Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 569
Filter
1.
Compr Rev Food Sci Food Saf ; 23(4): e13400, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39030813

ABSTRACT

During food production, food processing, and supply chain, large amounts of food byproducts are generated and thrown away as waste, which to a great extent brings about adverse consequences on the environment and economic development. The sweet potato (Ipomoea batatas L.) is cultivated and consumed in many countries. Sweet potato peels (SPPs) are the main byproducts generated by the tuber processing. These residues contain abundant nutrition elements, bioactive compounds, and other high value-added substances; therefore, the reutilization of SPP holds significance in improving their overall added value. SPPs contain abundant phenolic compounds and carotenoids, which might contribute significantly to their nutraceutical properties, including antioxidant, antimicrobial, anticancer, prebiotic, anti-inflammatory, wound-healing, and lipid-lowering effects. It has been demonstrated that SPP could be promisingly revalorized into food industry, including: (1) applications in diverse food products; (2) applications in food packaging; and (3) applications in the recovery of pectin and cellulose nanocrystals. Furthermore, SPP could be used as promising feedstocks for the bioconversion of diverse value-added bioproducts through biological processing.


Subject(s)
Dietary Supplements , Ipomoea batatas , Nutritive Value , Phytochemicals , Ipomoea batatas/chemistry , Dietary Supplements/analysis , Phytochemicals/chemistry , Phytochemicals/analysis , Food Handling/methods , Plant Tubers/chemistry
2.
Sci Rep ; 14(1): 16598, 2024 07 18.
Article in English | MEDLINE | ID: mdl-39025914

ABSTRACT

Poultry manure (PM) has demonstrated its potential to enhance crop nutritional quality. Nevertheless, there remains a dearth of knowledge regarding its synergistic effects when combined with wood biochar (B) on the nutrient concentrations in sweet potato leaves (Ipomoea batatas L.) and the mineral content stored in sweet potato storage roots. Hence, a two-year field trial was undertaken during the 2019 and 2020 cropping seasons in southwestern Nigeria, spanning two locations (Owo-site A and Obasooto-site B), to jointly apply poultry manure and wood biochar as soil amendments aimed at enhancing the nutritional quality of sweet potato crop. Each year, the experiment involved different combinations of poultry manure at rates of 0, 5.0, and 10.0 t ha-1 and biochar at rates of 0, 10.0, 20.0, and 30.0 t ha-1, organized in a 3 × 4 factorial layout. The results of the present study demonstrated that the individual application of poultry manure (PM), biochar (B), or their combination had a significant positive impact on the nutrient composition of sweet potato leaves and minerals stored in the sweet potato storage roots, with notable synergistic effects between poultry manure and biochar (PM × B) in enhancing these parameters. This highlights the potential of biochar to enhance the efficiency of poultry manure utilization and improve nutrient utilization from poultry manure. The highest application rate of poultry manure at 10.0 t ha-1 and biochar at 30.0 t ha-1 (PM10 + B30), resulted in the highest leaf nutrient concentrations and mineral composition compared to other treatments at both sites. Averaged over two years, the highest application rate of poultry manure at 10.0 t ha-1 and biochar at 30.0 t ha-1 (PM10 + B30) significantly increased sweet potato leaf nutrient concentrations: nitrogen by 88.2%, phosphorus by 416.7%, potassium by 123.8%, calcium by 927.3%, and magnesium by 333.3%, compared to those in the control (PM0 + B0). The same treatment increased the concentration of sweet potato root storage minerals: phosphorus by 152.5%, potassium by 77.4%, calcium by 205.5%, magnesium by 294.6%, iron by 268.4%, zinc by 228.6%, and sodium by 433.3%, compared to the control. The highest application rate of poultry manure at 10.0 t ha-1 and biochar at 30.0 t ha-1 yielded the highest economic profitability in terms of gross margin (44,034 US$ ha-1), net return (30,038 US$ ha-1) and return rate or value-to-cost ratio (VCR) (263). The results suggested that the application of poultry manure at 10 t ha-1 and biochar at 30 t ha-1 is economically profitable in the study areas and under similar agroecological zones and soil conditions.


Subject(s)
Charcoal , Ipomoea batatas , Manure , Minerals , Plant Leaves , Plant Roots , Poultry , Ipomoea batatas/metabolism , Ipomoea batatas/chemistry , Manure/analysis , Charcoal/chemistry , Animals , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Roots/chemistry , Plant Roots/metabolism , Minerals/analysis , Minerals/chemistry , Fertilizers/analysis , Soil/chemistry , Nutrients/analysis , Phosphorus/analysis , Nigeria
3.
Int J Biol Macromol ; 273(Pt 1): 133041, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38857720

ABSTRACT

The effects of soluble dietary fiber (SDF) from pomegranate peel obtained through enzyme (E-SDF) and alkali (A-SDF) extractions on the structural, physicochemical properties, and in vitro digestibility of sweet potato starch (SPS) were investigated. The expansion degree of SPS granules, pasting viscosity, gel strength and hardness were decreased after adding E-SDF. The setback was accelerated in the presence of A-SDF but E-SDF delayed this effect during the cooling of the starch paste. However, the addition of A-SDF significantly reduced the breakdown of SPS and improved the freeze-thaw stability of starch gels, even at low concentrations (0.1 %), while E-SDF showed the opposite result. The structural characterization of SDF-SPS mixtures showed that A-SDF can help SPS form an enhanced microstructure compared with E-SDF, while polar groups such as hydroxyl group in E-SDF may bind to leached amylose through hydrogen bonding, leading to a decrease in SPS viscoelasticity. In addition, the results of in vitro digestion analysis indicated that A-SDF and E-SDF could decreased the digestibility of SPS and increased the content of resistant starch, especially when 0.5 % E-SDF was added. This study provides a new perspective on the application of SDF from pomegranate peel in improving starch-based foods processing and nutritional characteristics.


Subject(s)
Dietary Fiber , Ipomoea batatas , Pomegranate , Solubility , Starch , Ipomoea batatas/chemistry , Pomegranate/chemistry , Starch/chemistry , Starch/metabolism , Viscosity , Chemical Phenomena , Digestion
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124406, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38759574

ABSTRACT

It has been established that near infrared (NIR) spectroscopy has the potential of estimating sensory traits given the direct spectral responses that these properties have in the NIR region. In sweetpotato, sensory and texture traits are key for improving acceptability of the crop for food security and nutrition. Studies have statistically modelled the levels of NIR spectroscopy sensory characteristics using partial least squares (PLS) regression methods. To improve prediction accuracy, there are many advanced techniques, which could enhance modelling of fresh (wet and un-processed) samples or nonlinear dependence relationships. Performance of different quantitative prediction models for sensory traits developed using different machine learning methods were compared. Overall, results show that linear methods; linear support vector machine (L-SVM), principal component regression (PCR) and PLS exhibited higher mean R2 values than other statistical methods. For all the 27 sensory traits, calibration models using L-SVM and PCR has slightly higher overall R2 (x¯ = 0.33) compared to PLS (x¯ = 0.32) and radial-based SVM (NL-SVM; x¯= 0.30). The levels of orange color intensity were the best predicted by all the calibration models (R2 = 0.87 - 0.89). The elastic net linear regression (ENR) and tree-based methods; extreme gradient boost (XGBoost) and random forest (RF) performed worse than would be expected but could possibly be improved with increased sample size. Lower average R2 values were observed for calibration models of ENR (x¯ = 0.26), XGBoost (x¯ = 0.26) and RF (x¯ = 0.22). The overall RMSE in calibration models was lower in PCR models (X = 0.82) compared to L-SVM (x¯ = 0.86) and PLS (x¯ = 0.90). ENR, XGBoost and RF also had higher RMSE (x¯ = 0.90 - 0.92). Effective wavelengths selection using the interval partial least-squares regression (iPLS), improved the performance of the models but did not perform as good as the PLS. SNV pre-treatment was useful in improving model performance.


Subject(s)
Food Analysis , Ipomoea batatas , Machine Learning , Spectroscopy, Near-Infrared , Ipomoea batatas/chemistry , Sensation , Food Quality , Food Analysis/instrumentation , Food Analysis/methods , Models, Statistical , Algorithms , Humans , Plant Breeding/methods
5.
Food Chem ; 454: 139794, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38797094

ABSTRACT

Sweet potatoes are rich in cardioprotective phytochemicals with potential anti-platelet aggregation activity, although this benefit may vary among cultivars/genotypes. The phenolic profile [HPLC-ESI(-)-qTOF-MS2], cheminformatics (ADMET properties, affinity toward platelet proteins) and anti-PA activity of phenolic-rich hydroalcoholic extracts obtained from orange (OSP) and purple (PSP) sweet potato storage roots, was evaluated. The phenolic richness [Hydroxycinnamic acids> flavonoids> benzoic acids] was PSP > OSP. Their main chlorogenic acids could interact with platelet proteins (integrins/adhesins, kinases/metalloenzymes) but their bioavailability could be poor. Just OSP exhibited a dose-dependent anti-platelet aggregation activity [inductor (IC50, mg.ml-1): thrombin receptor activator peptide-6 (0.55) > Adenosine-5'-diphosphate (1.02) > collagen (1.56)] and reduced P-selectin expression (0.75-1.0 mg.ml-1) but not glycoprotein IIb/IIIa secretion. The explored anti-PA activity of OSP/PSP seems to be inversely related to their phenolic richness. The poor first-pass bioavailability of its chlorogenic acids (documented in silico) may represent a further obstacle for their anti-PA in vivo.


Subject(s)
Ipomoea batatas , Phenols , Plant Extracts , Plant Roots , Platelet Aggregation Inhibitors , Platelet Aggregation , Ipomoea batatas/chemistry , Phenols/chemistry , Platelet Aggregation/drug effects , Plant Extracts/chemistry , Plant Extracts/pharmacology , Platelet Aggregation Inhibitors/chemistry , Platelet Aggregation Inhibitors/pharmacology , Plant Roots/chemistry , Humans , Cheminformatics , Animals , Blood Platelets/metabolism , Blood Platelets/drug effects
6.
Molecules ; 29(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38792175

ABSTRACT

Anthocyanin-rich steamed purple sweet potato (SPSP) is a suitable raw material to produce smart packaging films. However, the application of SPSP-based films is restricted by the low antimicrobial activity of anthocyanins. In this study, SPSP-based smart packaging films were produced by adding mandarin essential oil (MEO) as an antimicrobial agent. The impact of MEO content (3%, 6%, and 9%) on the structures, properties, and application of SPSP-based films was measured. The results showed that MEO created several pores within films and reduced the hydrogen bonding system and crystallinity of films. The dark purple color of the SPSP films was almost unchanged by MEO. MEO significantly decreased the light transmittance, water vapor permeability, and tensile strength of the films, but remarkably increased the oxygen permeability, thermal stability, and antioxidant and antimicrobial properties of the films. The SPSP-MEO films showed intuitive color changes at different acid-base conditions. The purple-colored SPSP-MEO films turned blue when chilled shrimp and pork were not fresh. The MEO content greatly influenced the structures, physical properties, and antioxidant and antimicrobial activities of the films. However, the MEO content had no impact on the color change ability of the films. The results suggested that SPSP-MEO films have potential in the smart packaging of protein-rich foods.


Subject(s)
Food Packaging , Ipomoea batatas , Oils, Volatile , Permeability , Ipomoea batatas/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Food Packaging/methods , Antioxidants/chemistry , Antioxidants/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Steam , Tensile Strength , Anthocyanins/chemistry , Anthocyanins/pharmacology , Color
7.
J Food Sci ; 89(6): 3248-3259, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38709869

ABSTRACT

To enhance the value proposition of sweet potato and oat while broadening their applicability in further processing, this study systematically investigated the impact of oat flour incorporation ratios (5%-25% of sweet potato dry weight) on the quality attributes of sweet potato-oat composite dough and its resulting steamed cake products. The results showed that the addition of oat flour could promote the rheological, water retention, and thermomechanical properties of the composite dough and improve the internal microstructure, specific volume, texture, and other processing properties of the steamed cake products. The rheology, water retention, and protein stability of the dough were maximized when the proportion of oat flour was 25%. The textural properties of steamed cakes, hardness, elasticity, cohesion, adhesion, chewiness, and recovery significantly increased (p < 0.05) and viscosity significantly decreased (p < 0.05) with the addition of oat flour. It is noteworthy that thermodynamic properties, internal structure of the dough, and air holding capacity, which are critical for processing, showed the best results at 20% oat flour addition. Therefore, the addition of 20%-25% oats is recommended to produce composite doughs with optimal quality and processing characteristics. PRACTICAL APPLICATION: As living standards improve, traditional cereals may no longer able to meet people's health needs. Therefore, there is an urgent consumer demand for nutritious, tasty alternatives to staple foods. In this study, oat flour and sweet potato mash were mixed to make sweet potato-oat cake, and the effect of ingredient ratio on the performance and quality of composite dough containing sweet potato-oat flour was analyzed, thus proposing an innovative approach to the research, development, and industrial production of sweet potato and oat food products.


Subject(s)
Avena , Flour , Food Handling , Ipomoea batatas , Rheology , Ipomoea batatas/chemistry , Avena/chemistry , Flour/analysis , Food Handling/methods , Viscosity , Water , Steam , Bread/analysis , Cooking/methods
8.
Food Funct ; 15(12): 6408-6423, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38726829

ABSTRACT

The study aimed to investigate the alleviation of an ethanol-induced gastric ulcer in mice by apolysaccharide (PSP) from purple sweet potato (Ipomoea batatas (L.) Lam) and explore the mechanism. The anti-ulcer activity was determined by histopathological evaluation, total gastric acidity, pepsin activity, gastric ulcer index and gastric ulcer inhibition rate. The expression levels of inflammatory factors were detected using ELISA. A special protein meter was used to detect the content of immunoglobulin lgM, immunoglobulin lgG, and complements C3 and C4 in the serum of mice. The expression of CD4+/CD8+ lymphocyte subsets of mice was detected using flow cytometry. Western blot analysis was used to examine the effect of PSP on the PI3K/Akt/Rheb/mTOR pathway. The results showed that PSP could effectively reduce the total gastric acidity, pepsin activity, and the index and inhibition rate of gastric ulcers. At the same time, PSP could significantly increase the levels of immunoglobulins (lgG and lgM) and complements (C3 and C4). It could also increase the activity of peritoneal macrophages in mice and the expression of CD4+/CD8+ in the spleen. ELISA analysis showed that the contents of TNF-α, IL-1ß and IL-6 were significantly decreased and the content of IL-10 was significantly increased in the PSP group. The western blot analysis showed that PSP could upregulate the relative protein expressions of MUC5AC, PI3K, p-Akt, Rheb and mTOR. These results indicate that PSP can activate the PI3K/Akt/Rheb/mTOR signaling pathway to improve the immunity of mice and maintain the balance of the immune system, thereby protecting the gastric mucosa and improving stress gastric ulcers.


Subject(s)
Ipomoea batatas , Polysaccharides , Signal Transduction , Stomach Ulcer , Animals , Humans , Male , Mice , Anti-Ulcer Agents/pharmacology , Ethanol , Ipomoea batatas/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Plant Extracts/pharmacology , Polysaccharides/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Stomach Ulcer/drug therapy , Stomach Ulcer/chemically induced , Stomach Ulcer/immunology , TOR Serine-Threonine Kinases/metabolism
9.
Phytomedicine ; 129: 155652, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38663118

ABSTRACT

BACKGROUND: Autoimmune hepatitis (AIH) is a prevalent liver disease that can potentially lead to hepatic fibrosis and cirrhosis. The prolonged administration of immunosuppressive medications carries significant risks for patients. Purple sweet potato polysaccharide (PSPP), a macromolecule stored in root tubers, exhibits anti-inflammatory, antioxidant, immune-enhancing, and intestinal flora-regulating properties. Nevertheless, investigation into the role and potential mechanisms of PSPP in AIH remains notably scarce. PURPOSE: Our aim was to explore the possible protective impacts of PSPP against concanavalin A (Con A)-induced liver injury in mice. METHODS: Polysaccharide was isolated from purple sweet potato tubers using water extraction and alcohol precipitation, followed by purification through DEAE-52 cellulose column chromatography and Sephadex G-100 column chromatography. A highly purified component was obtained, and its monosaccharide composition was characterized by high performance liquid chromatography (HPLC). Mouse and cellular models induced by Con A were set up to investigate the impacts of PSPP on hepatic histopathology, apoptosis, as well as inflammation- and oxidative stress-related proteins in response to PSPP treatment. RESULTS: The administration of PSPP significantly reduced hepatic pathological damage, suppressed elevation of ALT and AST levels, and attenuated hepatic apoptosis in Con A-exposed mice. PSPP was found to mitigate Con A-induced inflammation by suppressing the TLR4-P2X7R/NLRP3 signaling pathway in mice. Furthermore, PSPP alleviated Con A-induced oxidative stress by activating the PI3K/AKT/mTOR signaling pathway in mice. Additionally, PSPP demonstrated the ability to reduce inflammation and oxidative stress in RAW264.7 cells induced by Con A in vitro. CONCLUSION: PSPP has the potential to ameliorate hepatic inflammation via the TLR4-P2X7R/NLRP3 pathway and inhibit hepatic oxidative stress through the PI3K/AKT/mTOR pathway during the progression of Con A-induced hepatic injury. The results of this study have unveiled the potential hepatoprotective properties of purple sweet potato and its medicinal value for humans. Moreover, this study serves as a valuable reference, highlighting the potential of PSPP-1 as a drug candidate for the treatment of immune liver injury.


Subject(s)
Concanavalin A , Ipomoea batatas , Oxidative Stress , Polysaccharides , Animals , Oxidative Stress/drug effects , Ipomoea batatas/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Mice , Male , Chemical and Drug Induced Liver Injury/drug therapy , Liver/drug effects , RAW 264.7 Cells , Hepatitis, Autoimmune/drug therapy , Toll-Like Receptor 4/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Apoptosis/drug effects , Inflammation/drug therapy , Signal Transduction/drug effects , Anti-Inflammatory Agents/pharmacology , TOR Serine-Threonine Kinases/metabolism , Antioxidants/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Plant Tubers/chemistry , Proto-Oncogene Proteins c-akt/metabolism
10.
J Sci Food Agric ; 104(11): 7002-7012, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38619447

ABSTRACT

BACKGROUND: Understanding the relationship between perceived sensory attributes and measurable instrumental properties is crucial for replicating the distinct textures of meat in plant-based meat analogs. In this study, plant-based patties composed of textured vegetable protein (TVP) and 10%, 20% and 30% TVPs were substituted with fibers from sweet potato stem (SPS), and their instrumental texture and sensory properties were evaluated. RESULTS: Samples with 20% SPS showed hardness, cohesiveness and chewiness, which are the mechanical indicators most similar to those of meat. A descriptive sensory analysis by ten trained participants indicated that the SPS-supplemented meat analog patties exhibited characteristics similar to pork patties in terms of firmness, toughness, cohesiveness and smoothness compared to the TVP-only sample. A strong positive correlation between instrumental hardness and sensory firmness was observed (P < 0.01); however, cohesiveness, springiness and chewiness did not show any correlation between instrumental and sensory analyses. Warner-Bratzler shear force (WBSF) values showed positive correlations with sensory cohesiveness, chewiness, toughness, fibrousness, moistness, firmness and springiness (P < 0.05). CONCLUSION: The results demonstrated the feasibility of physically treated fibers from SPS as a partial substitute for TVP in developing meat analogs. Additionally, this study suggested that instrumental hardness and WBSF measurements can be sound parameters for representing sensory texture characteristics while further developing plant-based meat analogs. © 2024 Society of Chemical Industry.


Subject(s)
Ipomoea batatas , Plant Stems , Taste , Ipomoea batatas/chemistry , Humans , Animals , Swine , Plant Stems/chemistry , Meat Products/analysis , Hardness , Male , Meat Substitutes
11.
Food Chem ; 449: 139222, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38583398

ABSTRACT

Nine varieties of purple sweet potato were steamed and used for the production of shrimp freshness indicators. The impact of purple sweet potato's variety on the structure, physical property and halochromic ability of indicators was determined. Results showed different varieties of purple sweet potato had different starch, crude fiber, pectin, protein, fat and total anthocyanin contents. The microstructure, crystallinity, moisture content, water vapor permeability, tensile strength and elongation at break of indicators were affected by crude fiber content in purple sweet potato. The color, transmission and halochromic ability of indicators was associated with the total anthocyanin content in purple sweet potato. Freshness indicators produced from Fuzi No. 1, Ganzi No. 6, Ningzi No. 2, Ningzi No. 4, Qining No. 2 and Qining No. 18 of purple sweet potato were suitable to indicate shrimp freshness. This study provides useful information on screening suitable varieties of purple sweet potato for intelligent packaging.


Subject(s)
Ipomoea batatas , Ipomoea batatas/chemistry , Animals , Food Packaging , Anthocyanins/analysis , Anthocyanins/chemistry , Starch/chemistry , Starch/analysis , Color
12.
J Sci Food Agric ; 104(9): 5207-5218, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38314862

ABSTRACT

BACKGROUND: Seasonal late-season water deficits negatively affect the yield and quality of sweet potatoes in northern China. However, the amount of late-season irrigation to achieve high yield and consistent quality storage root remains undetermined. We assessed the yield and some qualitative traits of sweet potatoes such as size, shape, skin/flesh colour and nutritional content, as influenced by five irrigation levels (T0: unirrigated control; T1: 33% ETc; T2: 75% ETc; T3: 100% ETc; and T4: 125% ETc). RESULTS: Late-season irrigation significantly increased yield and marketable yield. Yields for T2 and T3 were significantly higher than other treatments, whereas T2 had the highest Grade A rating in a 2-year test. The vertical length of storage roots gradually increased with an increase in irrigation level, whereas the maximum width remained unchanged. The proportion of long elliptic and elliptic storage roots also increased, whereas the proportion of ovate, obovate and round storage roots gradually decreased. The skin and flesh colours became more vivid as the level of irrigation increased, with the skin colour becoming redder and the flesh colour becoming more orange-yellow. The levels of carotenoids, vitamin C and soluble sugar were significantly higher in irrigated crops, with the highest vitamin C and soluble sugar levels in T2 and the highest carotenoid levels in T3 treatment. CONCLUSION: Taken together, these results demonstrate the potential of moderate irrigation in the late-season to improve both yield production and quality potential. The results are of great importance for improving the market value of sweet potatoes and increasing grower profits. © 2024 Society of Chemical Industry.


Subject(s)
Agricultural Irrigation , Ipomoea batatas , Seasons , Ipomoea batatas/growth & development , Ipomoea batatas/chemistry , Ipomoea batatas/metabolism , Agricultural Irrigation/methods , China , Plant Tubers/chemistry , Plant Tubers/growth & development , Plant Tubers/metabolism , Water/analysis , Water/metabolism , Carotenoids/analysis , Carotenoids/metabolism , Ascorbic Acid/analysis , Ascorbic Acid/metabolism , Nutritive Value , Plant Roots/growth & development , Plant Roots/chemistry , Plant Roots/metabolism , Crop Production/methods , Color
13.
Int J Biol Macromol ; 263(Pt 1): 130236, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367786

ABSTRACT

The effects of microwave combined with L-malic acid treatment on the degree of substitution (DS), structure, physicochemical properties, and digestibility of sweet potato starch (A-type), potato starch (B-type), and pea starch (C-type) were evaluated. The order of DS obtained was: DSM-POS > DSM-SPS > DSM-PES. Fourier transform-infrared spectroscopy (FT-IR) showed that the obtained modified starch produced a new absorption band at 1735 cm-1. Scanning electron microscopy (SEM) and polarized light microscopy indicated that different types of native starches exhibited different granular morphologies and appeared to have different degrees of damage, but still had polarized crosses after modification. Sweet potato starch had the smallest particle size, while potato starch had the largest. X-ray diffractometry (XRD) showed that the modified starches still retained the same crystal structure as the native starches, but the relative crystallinity decreased. The apparent viscosity and swelling power of modified starches dropped, but their water/oil holding capacity, amylose content, and resistant starch content all increased. The results demonstrate that the degree of influence on the structure, physicochemical properties, and digestibility of different starches varies under the same modification conditions.


Subject(s)
Ipomoea batatas , Malates , Starch , Starch/chemistry , Microwaves , Esters , Spectroscopy, Fourier Transform Infrared , Amylose/chemistry , Ipomoea batatas/chemistry , X-Ray Diffraction
14.
Nutrients ; 16(4)2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38398887

ABSTRACT

Sweet potato is a crop that is widely consumed all over the world and is thought to contribute to health maintenance due to its abundant nutrients and phytochemicals. Previous studies on the functionality of sweet potatoes have focused on varieties that have colored pulp, such as purple and orange, which contain high levels of specific phytochemicals. Therefore, in the present study, we evaluated the anti-inflammatory effects of light-yellow-fleshed sweet potatoes, which have received little attention. After freeze-drying sweet potatoes harvested in 2020, extracts were prepared from the leaves, stems, roots, and tubers in 100% ethanol. Mouse macrophage-like cell line RAW264.7 cells were cultured with 10 µg/mL of the extracts and induced lipopolysaccharide (LPS)-stimulated inflammation. Of the extracts, the tuber extracts showed the highest suppression of LPS-induced interleukin-6 (IL-6) gene expression and production in RAW264.7, which was attributed to the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) oxidative stress response pathway. In addition, preparative high-performance liquid chromatography (HPLC) experiments suggested that hydrophobic components specific to the tuber were the main body of activity. In previous studies, it has been shown that the tubers and leaves of sweet potatoes with colored pulp exhibit anti-inflammatory effects due to their rich phytochemicals, and our results show that the tubers with light-yellow pulp also exhibit the effects. Furthermore, we were able to show a part of the mechanism, which may contribute to the fundamental understanding of the treatment and prevention of inflammation by food-derived components.


Subject(s)
Ipomoea batatas , Animals , Mice , Ipomoea batatas/chemistry , Lipopolysaccharides/metabolism , NF-E2-Related Factor 2/metabolism , Inflammation/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism
15.
Molecules ; 29(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38338351

ABSTRACT

Sweet potato provides rich nutrients and bioactive substances for the human diet. In this study, the volatile organic compounds of five pigmented-fleshed sweet potato cultivars were determined, the characteristic aroma compounds were screened, and a correlation analysis was carried out with the aroma precursors. In total, 66 volatile organic compounds were identified. Terpenoids and aldehydes were the main volatile compounds, accounting for 59% and 17%, respectively. Fifteen compounds, including seven aldehydes, six terpenes, one furan, and phenol, were identified as key aromatic compounds for sweet potato using relative odor activity values (ROAVs) and contributed to flower, sweet, and fat flavors. The OR sample exhibited a significant presence of trans-ß-Ionone, while the Y sample showed high levels of benzaldehyde. Starch, soluble sugars, 20 amino acids, and 25 fatty acids were detected as volatile compounds precursors. Among them, total starch (57.2%), phenylalanine (126.82 ± 0.02 g/g), and fatty acids (6.45 µg/mg) were all most abundant in Y, and LY contained the most soluble sugar (14.65%). The results of the correlation analysis revealed the significant correlations were identified between seven carotenoids and trans-ß-Ionone, soluble sugar and nerol, two fatty acids and hexanal, phenylalanine and 10 fatty acids with benzaldehyde, respectively. In general, terpenoids and aldehydes were identified as the main key aromatic compounds in sweet potatoes, and carotenoids had more influence on the aroma of OR than other cultivars. Soluble sugars, amino acids, and fatty acids probably serve as important precursors for some key aroma compounds in sweet potatoes. These findings provide valuable insights for the formation of sweet potato aroma.


Subject(s)
Ipomoea batatas , Norisoprenoids , Solanum tuberosum , Volatile Organic Compounds , Humans , Volatile Organic Compounds/analysis , Benzaldehydes , Ipomoea batatas/chemistry , Carotenoids , Odorants/analysis , Terpenes , Aldehydes/analysis , Sugars , Fatty Acids , Phenylalanine , Starch
16.
J Sci Food Agric ; 104(9): 5064-5076, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38284773

ABSTRACT

BACKGROUND: Pickering emulsions stabilized by multicomponent particles have attracted increasing attention. Research on characterizing the digestion and health benefit effects of these emulsions in the human gastrointestinal tract are quite limited. This work aims to reveal the digestive characteristics of media-milled purple sweet potato particle-stabilized Pickering emulsions (PSPP-Es) during in vitro digestion and colonic fermentation. RESULTS: The media-milling process improved the in vitro digestibility and fermentability of PSPP-Es by reaching afree fatty acids release rate of 43.11 ± 4.61% after gastrointestinal digestion and total phenolic content release of 101.00 ± 1.44 µg gallic acid equivalents/mL after fermentation. In addition, PSPP-Es exhibited good antioxidative activity (2,2-diphenyl-1-picrylhydrazyl and ferric reducing antioxidant power assays), α-glucosidase inhibitory activity (half-maximal inhibitory concentration: 6.70%, v/v), and prebiotic effects, reaching a total short-chain fatty acids production of 9.90 ± 0.12 mol L-1, boosting the growth of Akkermansia, Bifidobacterium, and Blautia and inhibiting the growth of Escherichia-Shigella. CONCLUSIONS: These findings indicate that the media-milling process enhances the potential health benefits of purple sweet potato particle-stabilized Pickering emulsions, which is beneficial for their application as a bioactive component delivery system in food and pharmaceutical products. © 2024 Society of Chemical Industry.


Subject(s)
Digestion , Emulsions , Fermentation , Ipomoea batatas , Ipomoea batatas/chemistry , Ipomoea batatas/metabolism , Emulsions/chemistry , Emulsions/metabolism , Humans , Colon/metabolism , Colon/microbiology , Bacteria/metabolism , Bacteria/growth & development , Gastrointestinal Microbiome , Prebiotics/analysis , Particle Size , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/chemistry , Antioxidants/chemistry , Antioxidants/metabolism , Fatty Acids/metabolism , Fatty Acids/chemistry , Food Handling/methods , Models, Biological
17.
Trop Anim Health Prod ; 55(6): 428, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38044408

ABSTRACT

Antioxidants are considered functional additives against oxidative stress since they avoid nutritional decline in the meat. The main objective of the present study is to evaluate the effect of sweet potato flour (SPF) as a natural antioxidant on carcass yield and physicochemical characteristics of Creole chickens of Mexico (CChM) and Cobb 500 broilers. In total, 210 chickens (105 CChM and 105 Cobb 500 chickens) were randomly assigned to three treatments: 0, 500, and 1000 mg of SPF kg-1 of feed. The Cobb 500 chickens showed higher carcass yield (hot and cold), breast, and breast fillet, whereas the CChM had higher thigh yield (P ≤ 0.05). The yield on the previously mentioned variables was not affected by the inclusion levels of SPF. The initial pH differed because of the effect of the chicken's genotype and the addition of SPF, which was higher on Cobb 500 chicken and on those that were not supplemented with SPF. The birds' skin that consumed SPF presented higher yellowness after 24 h (P ≤ 0.05). CChM manifested a higher dry matter and protein content and a lower content of ash and fat (P ≤ 0.05). In conclusion, Cobb 500 chickens present a higher carcass yield and its components, in addition to a less acid pH; however, CChM offer a higher nutritional contribution, whereas the 500 and 1000 mg addition of SPF increases the skin yellowness, which makes it an alterorganic as a pigment on broiler chicken production.


Subject(s)
Antioxidants , Ipomoea batatas , Animals , Antioxidants/metabolism , Chickens/metabolism , Diet/veterinary , Ipomoea batatas/chemistry , Ipomoea batatas/metabolism , Flour , Mexico , Animal Feed/analysis , Meat/analysis
18.
Ultrason Sonochem ; 101: 106670, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37922719

ABSTRACT

Thermoultrasound (USB) as a promising alternative to traditional hot water (HWB) blanching was employed to blanch sweet potatoes and its influence on enzyme activity, drying behavior, energy consumption and physiochemical properties of sweet potatoes were investigated. Results showed that successive increases in blanching temperature and time resulted in significant (p < 0.05) decreases in PPO and POD activities. Compared to HWB, USB led to more effective drying by promoting texture softening, moisture diffusion, microstructure alterations, and microchannels formation, which significantly reduced energy consumption and improved the overall quality of the dried sample. Specifically, USB at 65 °C for 15 min improved water holding capacity and ABTS, while USB at 65 °C for 30 min improved color (more red and yellow), total phenolic content, total carotenoid content, and DPPH. Unfortunately, blanching process showed detrimental effects on the amino acid composition of dried samples. Overall, the development of thermoultrasound assisted blanching for sweet potatoes has the potential to revolutionize the processing and production of high-quality sweet potato products, while also improving the sustainability of food processing operations.


Subject(s)
Ipomoea batatas , Solanum tuberosum , Solanum tuberosum/chemistry , Ipomoea batatas/chemistry , Color , Food Handling/methods , Water/chemistry
19.
Front Biosci (Landmark Ed) ; 28(9): 200, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37796684

ABSTRACT

BACKGROUND: The transcription regulator IbWD40 is known to be involved in anthocyanin biosynthesis in purple-flesh sweet potato (Ipomoea batatas). However, little is known about the upstream transcription regulators on the promoter of IbWD40. METHODS: Yeast one-hybrid screening was performed on the storage roots of purple-fleshed sweet potato to identity upstream transcription regulators on the promoter of IbWD40. Luciferase reporter assays and Yeast one-hybrid assays were used to verify these upstream binding proteins interacted with the promoter. Real-time PCR was used to analyze the gene expression of upstream transcription regulators, transcription factors, and structural genes involved in anthocyanin biosynthesis in different root stages of purple-fleshed and white-fleshed sweet potato. RESULTS: IbERF1, IbERF10, IbEBF2, IbPDC, IbPGP19, IbUR5GT, IbDRM, IbPPA and IbERF73 were identified as candidate binding proteins for the promoter of IbWD40. Furthermore, IbERF1, IbERF10 and IbERF73 were identified as upstream transcription regulators on the promoter of IbWD40 involved in anthocyanin biosynthesis. CONCLUSIONS: IbERF1, IbERF10 and IbERF73 were identified as transcription regulators on the promoter of IbWD40, which is involved in the regulation of anthocyanin biosynthesis in purple-fleshed sweet potato.


Subject(s)
Ipomoea batatas , Ipomoea batatas/genetics , Ipomoea batatas/chemistry , Ipomoea batatas/metabolism , Saccharomyces cerevisiae/metabolism , Anthocyanins/genetics , Anthocyanins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Promoter Regions, Genetic
20.
Food Res Int ; 173(Pt 2): 113427, 2023 11.
Article in English | MEDLINE | ID: mdl-37803765

ABSTRACT

Purple sweet potato starch (PSPS) was modified using different amounts of sodium trimetaphosphate (0, 3-12%). Phosphorus content, crosslinking (CL), and substitution levels increased after modification. CL led to gradual agglomeration with each other through adhesion, compared to 0% STMP. X-ray diffraction did not change, but crystalline properties, swelling index, and peak viscosity increased, and solubility and glycaemic index decreased after crosslinking. Crosslinking increased, leading to a decrease of greater significance at 3% CL. Resistant starch was increased from 60.51 to 83.32%. G' and G'' values for crosslinking starch samples varied from 3086.00-5507.50 Pa and 513.92-800.30 Pa, respectively, after sweep test. The flow behavior index < 1 indicates that CL starch pastes are shear-thin. Positive and negative correlations were observed between gelatinized starch enthalpy and RS and between SDS and GI, respectively. The results lay the groundwork to comprehend the properties and relationships of CLPSPS and promote its possible use in foods.


Subject(s)
Ipomoea batatas , Starch , Starch/chemistry , Ipomoea batatas/chemistry , X-Ray Diffraction , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL