Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.391
Filter
1.
Proc Natl Acad Sci U S A ; 121(33): e2403903121, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39116127

ABSTRACT

Connexin hemichannels were identified as the first members of the eukaryotic large-pore channel family that mediate permeation of both atomic ions and small molecules between the intracellular and extracellular environments. The conventional view is that their pore is a large passive conduit through which both ions and molecules diffuse in a similar manner. In stark contrast to this notion, we demonstrate that the permeation of ions and of molecules in connexin hemichannels can be uncoupled and differentially regulated. We find that human connexin mutations that produce pathologies and were previously thought to be loss-of-function mutations due to the lack of ionic currents are still capable of mediating the passive transport of molecules with kinetics close to those of wild-type channels. This molecular transport displays saturability in the micromolar range, selectivity, and competitive inhibition, properties that are tuned by specific interactions between the permeating molecules and the N-terminal domain that lies within the pore-a general feature of large-pore channels. We propose that connexin hemichannels and, likely, other large-pore channels, are hybrid channel/transporter-like proteins that might switch between these two modes to promote selective ion conduction or autocrine/paracrine molecular signaling in health and disease processes.


Subject(s)
Connexins , Humans , Connexins/metabolism , Connexins/genetics , Ion Transport , Animals , Mutation , Ions/metabolism , Gap Junctions/metabolism , Ion Channels/metabolism , Ion Channels/genetics
2.
J Gen Physiol ; 156(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38995224

ABSTRACT

The presence of impermeant molecules within a cell can lead to an increase in cell volume through the influx of water driven by osmosis. This phenomenon is known as the Donnan (or Gibbs-Donnan) effect. Animal cells actively transport ions to counteract the Donnan effect and regulate their volume, actively pumping Na+ out and K+ into their cytosol using the Na+/K+ ATPase (NKA) pump. The pump-leak equations (PLEs) are a system of algebraic-differential equations to model the membrane potential, ion (Na+, K+, and Cl-), and water flux across the cell membrane, which provide insight into how the combination of passive ions fluxes and active transport contribute to stabilizing cell volume. Our broad objective is to provide analytical insight into the PLEs through three lines of investigation: (1) we show that the provision of impermeant extracellular molecules can stabilize the volume of a passive cell; (2) we demonstrate that the mathematical form of the NKA pump is not as important as the stoichiometry for cell stabilization; and (3) we investigate the interaction between the NKA pump and cation-chloride co-transporters (CCCs) on cell stabilization, showing that NCC can destabilize a cell while NKCC and KCC can stabilize it. We incorporate extracellular impermeant molecules, NKA pump, and CCCs into the PLEs and derive the exact formula for the steady states in terms of all the parameters. This analytical expression enables us to easily explore the effect of each of the system parameters on the existence and stability of the steady states.


Subject(s)
Cell Size , Ion Transport , Models, Biological , Sodium-Potassium-Exchanging ATPase , Ion Transport/physiology , Osmolar Concentration , Animals , Sodium-Potassium-Exchanging ATPase/metabolism , Membrane Potentials/physiology , Sodium/metabolism
3.
J Colloid Interface Sci ; 674: 982-992, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38964002

ABSTRACT

HYPOTHESIS: We hypothesize that simultaneous incorporation of ion channel peptides (in this case, potassium channel as a model) and hydrophobic magnetite Fe3O4 nanoparticles (hFe3O4NPs) within lipidic hexagonal mesophases, and aligning them using an external magnetic field can significantly enhance ion transport through lipid membranes. EXPERIMENTS: In this study, we successfully characterized the incorporation of gramicidin membrane ion channels and hFe3O4NPs in the lipidic hexagonal structure using SAXS and cryo-TEM methods. Additionally, we thoroughly investigated the conductive characteristics of freestanding films of lipidic hexagonal mesophases, both with and without gramicidin potassium channels, utilizing a range of electrochemical techniques, including impedance spectroscopy, normal pulse voltammetry, and chronoamperometry. FINDINGS: Our research reveals a state-of-the-art breakthrough in enhancing ion transport in lyotropic liquid crystals as matrices for integral proteins and peptides. We demonstrate the remarkable efficacy of membranes composed of hexagonal lipid mesophases embedded with K+ transporting peptides. This enhancement is achieved through doping with hFe3O4NPs and exposure to a magnetic field. We investigate the intricate interplay between the conductive properties of the lipidic hexagonal structure, hFe3O4NPs, gramicidin incorporation, and the influence of Ca2+ on K+ channels. Furthermore, our study unveils a new direction in ion channel studies and biomimetic membrane investigations, presenting a versatile model for biomimetic membranes with unprecedented ion transport capabilities under an appropriately oriented magnetic field. These findings hold promise for advancing membrane technology and various biotechnological and biomedical applications of membrane proteins.


Subject(s)
Gramicidin , Ion Transport , Liquid Crystals , Magnetite Nanoparticles , Liquid Crystals/chemistry , Gramicidin/chemistry , Magnetite Nanoparticles/chemistry , Peptides/chemistry , Particle Size , Ion Channels/chemistry , Ion Channels/metabolism , Magnetic Iron Oxide Nanoparticles/chemistry
4.
Chem Commun (Camb) ; 60(63): 8244-8247, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39011590

ABSTRACT

A neuroelectrode can be easily prepared using a wet-spun fiber of D-sorbitol/PEDOT:PSS. At a D-sorbitol/PEDOT:PSS weight ratio of 6, the fiber is well-modulated with suitable characters, including the morphology, crystallization, diffusion resistance (179 kΩ), and electric double-layer capacitance (2.72 µF), for sensitive recording of brain activity during somatosensory stimulation and seizures. Additionally, the fiber is highly biocompatible with the brain. This study presents a simple and controllable strategy for the chemical construction of conducting polymer-based neurosensors.


Subject(s)
Brain , Sorbitol , Brain/physiology , Brain/metabolism , Animals , Sorbitol/chemistry , Ion Transport , Polystyrenes/chemistry , Thiophenes/chemistry , Electrophysiological Phenomena , Rats , Seizures , Mice , Polymers/chemistry
5.
Mol Biol Cell ; 35(9): ar119, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39024255

ABSTRACT

Hypertension affects one billion people worldwide and is the most common risk factor for cardiovascular disease, yet a comprehensive picture of its underlying genetic factors is incomplete. Amongst regulators of blood pressure is the renal outer medullary potassium (ROMK) channel. While select ROMK mutants are prone to premature degradation and lead to disease, heterozygous carriers of some of these same alleles are protected from hypertension. Therefore, we hypothesized that gain-of-function (GoF) ROMK variants which increase potassium flux may predispose people to hypertension. To begin to test this hypothesis, we employed genetic screens and a candidate-based approach to identify six GoF variants in yeast. Subsequent functional assays in higher cells revealed two variant classes. The first group exhibited greater stability in the endoplasmic reticulum, enhanced channel assembly, and/or increased protein at the cell surface. The second group of variants resided in the PIP2-binding pocket, and computational modeling coupled with patch-clamp studies demonstrated lower free energy for channel opening and slowed current rundown, consistent with an acquired PIP2-activated state. Together, these findings advance our understanding of ROMK structure-function, suggest the existence of hyperactive ROMK alleles in humans, and establish a system to facilitate the development of ROMK-targeted antihypertensives.


Subject(s)
Potassium Channels, Inwardly Rectifying , Humans , Potassium Channels, Inwardly Rectifying/metabolism , Potassium Channels, Inwardly Rectifying/genetics , Gain of Function Mutation , Potassium/metabolism , Hypertension/genetics , Hypertension/metabolism , Kidney/metabolism , Mutation/genetics , HEK293 Cells , Endoplasmic Reticulum/metabolism , Ion Transport , Alleles
6.
Environ Sci Technol ; 58(31): 13940-13949, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39048295

ABSTRACT

Toxic heavy metals are widely present in typical scenarios, such as mines and electroplating wastewater, presenting significant risks to biological and environmental safety. Membrane processes encounter a challenge in effectively intercepting heavy metals due to their small hydration radius. This research showcases the high efficiency of micelle-enhanced nanofiltration (MENF) in removing heavy metals. At the critical micelle concentration, sodium dodecyl sulfate demonstrated a high removal of Cu2+, Ni2+, Zn2+, and Cd2+ while maintaining substantial potential for complexation of heavy metals. The formation of micelles and the bonding of heavy metals with surfactants bolstered the resistance of heavy metal ions to transmembrane transport. The presence of heavy metals in ionic form in wastewater facilitated their complexation with surfactants or micelles. Notably, the valence state and concentration of interfering ions in the environment could slightly influence the removal of heavy metals by MENF. Additionally, MENF displayed remarkable antifouling properties. The loose gel layer created by surfactant molecules and the micelle enhanced the membrane permeability and reduced the scaling tendency of heavy metals. This study contributes to an improved understanding of the mechanisms involved in heavy metal rejection by using MENF.


Subject(s)
Filtration , Metals, Heavy , Micelles , Surface-Active Agents/chemistry , Water Pollutants, Chemical , Ion Transport , Wastewater/chemistry
7.
Chem Commun (Camb) ; 60(64): 8419-8422, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39028297

ABSTRACT

Light and pH dual-responsive ion transporters offer better applicability for cancer due to higher tunability and low cytotoxicity. Herein, we demonstrate the development of pH-responsive ß-carboline-based ionophores and photocleavable-linker appended ß-carboline-based proionophores to facilitate the controlled transport of Cl- across membranes, leading to apoptotic and autophagic cancer cell death.


Subject(s)
Carbolines , Light , Carbolines/chemistry , Carbolines/pharmacology , Humans , Hydrogen-Ion Concentration , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Ion Transport/drug effects , Cell Line, Tumor , Molecular Structure , Ionophores/chemistry , Ionophores/pharmacology , Drug Screening Assays, Antitumor
8.
Int J Biol Macromol ; 273(Pt 2): 133203, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38885860

ABSTRACT

This study investigates the performance of biopolymer electrolytes based on chitosan and dextran for energy storage applications. The optimization of ion transport and performance of electric double-layer capacitors EDCL using these electrolytes, incorporating different concentrations of glycerol as a plasticizer and TiO2 as nanoparticles, is explored. Impedance measurements indicate a notable reduction in charge transfer resistance with the addition of TiO2. DC conductivity estimates from AC spectra plateau regions reach up to 5.6 × 10-4 S/cm. The electric bulk resistance Rb obtained from the Nyquist plots exhibits a substantial decrease with increasing plasticizer concentration, further enhanced by the addition of the nanoparticles. Specifically, Rb decreases from ∼20 kΩ to 287 Ω when glycerol concentration increases from 10 % to 40 % and further drops to 30 Ω with the introduction of TiO2. Specific capacitance obtained from cyclic voltammetry shows a notable increase as the scan rate decreases, indicating improved efficiency and stability of ion transport. The TiO2-enriched EDCL achieves 12.3 F/g specific capacitance at 20 mV/s scan rate, with high ion conductivity and extended electrochemical stability. These results suggest the great potential of plasticizer and TiO2 with biopolymers in improving the performance of energy storage systems.


Subject(s)
Chitosan , Dextrans , Electrolytes , Ion Transport , Titanium , Titanium/chemistry , Chitosan/chemistry , Electrolytes/chemistry , Dextrans/chemistry , Electric Capacitance , Electric Conductivity , Plasticizers/chemistry
9.
Environ Sci Technol ; 58(25): 10969-10978, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38860863

ABSTRACT

Affordable thin-film composite (TFC) membranes are a potential alternative to more expensive ion exchange membranes in saltwater electrolyzers used for hydrogen gas production. We used a solution-friction transport model to study how the induced potential gradient controls ion transport across the polyamide (PA) active layer and support layers of TFC membranes during electrolysis. The set of parameters was simplified by assigning the same size-related partition and friction coefficients for all salt ions through the membrane active layer. The model was fit to experimental ion transport data from saltwater electrolysis with 600 mM electrolytes at a current density of 10 mA cm-2. When the electrolyte concentration and current density were increased, the transport of major charge carriers was successfully predicted by the model. Ion transport calculated using the model only minimally changed when the negative active layer charge density was varied from 0 to 600 mM, indicating active layer charge was not largely responsible for controlling ion crossover during electrolysis. Based on model simulations, a sharp pH gradient was predicted to occur within the supporting layer of the membrane. These results can help guide membrane design and operation conditions in water electrolyzers using TFC membranes.


Subject(s)
Electrolysis , Ion Transport , Membranes, Artificial , Water/chemistry
10.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928404

ABSTRACT

Phytochemicals and tryptophan (Trp) metabolites have been found to modulate gut function and health. However, whether these metabolites modulate gut ion transport and serotonin (5-HT) metabolism and signaling requires further investigation. The aim of this study was to investigate the effects of selected phytochemicals and Trp metabolites on the ion transport and 5-HT metabolism and signaling in the ileum of mice in vitro using the Ussing chamber technique. During the in vitro incubation, vanillylmandelic acid (VMA) reduced (p < 0.05) the short-circuit current, and 100 µM chlorogenic acid (CGA) (p = 0.12) and perillic acid (PA) (p = 0.14) had a tendency to reduce the short-circuit current of the ileum. Compared with the control, PA and N-acetylserotonin treatment upregulated the expression of tryptophan hydroxylase 1 (Tph1), while 100 µM cinnamic acid, indolelactic acid (ILA), and 10 µM CGA or indoleacetaldehyde (IAld) treatments downregulated (p < 0.05) the mRNA levels of Tph1. In addition, 10 µM IAld or 100 µM ILA upregulated (p < 0.05) the expression of monoamine oxidase A (Maoa). However, 10 µM CGA or 100 µM PA downregulated (p < 0.05) Maoa expression. All selected phytochemicals and Trp metabolites upregulated (p < 0.05) the expression of Htr4 and Htr7 compared to that of the control group. VMA and CGA reduced (p < 0.05) the ratios of Htr1a/Htr7 and Htr4/Htr7. These findings may help to elucidate the effects of phytochemicals and Trp metabolites on the regulation of gut ion transport and 5-HT signaling-related gut homeostasis in health and disease.


Subject(s)
Cinnamates , Ileum , Serotonin , Signal Transduction , Tryptophan , Animals , Serotonin/metabolism , Mice , Ileum/metabolism , Ileum/drug effects , Tryptophan/metabolism , Signal Transduction/drug effects , Cinnamates/pharmacology , Cinnamates/metabolism , Ion Transport/drug effects , Male , Tryptophan Hydroxylase/metabolism , Tryptophan Hydroxylase/genetics , Chlorogenic Acid/pharmacology , Chlorogenic Acid/metabolism
11.
Org Biomol Chem ; 22(24): 4987-4992, 2024 06 19.
Article in English | MEDLINE | ID: mdl-38832875

ABSTRACT

Few synthetic ion transporters have been reported incorporating indole as the core moiety. We have developed a novel bisindole-based transporter capable of efficient transmembrane anion antiport. This system induced cytotoxicity in MCF-7 breast cancer cells via chloride ion homeostasis disruption and the associated ROS generation, mitochondrial membrane depolarization, and lysosomal deacidification.


Subject(s)
Antineoplastic Agents , Indoles , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Indoles/pharmacology , Indoles/chemistry , Indoles/chemical synthesis , MCF-7 Cells , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects , Drug Screening Assays, Antitumor , Molecular Structure , Ion Transport/drug effects , Cell Proliferation/drug effects , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/chemical synthesis , Structure-Activity Relationship
12.
Neurochem Int ; 178: 105797, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38942118

ABSTRACT

K+ channels exist in all living systems. They allow a selective transition to the K+ ion, which enables the activity of various vital tissues such as muscle cells, neurons, and even bacteria and plants. Despite the mechanism variation in the gating process of K+ channels in different tissues, the selectivity for the K+ ion is preserved and the electrochemical cascade is maintained in these tissues. The electrochemical gradient of the K+ ion is very close to the diffusion rate of K+ ions in bulk water. On the molecular level, how does a K+ ion move across the ion conduction pathway? There are many molecular models that describe and answer this question, however, this is rarely described on the macro level. Here, a physical model can serve as a very good basis for enabling a deeper understanding of the K+ ion for ion transport. Classical physical energy and linear and angular momentum laws can provide a good explanation as to how and what happens to K+ ions when they pass through an ion conduction pathway. This model describes the passage of the ion even before it enters the ion conduction path until the last ion at the end exits. The simulation described here is fascinating and depicts the state of the ion at the farthest end released at almost the same speed as the first ion initially, while all the other ions remain almost at rest. How does this occur? What happens if we change the size or mass of the ion? In this work, I describe this principle and the related problems that could be studied.


Subject(s)
Potassium Channels , Potassium , Potassium/metabolism , Potassium Channels/metabolism , Potassium Channels/chemistry , Ion Channel Gating/physiology , Humans , Animals , Ion Transport/physiology
13.
Biochem Biophys Res Commun ; 718: 150078, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38735140

ABSTRACT

Among the environmental factors contributing to myopia, the role of correlated color temperature (CCT) of ambient light emerges as a key element warranting in-depth investigation. The choroid, a highly vascularized and dynamic structure, often undergoes thinning during the progression of myopia, though the precise mechanism remains elusive. The retinal pigment epithelium (RPE), the outermost layer of the retina, plays a pivotal role in regulating the transport of ion and fluid between the subretinal space and the choroid. A hypothesis suggests that variations in choroidal thickness (ChT) may be modulated by transepithelial fluid movement across the RPE. Our experimental results demonstrate that high CCT illumination significantly compromised the integrity of tight junctions in the RPE and disrupted chloride ion transport. This functional impairment of the RPE may lead to a reduction in fluid transfer across the RPE, consequently resulting in choroidal thinning and potentially accelerating axial elongation. Our findings provide support for the crucial role of the RPE in regulating ChT. Furthermore, we emphasize the potential hazards posed by high CCT artificial illumination on the RPE, the choroid, and refractive development, underscoring the importance of developing eye-friendly artificial light sources to aid in the prevention and control of myopia.


Subject(s)
Chlorides , Choroid , Ion Transport , Retinal Pigment Epithelium , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/radiation effects , Retinal Pigment Epithelium/pathology , Choroid/metabolism , Choroid/radiation effects , Choroid/pathology , Animals , Ion Transport/radiation effects , Chlorides/metabolism , Lighting/methods , Temperature , Color , Tight Junctions/metabolism , Myopia/metabolism , Myopia/pathology , Myopia/etiology
14.
Biophys J ; 123(12): 1751-1762, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38773769

ABSTRACT

The anion exchanger solute carrier family 26 (SLC26)A9, consisting of the transmembrane (TM) domain and the cytoplasmic STAS domain, plays an essential role in regulating chloride transport across cell membranes. Recent studies have indicated that C-terminal helices block the entrance of the putative ion transport pathway. However, the precise functions of the STAS domain and C-terminal helix, as well as the underlying molecular mechanisms governing the transport process, remain poorly understood. In this study, we performed molecular dynamics simulations of three distinct models of human SLC26A9, full-length, STAS domain removal (ΔSTAS), and C-terminus removal (ΔC), to investigate their conformational dynamics and ion-binding properties. Stable binding of ions to the binding sites was exclusively observed in the ΔC model in these simulations. Comparing the full-length and ΔC simulations, the ΔC model displayed enhanced motion of the STAS domain. Furthermore, comparing the ΔSTAS and ΔC simulations, the ΔSTAS simulation failed to exhibit stable ion bindings to the sites despite the absence of the C-terminus blocking the ion transmission pathway in both systems. These results suggest that the removal of the C-terminus not only unblocks the access of ions to the permeation pathway but also triggers STAS domain motion, gating the TM domain to promote ions' entry into their binding site. Further analysis revealed that the asymmetric motion of the STAS domain leads to the expansion of the ion permeation pathway within the TM domain, resulting in the stiffening of the flexible TM12 helix near the ion-binding site. This structural change in the TM12 helix stabilizes chloride ion binding, which is essential for SLC26A9's alternate-access mechanism. Overall, our study provides new insights into the molecular mechanisms of SLC26A9 transport and may pave the way for the development of novel treatments for diseases associated with dysregulated ion transport.


Subject(s)
Antiporters , Chlorides , Molecular Dynamics Simulation , Protein Domains , Sulfate Transporters , Sulfate Transporters/metabolism , Sulfate Transporters/chemistry , Sulfate Transporters/genetics , Humans , Chlorides/metabolism , Antiporters/chemistry , Antiporters/metabolism , Antiporters/genetics , Ion Transport , Binding Sites , Protein Binding
15.
Acta Biomater ; 181: 391-401, 2024 06.
Article in English | MEDLINE | ID: mdl-38704114

ABSTRACT

Potassium ion transport across myocardial cell membrane is essential for type 2 long QT syndrome (LQT2). However, the dysfunction of potassium ion transport due to genetic mutations limits the therapeutic effect in treating LQT2. Biomimetic ion channels that selectively and efficiently transport potassium ions across the cellular membranes are promising for the treatment of LQT2. To corroborate this, we synthesized a series of foldamer-based ion channels with different side chains, and found a biomimetic ion channel of K+ (BICK) with the highest transport activity among them. The selected BICK can restore potassium ion transport and increase transmembrane potassium ion current, thus shortening phase 3 of action potential (AP) repolarization and QT interval in LQT2. Moreover, BICK does not affect heart rate and cardiac rhythm in treating LQT2 model induced by E4031 in isolated heart as well as in guinea pigs. By restoring ion transmembrane transport tactic, biomimetic ion channels, such as BICK, will show great potential in treating diseases related to ion transport blockade. STATEMENT OF SIGNIFICANCE: Type 2 long QT syndrome (LQT2) is a disease caused by K+ transport disorder, which can cause malignant arrhythmia and even death. There is currently no radical cure, so it is critical to explore ways to improve K+ transmembrane transport. In this study, we report that a small-molecule biomimetic ion channel BICK can efficiently simulate natural K+ channel proteins on the cardiomyocyte and cure E4031-induced LQT2 in guinea pig by restoring K+ transport function for the first time. This study found that the potassium transmembrane transport by BICK significantly reduced the QT interval, which provides a conceptually new strategy for the treatment of LQT2 disease.


Subject(s)
Long QT Syndrome , Potassium , Long QT Syndrome/metabolism , Animals , Potassium/metabolism , Guinea Pigs , Humans , Action Potentials/drug effects , Ion Transport/drug effects , Male , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Potassium Channels/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Heart Rate/drug effects
16.
Phys Rev E ; 109(3-1): 034401, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38632795

ABSTRACT

The diffusive ion current is insufficient to explain the fast saltatory conduction observed in myelinated axons and in pain-sensing C fibers in the human nervous system, where the stimulus signal exhibits a velocity two orders of magnitude greater than the upper limit of ion diffusion velocity, even when the diffusion is accelerated by myelin, as in the discrete cable model including the Hodgkin-Huxley mechanism. The agreement with observations has been achieved in a wave-type model of stimulus signal kinetics via synchronized ion local density oscillations propagating as a wave in axons periodically corrugated by myelin segments in myelinated axons, or by periodically distributed rafts with clusters of Na^{+} channels in C fibers. The resulting so-called plasmon-polariton model for saltatory conduction reveals also the specific role of myelin, which is different from what was previously thought. This can be important for identifying a new target for the future treatment of demyelination diseases.


Subject(s)
Myelin Sheath , Neural Conduction , Humans , Neural Conduction/physiology , Myelin Sheath/physiology , Axons/metabolism , Ion Transport , Computer Simulation , Action Potentials/physiology
17.
Proc Natl Acad Sci U S A ; 121(16): e2320416121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38588428

ABSTRACT

Pores through ion channels rapidly transport small inorganic ions along their electrochemical gradients. Here, applying single-channel electrophysiology and mutagenesis to the archetypal muscle nicotinic acetylcholine receptor (AChR) channel, we show that a conserved pore-peripheral salt bridge partners with those in the other subunits to regulate ion transport. Disrupting the salt bridges in all five receptor subunits greatly decreases the amplitude of the unitary current and increases its fluctuations. However, disrupting individual salt bridges has unequal effects that depend on the structural status of the other salt bridges. The AChR ε- and δ-subunits are structurally unique in harboring a putative palmitoylation site near each salt bridge and bordering the lipid membrane. The effects of disrupting the palmitoylation sites mirror those of disrupting the salt bridges, but the effect of disrupting either of these structures depends on the structural status of the other. Thus, rapid ion transport through the AChR channel is maintained by functionally interdependent salt bridges linking the pore to the lipid membrane.


Subject(s)
Receptors, Cholinergic , Receptors, Nicotinic , Receptors, Nicotinic/genetics , Receptors, Nicotinic/chemistry , Muscles , Ion Transport , Lipids
18.
Eur J Med Chem ; 270: 116379, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38588625

ABSTRACT

TRPV6, a Ca2+-selective member of the transient receptor potential vanilloid (TRPV) family, plays a key role in extracellular calcium transport, calcium ion reuptake, and maintenance of a local low calcium environment. An increasing number of studies have shown that TRPV6 is involved in the regulation of various diseases. Notably, overexpression of TRPV6 is closely related to the occurrence of various cancers. Research confirmed that knocking down TRPV6 could effectively reduce the proliferation and invasiveness of tumors by mainly mediating the calcium signaling pathway. Hence, TRPV6 has become a promising new drug target for numerous tumor treatments. However, the development of TRPV6 inhibitors is still in the early stage, and the existing TRPV6 inhibitors have poor selectivity and off-target effects. In this review, we focus on summarizing and describing the structure characters, and mechanisms of existing TRPV6 inhibitors to provide new ideas and directions for the development of novel TRPV6 inhibitors.


Subject(s)
Calcium , Neoplasms , Humans , Calcium/metabolism , Biological Transport , Ion Transport , Neoplasms/drug therapy , TRPV Cation Channels/metabolism , Calcium Channels/metabolism
19.
Ecotoxicol Environ Saf ; 275: 116272, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38564870

ABSTRACT

This study investigated the influence of Cd (25 µM) on Zn accumulation in a hyperaccumulating (HE) and a non-hyperaccumulating (NHE) ecotype of Sedum alfredii Hance at short-term supply of replete (Zn5, 5 µM) and excess (Zn400, 400 µM) Zn. Cd inhibited Zn accumulation in both ecotypes, especially under Zn400, in organs with active metal sequestration, i.e. roots of NHE and shoots of HE. Direct biochemical Cd/Zn competition at the metal-protein interaction and changes in transporter gene expression contributed to the observed accumulation patterns in the roots. Specifically, in HE, Cd stimulated SaZIP4 and SaPCR2 under Zn5, but downregulated SaIRT1 and SaZIP4 under Zn400. However, Cd downregulated related transporter genes, except for SaNRAMP1, in NHE, irrespective of Zn. Cadmium stimulated casparian strip (CSs) development in NHE, as part of the defense response, while it had a subtle effect on the (CS) in HE. Moreover, Cd delayed the initiation of the suberin lamellae (SL) in HE, but stimulated SL deposition in NHE under both Zn5 or Zn400. Changes in suberization were mainly ascribed to suberin-biosynthesis-related genes and hormonal signaling. Altogether, Cd regulated Zn accumulation mainly via symplasmic and transmembrane transport in HE, while Cd inhibited both symplasmic and apoplasmic Zn transport in NHE.


Subject(s)
Sedum , Soil Pollutants , Zinc/metabolism , Cadmium/metabolism , Sedum/metabolism , Biological Transport , Ion Transport , Plant Roots/metabolism , Soil Pollutants/analysis
20.
Biochem Soc Trans ; 52(2): 671-679, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38630434

ABSTRACT

Inorganic polyphosphate (polyP) is widely recognized for playing important roles and processes involved in energy and phosphate storage, regulation of gene expression, and calcium signaling. The less well-known role of polyP is as a direct mediator of ion transport across biological membranes. Here, we will briefly summarize current knowledge of the molecular mechanisms of how polyP can be involved in membrane ion transport. We discuss three types of mechanisms that might involve polyP: (1) formation of non-protein channel complex that includes calcium, polyP, and polyhydroxybutyrate (PHB); (2) modulation of the channel activity of PHBlated protein channels; and (3) direct effects of polyP on the function of the voltage-gated ion channels in the process that do not involve PHB.


Subject(s)
Ion Transport , Polyphosphates , Polyphosphates/metabolism , Humans , Cell Membrane/metabolism , Prohibitins , Animals , Calcium/metabolism , Hydroxybutyrates/metabolism , Ion Channels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL