Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.749
Filter
1.
Sci Rep ; 14(1): 14985, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951669

ABSTRACT

Climate change is known to affect the distribution and composition of species, but concomitant alterations to functionally important aspects of behaviour and species-environment relations are poorly constrained. Here, we examine the ecosystem ramifications of changes in sediment-dwelling invertebrate bioturbation behaviour-a key process mediating nutrient cycling-associated with near-future environmental conditions (+ 1.5 °C, 550 ppm [pCO2]) for species from polar regions experiencing rapid rates of climate change. We find that responses to warming and acidification vary between species and lead to a reduction in intra-specific variability in behavioural trait expression that adjusts the magnitude and direction of nutrient concentrations. Our analyses also indicate that species behaviour is not predetermined, but can be dependent on local variations in environmental history that set population capacities for phenotypic plasticity. We provide evidence that certain, but subtle, aspects of inter- and intra-specific variation in behavioural trait expression, rather than the presence or proportional representation of species per se, is an important and under-appreciated determinant of benthic biogeochemical responses to climate change. Such changes in species behaviour may act as an early warning for impending ecological transitions associated with progressive climate forcing.


Subject(s)
Climate Change , Invertebrates , Oceans and Seas , Animals , Invertebrates/physiology , Ecosystem , Seawater , Hydrogen-Ion Concentration , Global Warming , Carbon Dioxide/metabolism
2.
Ecotoxicology ; 33(4-5): 397-414, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38836941

ABSTRACT

Mercury is a ubiquitous pollutant of global concern but the threat of exposure is not homogenously distributed at local, regional, or global scales. The primary route of human exposure to mercury is through consumption of aquatic foods, which are culturally and economically important in the wider Caribbean Region, especially for Small Island Developing States (SIDS). We compiled more than 1600 samples of 108 unique species of fish and aquatic invertebrates collected between 2005 and 2023 from eleven countries or territories in the wider Caribbean Region. There was wide variability in total mercury concentrations with 55% of samples below the 0.23 µg/g wet weight (ww) guideline from the U.S. FDA/EPA (2022) for 2 or 3 weekly servings and 26% exceeding the 0.46 µg/g ww guideline consistent with adverse effects on human health from continual consumption, particularly for sensitive populations. Significant relationships were found between total mercury concentrations and taxonomic family, sampling country, fish length, and trophic level. The data analyzed here support the need for further sampling with concrete geospatial data to better understand patterns and mechanisms in mercury concentrations and allow for more informed decision making on the consumption of fish and invertebrates from the wider Caribbean Region as well as supporting efforts to evaluate the effectiveness of national, regional, and international mercury policies.


Subject(s)
Environmental Monitoring , Fishes , Invertebrates , Mercury , Water Pollutants, Chemical , Mercury/analysis , Caribbean Region , Animals , Water Pollutants, Chemical/analysis , Food Contamination/analysis
3.
Sci Data ; 11(1): 679, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914539

ABSTRACT

We present 4k video and whole transcriptome data for seven deep-sea invertebrate animals collected in the Eastern Pacific Ocean during a research expedition onboard the Schmidt Ocean Institute's R/V Falkor in August of 2021. The animals include one jellyfish (Atolla sp.), three siphonophores (Apolemia sp., Praya sp., and Halistemma sp.), one larvacean (Bathochordaeus mcnutti), one tunicate (Pyrosomatidae sp.), and one ctenophore (Lampocteis sp.). Four of the animals were sequenced with long-read RNA sequencing technology, such that the reads themselves define a reference assembly for those animals. The larvacean tissues were successfully preserved in situ and has paired long-read reference data and short read quantitative transcriptomic data for within-specimen analyses of gene expression. Additionally, for three animals we provide quantitative image data, and a 3D model for one siphonophore. The paired image and transcriptomic data can be used for species identification, species description, and reference genetic data for these deep-sea animals.


Subject(s)
Invertebrates , Transcriptome , Animals , Invertebrates/genetics , Pacific Ocean , Aquatic Organisms/genetics , Sequence Analysis, RNA
4.
Sci Rep ; 14(1): 13334, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38858480

ABSTRACT

The Namib Desert is a hyperarid coastal desert where fog is a major moisture source. We hypothesized that the fog-harvesting grass Stipagrostis sabulicola establishes an important ecological niche, termed the "Fog-Plant-Oases" (FPOs), and serves as the primary carbon source for the invertebrate community. To determine this, we measured the natural variations of the stable carbon and nitrogen isotopes (δ13C and δ15N) of invertebrates as well as that of plant biomass and belowground detritus and estimated the contributions of the fog plants in their diets. Our findings revealed a complex trophic structure and demonstrated that S. sabulicola fuels carbon flow from lower to higher trophic levels in the aboveground food web. The distinct δ13C values of bacterial- and fungal-feeding nematodes indicated however the separation of the aboveground niche, which is primarily sustained by S. sabulicola, from the belowground niche, where wind-blown sediments may serve as the main energy source for the soil biota. Our findings further accentuate the critical role of S. sabulicola FPOs in establishing complex trophic dynamics and a distinctive food web within the hyperarid Namib dunes.


Subject(s)
Ecosystem , Food Chain , Animals , Namibia , Poaceae/metabolism , Nitrogen Isotopes/analysis , Nitrogen Isotopes/metabolism , Carbon Isotopes/analysis , Biomass , Desert Climate , Soil/chemistry , Carbon/metabolism , Invertebrates
5.
Sci Data ; 11(1): 601, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849407

ABSTRACT

Freshwater macroinvertebrates are a diverse group and play key ecological roles, including accelerating nutrient cycling, filtering water, controlling primary producers, and providing food for predators. Their differences in tolerances and short generation times manifest in rapid community responses to change. Macroinvertebrate community composition is an indicator of water quality. In Europe, efforts to improve water quality following environmental legislation, primarily starting in the 1980s, may have driven a recovery of macroinvertebrate communities. Towards understanding temporal and spatial variation of these organisms, we compiled the TREAM dataset (Time seRies of European freshwAter Macroinvertebrates), consisting of macroinvertebrate community time series from 1,816 river and stream sites (mean length of 19.2 years and 14.9 sampling years) of 22 European countries sampled between 1968 and 2020. In total, the data include >93 million sampled individuals of 2,648 taxa from 959 genera and 212 families. These data can be used to test questions ranging from identifying drivers of the population dynamics of specific taxa to assessing the success of legislative and management restoration efforts.


Subject(s)
Invertebrates , Rivers , Animals , Europe , Fresh Water , Population Dynamics , Water Quality , Biodiversity , Ecosystem
6.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1435-1446, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38886443

ABSTRACT

As regulators of the surface land processes, soil fauna communities are the vital foundations for healthy terrestrial ecosystems. Soil fauna have been studied in China for more than 70 years. Great progresses have been achieved in exploring soil fauna species composition and geographical distribution patterns. Soil fauna eco-geography, as a bridge between soil fauna geographic patterns and ecosystem services, has a new development opportunity with the deep recognition of soil fauna ecological functions. Soil fauna eco-geography research could be partitioned into four dimensions including the spatio-temporal patterns of: 1) the apparent characteristics of soil fauna community, such as species composition, richness and abundance; 2) the intrinsic characteristics of soil fauna community, such as dietary and habits; 3) soil fauna-related biotic and abiotic interactions especially those indicating drivers of soil fauna community structure or shaping the roles of soil fauna in ecosystems; and 4) soil fauna-related or -regulated key ecological processes. Current studies focus solely on soil fauna themselves and their geographical distributions. To link soil fauna geography more closely with ecosystem services, we suggested that: 1) converting the pure biogeography studies to those of revealing the spatio-temporal patterns of the soil fauna-related or regulated key relationships and ecological processes;2) expanding the temporal and spatial scales in soil fauna geographical research;3) exploring the integrated analysis approach for soil fauna-related data with multi-scales, multi-factors, and multi-processes;and 4) establishing standard reference systems for soil fauna eco-geographical researches. Hence, the change patterns of ecological niche of soil fauna communities could be illustrated, and precision mani-pulations of soil fauna communities and their ecological functions would become implementable, which finally contributes to ecosystem health and human well-being.


Subject(s)
Biodiversity , Ecosystem , Soil , China , Soil/chemistry , Animals , Invertebrates/classification , Invertebrates/growth & development , Geography
7.
Environ Monit Assess ; 196(7): 649, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38909348

ABSTRACT

The presence of elevated levels of heavy metals in soil poses a significant environmental concern with implications for human health and other organisms. The main objective of our study was to reduce the gap information of seasonal abundance, distribution of heavy metals in soil, leaf litter, and some macroinvertebrates in a citrus orchard (Citrus sinensis) in Sohag Governorate, Egypt. The heavy metals copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd) were determined by atomic absorption spectrometry. Degree of contamination (DC) was determined for both soil and leaf litter contamination. However, the bioaccumulation factor (BAF) was estimated to determine metal accumulation in the macroinvertebrates including earwigs Anisolabis maritima, chilopoda Scolopendra moristans, spider Dysdera crocata, and earthworm Aporrectodea caliginosa. The study area had clay-loam with varying organic matter, salinity, and pH levels. The degree of contamination varied among seasons, with the highest levels typically observed in autumn in both soil and leaf litter. The soil ranged from low contamination (1.82) to high contamination levels (4.4), while the leaf litter showed extremely high (30.03) to ultra-high (85.92) contamination levels. The mean ecological risk index results indicated that the sampling area had moderate ecological risk levels for Cd (44.3), Zn (42.17), and Pb (80.05), and extremely high levels for Cu (342.5). Heavy metal concentrations in the selected fauna were the highest in autumn, and the bioaccumulation factor varied among species and seasons with some species classified as e-concentrators, micro-concentrators, and macro-concentrators of certain heavy metals. Scolopendra moristans exhibited the highest mean metal concentrations (Cd, Pb, and Zn), while Aporrectodea caliginosa had the lowest. Thus, the differences in heavy metal concentrations found in different soil taxa highlight the significance of taxing a holistic understanding of feeding mechanisms into account when evaluating the potential risk for animals that consume invertebrates.


Subject(s)
Environmental Monitoring , Invertebrates , Metals, Heavy , Plant Leaves , Soil Pollutants , Soil , Metals, Heavy/analysis , Metals, Heavy/metabolism , Egypt , Animals , Soil Pollutants/analysis , Soil Pollutants/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Soil/chemistry , Invertebrates/metabolism , Bioaccumulation
8.
Ying Yong Sheng Tai Xue Bao ; 35(4): 1131-1140, 2024 Apr 18.
Article in Chinese | MEDLINE | ID: mdl-38884248

ABSTRACT

To understand the macrozoobenthic community composition and spatial-temporal distribution characteristics of macrobenthos in the waters of Miaodao Archipelago, Yantai, Shandong and its response to habitat changes, we conducted surveys of macrobenthos and environmental elements in the waters of Miaodao Islands in May (spring), August (summer), and October (autumn) in 2022. Results showed that a total of 127 macrozoobenthic species were recorded, with Mollusca and Annelida (Polychaeta) as the dominant taxa, consisting of 47 and 45 species, respectively. The key dominant species included Sternaspis chinensis, Glycinde bonhourei, Moerella hilaris, and Amphioplus (Lymanella) japonicus. The average annual density and biomass of macrozoobenthos were 190 ind·m-2 and 28.69 g·m-2, respectively. There was no significant seasonal differences in density and biomass. The Shannon diversity index (H), evenness index (J), and richness index (D) averaged 3.10, 0.90, and 2.40, respectively. Cluster analysis results showed low similarity coefficients of community among the three seasons, suggesting a distinct distribution pattern. Factors such as bottom seawater temperature, chlorophyll a, nutrient, sediment grain size, and organic matter content could significantly influence the structure and diversity of macrozoobenthic community. Compared with historical research data, the Changdao National Wetland Nature Reserve and the implementation of enclosure aquaculture have led to notable changes in the dominant species of macrobenthos. Specifically, there was a noticeable decline in both density and H, and an increase in biomass and J. Additionally, body size of benthic fauna was transitioning from small to big.


Subject(s)
Biodiversity , Ecosystem , Invertebrates , Mollusca , Seasons , China , Animals , Invertebrates/classification , Invertebrates/growth & development , Mollusca/growth & development , Mollusca/classification , Polychaeta/growth & development , Polychaeta/classification , Population Dynamics , Oceans and Seas , Seawater/analysis , Islands , Biomass
9.
Pestic Biochem Physiol ; 202: 105974, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879315

ABSTRACT

In fact, less than 1% of applied pesticides reach their target pests, while the remainder pollute the neighboring environment and adversely impact human health as well as non-target organisms in agricultural ecosystem. Pesticides can contribute to the loss of agrobiodiversity, which are essential to maintaining the agro-ecosystem's structure and functioning in order to produce and secure enough food. This review article examines the negative effects of pesticides on non-target invertebrates including earthworms, honeybees, predators, and parasitoids. It also highlights areas where further research is needed to address unresolved issues related to pesticide exposure, aiming to improve conservation efforts for these crucial species. These organisms play crucial roles in ecosystem functioning, such as soil health, pollination, and pest control. Both lethal and sub-lethal effects of pesticides on the selected non-target invertebrates were discussed. Pesticides affect DNA integrity, enzyme activity, growth, behavior, and reproduction of earthworms even at low concentrations. Pesticides could also induce a reduction in individual survival, disruption in learning performance and memory, as well as a change in the foraging behavior of honeybees. Additionally, pesticides adversely affect population growth indices, reproduction, development, longevity, and consumption of predators and parasitoids. As a result, pesticides must pass adequate ecotoxicological risk assessment to be enlisted by regulatory authorities. Therefore, it is important to adopt integrated pest management (IPM) strategies that minimize pesticide use and promote the conservation of beneficial organisms in order to maintain agrobiodiversity and sustainable agricultural systems. Furthermore, adopting precision agriculture and organic farming lessen these negative effects as well.less than.


Subject(s)
Agriculture , Ecosystem , Invertebrates , Pesticides , Animals , Pesticides/toxicity , Invertebrates/drug effects , Bees/drug effects , Bees/physiology , Oligochaeta/drug effects
10.
Environ Monit Assess ; 196(7): 635, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900337

ABSTRACT

Detecting human impact on freshwater ecosystems is problematic without rigorous assessment of temporal changes. Assessments of mining impacts are further complicated by the strong influence of local catchment geology on surface waters even in unmined environments. Such influence cannot be effectively considered by using broad-scale reference frameworks based on regionalization and stream types. Using the BACI (Before-After Control-Impact) design, we examined the impact of mining discharges on freshwater algae and macroinvertebrate communities resulting from the rerouting of treated wastewaters through a pipeline to larger water bodies in Northern and North-Eastern Finland. Impacted sites and control sites were sampled 1 to 2 years before and 1 to 3 years after the pipelines became operational. Stream diatom communities recovered from past loadings upstream of the pipeline (which was no longer impacted by wastewaters) after rerouting of the wastewaters, while no changes downstream from the pipeline were detected. Upstream from the pipeline, diatom species richness increased and changes in relative abundances of the most common diatom taxa as well as in the overall community composition were observed. The effects of the pipeline were less evident for stream macroinvertebrate communities. There was an indication that regional reference conditions used in national biomonitoring may not represent diatom communities in areas with a strong geochemical background influence. Lake profundal macroinvertebrate communities were impacted by past loadings before the construction of the pipeline, and the influence of the pipeline was observed only as changes in the abundances of a few individual species such as phantom midges (which increased in abundance in response to discharges directed through the pipeline). Our results highlight the variable influence of mining discharges on aquatic communities. Statistically strong monitoring programmes, such as BACI designs, are clearly needed to detect these influences.


Subject(s)
Diatoms , Ecosystem , Environmental Monitoring , Fresh Water , Invertebrates , Mining , Environmental Monitoring/methods , Animals , Fresh Water/chemistry , Finland , Rivers/chemistry , Water Pollutants, Chemical/analysis
11.
Parasit Vectors ; 17(1): 257, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867296

ABSTRACT

Macroinvertebrate predators such as backswimmers (Heteroptera: Notonectidae), dragonflies (Odonata: Aeshnidae), and predatory diving beetles (Coleoptera: Dytiscidae) naturally inhabit aquatic ecosystems. Some aquatic ecosystems inhabited by these macroinvertebrate predator taxa equally form malaria vector larval habitats. The presence of these predators in malaria vector larval habitats can negatively impact on development, adult body size, fecundity, and longevity of the malaria vectors, which form important determinants of their fitness and future vectorial capacity. These potential negative impacts caused by aquatic macroinvertebrate predators on malaria vectors warrant their consideration as biocontrol agents in an integrated program to combat malaria. However, the use of these macroinvertebrate predators in malaria biocontrol is currently constrained by technical bottlenecks linked to their generalist predatory tendencies and often long life cycles, demanding complex rearing systems. We reviewed the literature on the use of aquatic macroinvertebrate predators for biocontrol of malaria vectors from the An. gambiae s.l. complex. The available information from laboratory and semi-field studies has shown that aquatic macroinvertebrates have the potential to consume large numbers of mosquito larvae and could thus offer an additional approaches in integrated malaria vector management strategies. The growing number of semi-field structures available in East and West Africa provides an opportunity to conduct ecological experimental studies to reconsider the potential of using aquatic macroinvertebrate predators as a biocontrol tool. To achieve a more sustainable approach to controlling malaria vector populations, additional, non-chemical interventions could provide a more sustainable approach, in comparison with the failing chemical control tools, and should be urgently considered for integration with the current mosquito vector control campaigns.


Subject(s)
Anopheles , Malaria , Mosquito Control , Mosquito Vectors , Pest Control, Biological , Predatory Behavior , Animals , Anopheles/physiology , Mosquito Control/methods , Malaria/prevention & control , Malaria/transmission , Pest Control, Biological/methods , Mosquito Vectors/physiology , Ecosystem , Larva/physiology , Heteroptera/physiology , Odonata/physiology , Coleoptera/physiology , Biological Control Agents , Invertebrates/physiology
12.
An Acad Bras Cienc ; 96(3): e20230502, 2024.
Article in English | MEDLINE | ID: mdl-38922268

ABSTRACT

Over two decades, the area with sugarcane has more than doubled, from 4.8 million hectares in 2000 to 10 million in 2018, in Brazil. São Paulo State is mostly responsible for the sugarcane production in the country, accounting for 51% of the national production. In 2008, a study was conducted analysing the relationship between sugarcane cultivation and the aquatic macroinvertebrate community, showing the impacts of sugarcane on the macroinvertebrate aquatic fauna. The present study aims to gather actual information on the aquatic macroinvertebrate community in the same streams studied in 2008, to make a historical comparison with studies previously carried out. Eight streams were selected; four located in areas of sugarcane cultivation and four located in preserved areas. Three samples were carried out between 2018 and 2020. The aquatic macroinvertebrates were collected using a D-frame aquatic net (250 µm) including riffle and pools areas and identified using specific identification keys. The results of the historical assessment showed better ecological conditions of the streams in 2008 when compared to 2018 in areas of sugarcane cultivation, suggesting that the environmental impact was maintained and increased after ten years.


Subject(s)
Invertebrates , Saccharum , Saccharum/growth & development , Brazil , Animals , Invertebrates/classification , Invertebrates/growth & development , Agriculture/methods , Rivers , Aquatic Organisms/growth & development , Aquatic Organisms/classification , Environmental Monitoring/methods , Biodiversity
13.
Curr Biol ; 34(10): 2175-2185.e4, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38718797

ABSTRACT

Relatively little is known about how peripheral nervous systems (PNSs) contribute to the patterning of behavior in which their role transcends the simple execution of central motor commands or mediation of reflexes. We sought to draw inferences to this end in the aeolid nudibranch Berghia stephanieae, which generates a rapid, dramatic defense behavior, "bristling." This behavior involves the coordinated movement of cerata, dozens of venomous appendages emerging from the animal's mantle. Our investigations revealed that bristling constitutes a stereotyped but non-reflexive two-stage behavior: an initial adduction of proximate cerata to sting the offending stimulus (stage 1) followed by a coordinated radial extension of remaining cerata to create a pincushion-like defensive screen around the animal (stage 2). In decerebrated specimens, stage 1 bristling was preserved, while stage 2 bristling was replaced by slower, uncoordinated ceratal movements. We conclude from these observations that, first, the animal's PNS and central nervous system (CNS) mediate stages 1 and 2 of bristling, respectively; second, the behavior propagates through the body utilizing both peripheral- and central-origin nerve networks that support different signaling kinetics; and third, the former network inhibits the latter in the body region being stimulated. These findings extend our understanding of the PNS' computational capacity and provide insight into a neuroethological scheme in which the CNS and PNS both independently and interactively pattern different aspects of non-reflexive behavior.


Subject(s)
Central Nervous System , Peripheral Nervous System , Animals , Central Nervous System/physiology , Peripheral Nervous System/physiology , Behavior, Animal/physiology , Invertebrates/physiology
14.
Mol Phylogenet Evol ; 197: 108115, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38810901

ABSTRACT

Onychophora are cryptic, soil-dwelling invertebrates known for their biogeographic affinities, diversity of reproductive modes, close phylogenetic relationship to arthropods, and peculiar prey capture mechanism. The 216 valid species of Onychophora are grouped into two families - Peripatopsidae and Peripatidae - and apart from a few relationships among major lineages within these two families, a stable phylogenetic backbone for the phylum has yet to be resolved. This has hindered our understanding of onychophoran biogeographic patterns, evolutionary history, and systematics. Neopatida, the Neotropical clade of peripatids, has proved particularly difficult, with recalcitrant nodes and low resolution, potentially due to rapid radiation of the group during the Cretaceous. Previous studies have had to compromise between number of loci and number of taxa due to limitations of Sanger sequencing and phylotranscriptomics, respectively. Additionally, aspects of their genome size and structure have made molecular phylogenetics difficult and data matrices have been affected by missing data. To address these issues, we leveraged recent, published transcriptomes and the first high quality genome for the phylum and designed a high affinity ultraconserved element (UCE) probe set for Onychophora. This new probe set, consisting of âˆ¼ 20,000 probes that target 1,465 loci across both families, has high locus recovery and phylogenetic utility. Phylogenetic analyses recovered the monophyly of major clades of Onychophora and revealed a novel lineage from the Neotropics that challenges our current understanding of onychophoran biogeographic endemicity. This new resource could drastically increase the power of molecular datasets and potentially allow access to genomic scale data from archival museum specimens to further tackle the issues exasperating onychophoran systematics.


Subject(s)
Phylogeny , Animals , Conserved Sequence/genetics , Invertebrates/genetics , Invertebrates/classification , Sequence Analysis, DNA
15.
Nat Ecol Evol ; 8(6): 1098-1108, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38773326

ABSTRACT

Inland navigation in Europe is proposed to increase in the coming years, being promoted as a low-carbon form of transport. However, we currently lack knowledge on how this would impact biodiversity at large scales and interact with existing stressors. Here we addressed this knowledge gap by analysing fish and macroinvertebrate community time series across large European rivers comprising 19,592 observations from 4,049 sampling sites spanning the past 32 years. We found ship traffic to be associated with biodiversity declines, that is, loss of fish and macroinvertebrate taxonomic richness, diversity and trait richness. Ship traffic was also associated with increases in taxonomic evenness, which, in concert with richness decreases, was attributed to losses in rare taxa. Ship traffic was especially harmful for benthic taxa and those preferring slow flows. These effects often depended on local land use and riparian degradation. In fish, negative impacts of shipping were highest in urban and agricultural landscapes. Regarding navigation infrastructure, the negative impact of channelization on macroinvertebrates was evident only when riparian degradation was also high. Our results demonstrate the risk of increasing inland navigation on freshwater biodiversity. Integrative waterway management accounting for riparian habitats and landscape characteristics could help to mitigate these impacts.


Subject(s)
Biodiversity , Fishes , Invertebrates , Animals , Europe , Invertebrates/physiology , Rivers , Fresh Water , Conservation of Natural Resources , Ships
16.
Article in English | MEDLINE | ID: mdl-38806110

ABSTRACT

From review of the very few topical studies to date, we conclude that while effects are variable, microplastics can induce direct ionoregulatory disturbances in freshwater fish and invertebrates. However, the intensity depends on microplastic type, size, concentration, and exposure regime. More numerous are studies where indirect inferences about possible ionoregulatory effects can be drawn; these indicate increased mucus production, altered breathing, histopathological effects on gill structure, oxidative stress, and alterations in molecular pathways. All of these could have negative effects on ionoregulatory homeostasis. However, previous research has suffered from a lack of standardized reporting of microplastic characteristics and exposure conditions. Often overlooked is the fact that microplastics are dynamic contaminants, changing over time through degradation and fragmentation and subsequently exhibiting altered surface chemistry, notably an increased presence and diversity of functional groups. The same functional groups characterized on microplastics are also present in dissolved organic matter, often termed dissolved organic carbon (DOC), a class of substances for which we have a far greater understanding of their ionoregulatory actions. We highlight instances in which the effects of microplastic exposure resemble those of DOC exposure. We propose that in future microplastic investigations, in vivo techniques that have proven useful in understanding the ionoregulatory effects of DOC should be used including measurements of transepithelial potential, net and unidirectional radio-isotopic ion flux rates, and concentration kinetic analyses of uptake transport. More sophisticated in vitro approaches using cultured gill epithelia, Ussing chamber experiments on gill surrogate membranes, and scanning ion selective electrode techniques (SIET) may also prove useful. Finally, in future studies we advocate for minimum reporting requirements of microplastic properties and experimental conditions to help advance this important emerging field.


Subject(s)
Fishes , Fresh Water , Gills , Invertebrates , Microplastics , Water Pollutants, Chemical , Animals , Gills/drug effects , Gills/metabolism , Microplastics/toxicity , Fishes/physiology , Fishes/metabolism , Water Pollutants, Chemical/toxicity , Invertebrates/drug effects , Invertebrates/physiology
17.
Biol Lett ; 20(5): 20240015, 2024 May.
Article in English | MEDLINE | ID: mdl-38807548

ABSTRACT

Autotomy refers to self-amputation where the loss of a limb or organ is generally said to be (1) in response to stressful external stimuli; (2) voluntary and nervously mediated; (3) supported by adaptive features that increase efficiency and simultaneously mediate the cost; and (4) morphologically delineated by a predictable breakage plane. It is estimated that this phenomenon has evolved independently nine different times across the animal kingdom, appearing in many different taxa, including vertebrate and invertebrate as well as aquatic and terrestrial animals. Marine invertebrates use this behaviour in a diversity of manners that have yet to be globally reviewed and critically examined. Here, published data from marine invertebrate taxa were used to explore instances of injury as an evolutionary driver of autotomy. Findings suggest that phyla (e.g. Echinodermata and Arthropoda) possibly experiencing high rates of injury (tissue damage or loss) are more likely to be able to perform autotomy. Additionally, this review looks at various morphological, physiological and environmental conditions that have either driven the evolution or maintained the behaviour of autotomy in marine invertebrates. Finally, the use of autotomic abilities in the development of more sustainable and less ecologically invasive fisheries is explored.


Subject(s)
Aquatic Organisms , Biological Evolution , Invertebrates , Animals , Invertebrates/physiology , Invertebrates/anatomy & histology , Aquatic Organisms/physiology , Regeneration , Fisheries
18.
Mar Pollut Bull ; 203: 116492, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754324

ABSTRACT

Nanhui Dongtan Wetland is an important part of Yangtze Estuary Wetland, and its species diversity has been affected by reclamation in recent years. To increase the diversity of species in reclamation areas, stock enhancement was implemented in the Nanhui Dongtan Wetland in May 2020 as a method of ecological restoration. We investigated macrobenthos before and after release, analysed changes in the macrobenthos and evaluated the ecological health of the sampled area. The diversity index showed species were more abundant and community structure were more diversified after release. Functional groups and redundancy analysis showed that the effects of stock enhancement on macrobenthos in Nanhui Dongtan wetland may be based on changes in secondary productivity. Stock enhancement may promote the resistance of macrobenthic communities to organic pollution without negatively affecting ecological health. As a method of ecological restoration, stock enhancement will play a positive role in the restoration of macrobenthic communities.


Subject(s)
Biodiversity , Estuaries , Invertebrates , Wetlands , China , Animals , Environmental Monitoring/methods , Environmental Restoration and Remediation/methods
19.
Mar Pollut Bull ; 203: 116501, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761681

ABSTRACT

Evaluating the ecological quality and pollution status of coastal mudflats is crucial for environmental protection and management, particularly when these areas serve as major shellfish production hotspots. In this study, we assessed the benthic ecological quality and heavy metals pollution in Geligang, located in the Northern Bohai Sea using the macrobenthos diversity index and the heavy metal pollution index. The Shannon-Wiener index (H'), AZTI marine biotic index (AMBI), multivariate AMBI (M-AMBI) showed that the benthic ecological quality in Geligang is either good or high. The potential ecological risk index and geoaccumulation index highlighted that cadmium (Cd) and mercury (Hg) as the primary heavy metal pollutants in Geligang. Surprisingly, the biomass of the two dominant species other than these indices serve as reliable indicators of heavy metal pollution. This suggests that the biomass of Mactra veneriformis and Potamocorbula laevis could be used to assess heavy metal pollution levels in Geligang.


Subject(s)
Environmental Monitoring , Metals, Heavy , Water Pollutants, Chemical , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , China , Animals , Estuaries , Aquatic Organisms , Mercury/analysis , Geologic Sediments/chemistry , Biomass , Cadmium/analysis , Invertebrates , Biodiversity , Ecosystem
20.
Mar Pollut Bull ; 203: 116463, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38776641

ABSTRACT

Industrial waste barrels were discarded from 1947 to 1961 at a DDT dumpsite in the San Pedro Basin (SPB) in southern California, USA at ~890 m. The barrels were studied for effects on sediment concentrations of DDX, PCBs, PAHs and sediment properties, and on benthic macrofaunal assemblages, including metazoan meiofaunal taxa >0.3 mm. DDX concentration was highest in the 2-6 cm fraction of the 10-cm deep cores studied but exhibited no correlation with macrofaunal density, composition or diversity. Macrofaunal diversity was lowest and distinct in sediments within discolored halos surrounding the barrels. Low macrobenthos density and diversity, high dominance by Entoprocta, and numerical prevalence of large nematodes may result from the very low oxygen concentrations in bottom waters (< 4.4 µM). There is potential for macrofauna to remobilize DDX into the water column and ultimately the food web in the SPB.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical , Animals , California , Water Pollutants, Chemical/analysis , Geologic Sediments/chemistry , DDT/analysis , Invertebrates , Polychlorinated Biphenyls/analysis , Biodiversity , Polycyclic Aromatic Hydrocarbons/analysis , Industrial Waste/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...