): e13695, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38282361

ABSTRACT

BACKGROUND: Bronchoalveolar lavage (BAL) galactomannan (GM) is commonly used to diagnose Aspergillus-related lung diseases. However, unlike serum GM, which is measured in undiluted blood, BAL-GM is estimated using variable aliquots and cumulative volume of instillates during bronchoscopy. OBJECTIVE: Since different studies have reported varying diagnostic accuracy and cut-offs for BAL-GM in CPA, we hypothesized that the total volume of instillate and 'order/label' of aliquots significantly affects the BAL-GM values, which was evaluated as part of this study. PATIENTS & METHODS: We obtained 250 BAL samples from 50 patients (five from each) with suspected chronic pulmonary aspergillosis. BAL fluid was collected after instilling sequential volumes of 40 mL of normal saline each for the first four labels and a fifth label was prepared by mixing 1 mL from each of the previous labels. The GM level of each label was measured by PLATELIA™ ASPERGILLUS Ag enzyme immunoassay. This study measured the discordance, level of agreement, diagnostic characteristics (sensitivity, specificity and AUROC) and best cut-offs for BAL-GM in the different aliquots of lavage fluid. RESULTS: The study population, classified into CPA (28%) and non-CPA (72%) groups, based on ERS/ESCMID criteria (excluding BAL-GM) were not different with respect to clinico-radiological characteristics. The discordance of BAL-GM positivity (using a cut-off of >1) between the serial labels for the same patient ranged between 10% and 22%, while the discordance between classification using BAL-GM positivity (using a cut-off of ≥1) and clinic-radio-microbiological classification ranged between 18% and 30%. The level of agreement for serial labels was at best fair (<0.6 for all except one 'label'). The AUROC for the serial samples ranged between 0.595 and 0.702, with the '40 mL and the 'mix' samples performing the best. The best BAL-GM cut-off also showed significant variation between serial labels of varying dilutions (Range:1.01 - 4.26). INTERPRETATION: This study highlights the variation in BAL-GM measured and the 'positivity' between different 'labels' of aliquots of BAL, with the first aliquot and the mixed sample showing the best performances for diagnosis of CPA. Future studies should attempt to 'standardise' the instilled volume for BAL-GM estimation to standardise the diagnostic yield.


Subject(s)
Galactose/analogs & derivatives , Invasive Pulmonary Aspergillosis , Pulmonary Aspergillosis , Humans , Pilot Projects , Sensitivity and Specificity , Pulmonary Aspergillosis/diagnosis , Bronchoalveolar Lavage , Bronchoalveolar Lavage Fluid/microbiology , Mannans , Persistent Infection , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/microbiology
10.
Int J Pharm ; 649: 123663, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38061501

ABSTRACT

Invasive pulmonary aspergillosis (IPA) is the most devastating Aspergillus-related lung disease. Voriconazole (VRZ) is the first-line treatment against IPA. Despite availability in oral and parenteral dosage forms, risks of systemic toxicity dictate alternative pulmonary administration. Inspired by natural lung surfactants, dipalmitoylphosphatidylcholine/dimyristoylphosphatidylglycerol (DPPC/DMPG) surface-modified lipid nanoparticles (LNPs) were scrutinized for pulmonary administration. DPPC/DMPG-VRZ-LNPs prepared using ultrasonication/thin film hydration were investigated for colloidal properties over 3-month shelf storage. They were stable with a slight change in entrapment efficiency. They provided a sustained VRZ release over 24 h, with a rapid initial release. In vitro aerosolization indicated higher percentages of VRZ deposited on stages corresponding to secondary bronchi and alveolar ducts. Moreover, intrapulmonary administration maintained high lung VRZ concentration (27 ± 1.14 µg/g) after 6 h. A preclinical study using a cyclophosphamide-induced neutropenic rat model demonstrated a 3-fold reduction in BALF-Galactomannan down to 0.515 ± 0.22 µg/L confirming DPPC/DMPG-VRZ-LNPs potential in hyphal growth inhibition. Histopathological examination of infected/nontreated lung sections exhibited dense fungal load inside alveoli and blood vessels indicating massive tissue and angio-invasiveness. Nevertheless, DPPC/DMPG-VRZ-LNPs-treated animals displayed minimal hyphae with no signs of invasiveness. The developed bioinspired nanoparticles serve as prospective bioactive nanocarrier candidates for pulmonary administration of VRZ in the management of IPA.


Subject(s)
Invasive Pulmonary Aspergillosis , Nanoparticles , Rats , Animals , Voriconazole , Invasive Pulmonary Aspergillosis/drug therapy , Invasive Pulmonary Aspergillosis/microbiology , Invasive Pulmonary Aspergillosis/pathology , 1,2-Dipalmitoylphosphatidylcholine , Prospective Studies , Antifungal Agents
11.
mSphere ; 8(6): e0030523, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37823656

ABSTRACT

IMPORTANCE: Aspergillus fumigatus can cause a life-threatening infection known as invasive pulmonary aspergillosis (IPA), which is marked by fungus-attributable mortality rates of 20%-30%. Individuals at risk for IPA harbor genetic mutations or incur pharmacologic defects that impair myeloid cell numbers and/or function, exemplified by bone marrow transplant recipients, patients that receive corticosteroid therapy, or patients with chronic granulomatous disease (CGD). However, treatments for Aspergillus infections remain limited, and resistance to the few existing drug classes is emerging. Recently, the World Health Organization classified A. fumigatus as a critical priority fungal pathogen. Our cell death research identifies an important aspect of fungal biology that impacts susceptibility to leukocyte killing. Furthering our understanding of mechanisms that mediate the outcome of fungal-leukocyte interactions will increase our understanding of both the underlying fungal biology governing cell death and innate immune evasion strategies utilized during mammalian infection pathogenesis. Consequently, our studies are a critical step toward leveraging these mechanisms for novel therapeutic advances.


Subject(s)
Aspergillus fumigatus , Invasive Pulmonary Aspergillosis , Animals , Humans , Aspergillus fumigatus/metabolism , Cytochromes c/metabolism , Spores, Fungal , Sterilizing Immunity , Virulence , Invasive Pulmonary Aspergillosis/microbiology , Invasive Pulmonary Aspergillosis/pathology , Mammals
12.
Ann Clin Microbiol Antimicrob ; 22(1): 90, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37817167

ABSTRACT

BACKGROUND: Diagnosing COVID-19-associated pulmonary aspergillosis (CAPA) can be challenging since radiological and clinical criteria in the critically ill patient are nonspecific. Microbiological diagnostic support is therefore crucial. The aim of this study was to document the incidence of aspergillosis using bronchoalveolar lavage (BAL) as the diagnostic method and to determine the performance of the current mycological diagnostic tests most widely used for the diagnosis of CAPA, together with evaluation of the Asp lateral flow device (LFD). METHODS: Prospective cohort study conducted between March 2020 and June 2022. Inclusion criteria were critically ill patients admitted to the ICU with SARS-CoV-2 pneumonia requiring invasive mechanical ventilation. Diagnostic bronchoscopy and BAL were performed at the beginning of invasive mechanical ventilation. The sensitivity, specificity, positive and negative predictive value (PPV and NPV), positive and negative likelihood ratio (LR + and LR-) of BAL culture, direct examination with calcofluor white stain, ELISA (Platelia) and LFD (AspLFD) for detection of galactomannan (GM) were evaluated. Aspergillus-qPCR was applied when discrepancies between diagnostic tests arose. RESULTS: Of the 244 critically ill patients with SARS-CoV-2 pneumonia admitted to the ICU, the majority (n = 200, 82%) required invasive mechanical ventilation. Diagnostic bronchoscopic procedures were performed in 160 patients (80%), who were enrolled in this study. The incidence of CAPA was 18.7% (n = 30). LFD-GM demonstrated a sensitivity of 84%, specificity of 99%, PPV 94%, NPV 97%, LR(+) of 84, and LR(-) of 0.16. At GM-ELISA indices of ≥ 0.5 and ≥ 1.0, sensitivity was 92% and 79%, specificity was 95% and 99%, PPV 76% and 91%, NPV 99% and 96%, LR(+) 18 and 79, and LR(-) 0.08 and 0.21, respectively. The optimal cut-off index from the ROC curve was 0.48, with sensitivity of 95% and specificity of 95%. CONCLUSIONS: Using a diagnostic strategy based on bronchoscopy and BAL, we documented a high incidence of pulmonary aspergillosis in patients with severe SARS-CoV-2 pneumonia. Asp-LFD showed moderate sensitivity and excellent specificity, with a high PPV, and could be used for rapid diagnosis of patients with suspected CAPA.


Subject(s)
Aspergillosis , COVID-19 , Invasive Pulmonary Aspergillosis , Humans , SARS-CoV-2 , Critical Illness , Prospective Studies , Bronchoalveolar Lavage Fluid/microbiology , Sensitivity and Specificity , COVID-19/complications , COVID-19/diagnosis , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/microbiology , Mannans/analysis , COVID-19 Testing
13.
mBio ; 14(5): e0163323, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37681974

ABSTRACT

IMPORTANCE: Severe influenza is a risk factor for fatal invasive pulmonary aspergillosis; however, the mechanistic basis for the lethality is unclear. Utilizing an influenza-associated pulmonary aspergillosis (IAPA) model, we found that mice infected with influenza A virus followed by Aspergillus fumigatus had 100% mortality when superinfected during the early stages of influenza but survived at later stages. While superinfected mice had dysregulated pulmonary inflammatory responses compared to controls, they had neither increased inflammation nor extensive fungal growth. Although influenza-infected mice had dampened neutrophil recruitment to the lungs following subsequent challenge with A. fumigatus, influenza did not affect the ability of neutrophils to clear the fungi. Our data suggest that the lethality seen in our model of IAPA is multifactorial with dysregulated inflammation being a greater contributor than uncontrollable microbial growth. If confirmed in humans, our findings provide a rationale for clinical studies of adjuvant anti-inflammatory agents in the treatment of IAPA.


Subject(s)
Aspergillosis , Influenza, Human , Invasive Pulmonary Aspergillosis , Pulmonary Aspergillosis , Humans , Animals , Mice , Influenza, Human/complications , Aspergillosis/microbiology , Lung/microbiology , Invasive Pulmonary Aspergillosis/microbiology , Aspergillus fumigatus , Inflammation/complications
14.
Mikrobiyol Bul ; 57(2): 274-282, 2023 Apr.
Article in Turkish | MEDLINE | ID: mdl-37067211

ABSTRACT

Opportunistic fungal infections are an important cause of morbidity and mortality in immunocompromised patients. Invasive aspergillosis (IA) has an important place among these infections with ~ 250.000 cases annually. Reducing the mortality rate due to invasive aspergillosis is possible with early diagnosis and treatment of the disease. Because of the low sensitivity in microscopic examination, the time consuming of culture growth, and the difficulties in distinguishing colonization/infection, serological methods are frequently used in the diagnosis of invasive aspergillosis. The aim of this study was to determine the diagnostic performance of galactomannan and beta glucan tests for the diagnosis of invasive pulmonary aspergillosis (IPA). Sixty patients, followed up with the suspicion of invasive pulmonary aspergillosis in Gazi University Hospital were included in the study. The clinical classification of the patients was made according to the revised European Organization for Research and Treatment of Cancer and the Mycoses Study Group (EORTC/MSG) criteria. A total of 10 patients were classified as probable invasive aspergillosis and 20 patients were classified as possible invasive fungal disease. Demographic data of the patients and various risk factors were recorded. One hundred and thirty serum and nine bronchoalveolar lavage (BAL) fluid samples were studied with Plateliaᵀᴹ Aspergillus Ag (Bio-Rad, France), Dynamiker Aspergillus Galactomannan and Dynamiker Fungus (1-3)-beta-D-Glucan (Dynamiker, China) kits. Sensitivity and specificity values were calculated according to U.S. Food and Drug Administration (FDA) approved Plateliaᵀᴹ Aspergillus Ag test. According to this study, the most important risk factors in the development of IPA were the use of steroids and immunomodulatory drugs. The sensitivity of the galactomannan test in the probable group was 77.8%, the specificity was 96.7%, the sensitivity of the beta glucan test was 61.1%, and the specificity was 92.6%. When these two tests were evaluated together, it was observed that the sensitivity in the probable group increased to 83.3% and the specificity decreased to 89.3%. The combined use of galactomannan and beta glucan tests increases the diagnostic sensitivity. Although the presence of prolonged neutropenia is an important risk factor for IA, the use of steroids and immunomodulatory drugs should be kept in mind in non-neutropenic patients.


Subject(s)
Aspergillosis , Invasive Pulmonary Aspergillosis , beta-Glucans , Humans , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/microbiology , Immunomodulating Agents , Mannans , Bronchoalveolar Lavage Fluid/microbiology , Sensitivity and Specificity
15.
Clin Infect Dis ; 77(1): 38-45, 2023 07 05.
Article in English | MEDLINE | ID: mdl-36905147

ABSTRACT

BACKGROUND: Invasive aspergillosis (IA) by a triazole-resistant Aspergillus fumigatus is associated with high mortality. Real-time resistance detection will result in earlier initiation of appropriate therapy. METHODS: In a prospective study, we evaluated the clinical value of the AsperGenius polymerase chain reaction (PCR) assay in hematology patients from 12 centers. This PCR assay detects the most frequent cyp51A mutations in A. fumigatus conferring azole resistance. Patients were included when a computed tomography scan showed a pulmonary infiltrate and bronchoalveolar fluid (BALf) sampling was performed. The primary end point was antifungal treatment failure in patients with azole-resistant IA. RESULTS: Of 323 patients enrolled, complete mycological and radiological information was available for 276 (94%), and probable IA was diagnosed in 99/276 (36%). Sufficient BALf for PCR testing was available for 293/323 (91%). Aspergillus DNA was detected in 116/293 (40%) and A. fumigatus DNA in 89/293 (30%). The resistance PCR was conclusive in 58/89 (65%) and resistance detected in 8/58 (14%). Two had a mixed azole-susceptible/azole-resistant infection. In the 6 remaining patients, treatment failure was observed in 1. Galactomannan positivity was associated with mortality (P = .004) while an isolated positive Aspergillus PCR was not (P = .83). CONCLUSIONS: Real-time PCR-based resistance testing may help to limit the clinical impact of triazole resistance. In contrast, the clinical impact of an isolated positive Aspergillus PCR on BALf seems limited. The interpretation of the EORTC/MSGERC PCR criterion for BALf may need further specification (eg, minimum cycle threshold value and/or PCR positive on >1 BALf sample).


Subject(s)
Aspergillosis , Invasive Fungal Infections , Invasive Pulmonary Aspergillosis , Humans , Prospective Studies , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/drug therapy , Invasive Pulmonary Aspergillosis/microbiology , Azoles/pharmacology , Azoles/therapeutic use , Aspergillosis/diagnosis , Aspergillosis/drug therapy , Aspergillosis/microbiology , Aspergillus , Aspergillus fumigatus , Invasive Fungal Infections/diagnosis , Invasive Fungal Infections/drug therapy , Real-Time Polymerase Chain Reaction/methods , Triazoles/pharmacology , Triazoles/therapeutic use , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Drug Resistance, Fungal
16.
BMJ Open Respir Res ; 10(1)2023 02.
Article in English | MEDLINE | ID: mdl-36828645

ABSTRACT

BACKGROUND: Invasive pulmonary aspergillosis (IPA) remains underestimated in patients with community-acquired pneumonia (CAP). This study aims to describe clinical features and outcomes of IPA in CAP patients, assess diagnostic performance of metagenomic next-generation sequencing (mNGS) for IPA and analyse lung microbiome via mNGS data. METHODS: This retrospective cohort study included CAP patients from 22 April 2019 to 30 September 2021. Clinical and microbiological data were analysed. Diagnostic performance of mNGS was compared with traditional detection methods. The lung microbiome detected by mNGS was characterised and its association with clinical features was evaluated. MAIN RESULTS: IPA was diagnosed in 26 (23.4%) of 111 CAP patients. Patients with IPA displayed depressed immunity, higher hospital mortality (30.8% vs 11.8%) and intensive care unit mortality (42.1% vs 17.5%) compared with patients without IPA. The galactomannan (GM) antigen test had the highest sensitivity (57.7%) in detecting the Aspergillus spp, followed by mNGS (42.3%), culture (30.8%) and smear (7.7%). The mNGS, culture and smear had 100% specificity, while GM test had 92.9% specificity. The microbial structure of IPA significantly differed from non-IPA patients (p<0.001; Wilcoxon test). Nineteen different species were significantly correlated with clinical outcomes and laboratory biomarkers, particularly for Streptococcus salivarius, Prevotella timonensis and Human betaherpesvirus 5. CONCLUSIONS: Our results reveal that patients with Aspergillus infection tend to have a higher early mortality rate. The mNGS may be suggested as a complement to routine microbiological test in diagnosis of patients at risk of Aspergillus infection. The lung microbiota is associated with inflammatory, immune and metabolic conditions of IPA, and thus influences clinical outcomes.


Subject(s)
Aspergillosis , Invasive Pulmonary Aspergillosis , Microbiota , Pneumonia , Humans , Invasive Pulmonary Aspergillosis/complications , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/microbiology , Retrospective Studies , Sensitivity and Specificity , Bronchoalveolar Lavage Fluid/microbiology , Aspergillosis/complications , Lung , Pneumonia/complications
17.
Med Mol Morphol ; 56(2): 144-151, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36806624

ABSTRACT

Invasive pulmonary aspergillosis (IPA) is one of the most frequent forms of invasive fungal infections (IFI); however, it is often difficult to identify the pathogenic fungal species and to select appropriate treatments for patients with IFI including IPA. Here, we describe the detailed pathophysiology of an autopsy case of severe respiratory failure due to IPA with candidiasis. The patient developed severe respiratory failure after influenza infection and died, and the autopsy revealed a mixed disease of IPA with candidiasis. In this study, in addition to the routine pathological examination, we further examined formalin-fixed paraffin-embedded (FFPE) tissues by scanning electron microscopy (SEM) and partial genomic DNA sequencing. Although optical microscopy alone was insufficient to identify the pathogenic organisms, SEM clearly depicted the characteristic morphology of Aspergillus sp. and Candida sp. as closely overlapping in a nested fashion, providing evidence of mixed infection of both fungal species in a focal site. The technique using FFPE tissue in combination with ultrastructural observation by SEM, elemental analysis by SEM-EDX, and DNA sequencing is promising for analyzing the pathophysiology of IFI.


Subject(s)
Candidiasis , Invasive Fungal Infections , Invasive Pulmonary Aspergillosis , Respiratory Insufficiency , Humans , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/microbiology , Invasive Fungal Infections/diagnosis , Aspergillus/genetics
18.
Arerugi ; 72(1): 37-43, 2023.
Article in Japanese | MEDLINE | ID: mdl-36792159

ABSTRACT

OBJECTIVE: To clarify the frequency of imaging findings similar to mycobacterial infection and the characteristics of comorbid pulmonary non-tuberculosis mycobacteriosis in the patients with allergic bronchopulmonary mycosis (ABPM). SUBJECTS AND METHODS: Patients treated with ABPM at our hospital in the past 8 years were extracted from medical records, and 32 patients who met the clinical diagnostic criteria were retrospectively examined. RESULTS: The median age was 62.5 years (range 24-79 years), and 21 patients were female. Twenty-two had asthma, and four had old tuberculosis. CT findings showed central bronchiectasis in 29 cases, centrilobular nodulars in 26 cases, and mediastinal lymphadenopathy in 3 cases. Pulmonary M. avium complex (pMAC) disease was complicated in 4 cases. Regarding the time of diagnosis of pMAC disease, 2 cases were diagnosed concurrently with ABPM, 1 case was before ABPM diagnosis, and 1 case was during ABPM treatment. The main lesion of ABPM occurred in a different site from that of pMAC disease. CONCLUSIONS: ABPM and mycobacterial infection not only have similar imaging findings, but they can also occur synchronously and metachronously. Complication of ABPM and pMAC disease may be due to risk factors common to both diseases, such as the patient's constitution and living environment.


Subject(s)
Asthma , Invasive Pulmonary Aspergillosis , Tuberculosis, Pulmonary , Humans , Female , Young Adult , Adult , Middle Aged , Aged , Male , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/microbiology , Retrospective Studies , Asthma/diagnosis
19.
Clin Respir J ; 17(3): 129-138, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36710403

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a chronic airway non-specific inflammatory disease characterised by airway obstruction and alveolar destruction. In recent years, due to the extensive use of antibiotics, glucocorticoids, immunosuppressants and other drugs, pulmonary fungal infection in patients with AECOPD, especially aspergillus infection, has gradually increased. The forms of aspergillus infection present in COPD patients include sensitisation, chronic pulmonary aspergillosis (CPA) and invasive pulmonary aspergillosis (IPA). This review will summarise diagnostic and treatment of aspergillus in COPD patients.


Subject(s)
Aspergillosis , Invasive Pulmonary Aspergillosis , Pulmonary Aspergillosis , Pulmonary Disease, Chronic Obstructive , Humans , Invasive Pulmonary Aspergillosis/microbiology , Pulmonary Aspergillosis/diagnosis , Chronic Disease
20.
Immun Inflamm Dis ; 11(1): e760, 2023 01.
Article in English | MEDLINE | ID: mdl-36705416

ABSTRACT

BACKGROUND: Infections with fungi, such as Aspergillus species, have been found as common complications of viral pneumonia. This study aims to determine the risk factors of fungal superinfections in viral pneumonia patients using meta-analysis. OBJECTIVE: This study aims to determine the risk factors of fungal infection s in viral pneumonia patients using meta-analysis. METHODS: We reviewed primary literature about fungal infection in viral pneumonia patients published between January 1, 2010 and September 30, 2020, in the Chinese Biomedical Literature, Chinese National Knowledge Infrastructure, Wanfang (China), Cochrane Central Library, Embase, PubMed, and Web of Science databases. These studies were subjected to an array of statistical analyses, including risk of bias and sensitivity analyses. RESULTS: In this study, we found a statistically significant difference in the incidence of fungal infections in viral pneumonia patients that received corticosteroid treatment as compared to those without corticosteroid treatment (p < .00001). Additionally, regarding the severity of fungal infections, we observed significant higher incidence of invasive pulmonary aspergillosis (IPA) in patients with high Acute Physiology and Chronic Health Evaluation (APACHE) II scores (p < .001), tumors (p = .005), or immunocompromised patients (p < .0001). CONCLUSIONS: Our research shows that corticosteroid treatment was an important risk factor for the development of fungal infection in patients with viral pneumonia. High APACHE II scores, tumors, and immunocompromised condition are also important risk factors of developing IPA. The diagnosis of fungal infection in viral pneumonia patients can be facilitated by early serum galactomannan (GM) testing, bronchoalveolar lavage fluid Aspergillus antigen testing, culture, and biopsy.


Subject(s)
Invasive Pulmonary Aspergillosis , Neoplasms , Superinfection , Humans , Superinfection/complications , Sensitivity and Specificity , Aspergillus , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/microbiology , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL