Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.986
Filter
1.
Methods Mol Biol ; 2805: 51-87, 2024.
Article in English | MEDLINE | ID: mdl-39008174

ABSTRACT

We describe a scalable method for the robust generation of 3D pancreatic islet-like organoids from human pluripotent stem cells using suspension bioreactors. Our protocol involves a 6-stage, 20-day directed differentiation process, resulting in the production of 104-105 organoids. These organoids comprise α- and ß-like cells that exhibit glucose-responsive insulin and glucagon secretion. We detail methods for culturing, passaging, and cryopreserving stem cells as suspended clusters and for differentiating them through specific growth media and exogenous factors added in a stepwise manner. Additionally, we address quality control measures, troubleshooting strategies, and functional assays for research applications.


Subject(s)
Bioreactors , Cell Culture Techniques , Cell Differentiation , Islets of Langerhans , Organoids , Pluripotent Stem Cells , Humans , Organoids/cytology , Organoids/metabolism , Islets of Langerhans/cytology , Islets of Langerhans/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Cell Culture Techniques/methods , Cryopreservation/methods
2.
Nat Commun ; 15(1): 5894, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003281

ABSTRACT

Remarkable advances in protocol development have been achieved to manufacture insulin-secreting islets from human pluripotent stem cells (hPSCs). Distinct from current approaches, we devised a tunable strategy to generate islet spheroids enriched for major islet cell types by incorporating PDX1+ cell budding morphogenesis into staged differentiation. In this process that appears to mimic normal islet morphogenesis, the differentiating islet spheroids organize with endocrine cells that are intermingled or arranged in a core-mantle architecture, accompanied with functional heterogeneity. Through in vitro modelling of human pancreas development, we illustrate the importance of PDX1 and the requirement for EphB3/4 signaling in eliciting cell budding morphogenesis. Using this new approach, we model Mitchell-Riley syndrome with RFX6 knockout hPSCs illustrating unexpected morphogenesis defects in the differentiation towards islet cells. The tunable differentiation system and stem cell-derived islet models described in this work may facilitate addressing fundamental questions in islet biology and probing human pancreas diseases.


Subject(s)
Cell Differentiation , Homeodomain Proteins , Islets of Langerhans , Morphogenesis , Pluripotent Stem Cells , Spheroids, Cellular , Trans-Activators , Humans , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Spheroids, Cellular/cytology , Spheroids, Cellular/metabolism , Trans-Activators/metabolism , Trans-Activators/genetics , Islets of Langerhans/cytology , Islets of Langerhans/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Signal Transduction , Receptors, Eph Family/metabolism , Receptors, Eph Family/genetics
3.
Stem Cell Res Ther ; 15(1): 188, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937834

ABSTRACT

Diabetes mellitus, a significant global public health challenge, severely impacts human health worldwide. The organoid, an innovative in vitro three-dimensional (3D) culture model, closely mimics tissues or organs in vivo. Insulin-secreting islet organoid, derived from stem cells induced in vitro with 3D structures, has emerged as a potential alternative for islet transplantation and as a possible disease model that mirrors the human body's in vivo environment, eliminating species difference. This technology has gained considerable attention for its potential in diabetes treatment. Despite advances, the process of stem cell differentiation into islet organoid and its cultivation demonstrates deficiencies, prompting ongoing efforts to develop more efficient differentiation protocols and 3D biomimetic materials. At present, the constructed islet organoid exhibit limitations in their composition, structure, and functionality when compared to natural islets. Consequently, further research is imperative to achieve a multi-tissue system composition and improved insulin secretion functionality in islet organoid, while addressing transplantation-related safety concerns, such as tumorigenicity, immune rejection, infection, and thrombosis. This review delves into the methodologies and strategies for constructing the islet organoid, its application in diabetes treatment, and the pivotal scientific challenges within organoid research, offering fresh perspectives for a deeper understanding of diabetes pathogenesis and the development of therapeutic interventions.


Subject(s)
Islets of Langerhans Transplantation , Islets of Langerhans , Organoids , Humans , Organoids/metabolism , Islets of Langerhans/metabolism , Islets of Langerhans/cytology , Animals , Islets of Langerhans Transplantation/methods , Diabetes Mellitus/therapy , Diabetes Mellitus/pathology , Cell Differentiation
4.
Life Sci ; 351: 122812, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38862063

ABSTRACT

AIMS: Despite islet transplantation has proved a great potential to become the standard therapy for type 1 diabetes mellitus (T1DM), this approach remains limited by ischemia, hypoxia, and poor revascularization in early post-transplant period as well as inflammation and life-long host immune rejection. Here, we investigate the potential and mechanism of human amniotic mesenchymal stem cells (hAMSCs)-islet organoid to improve the efficiency of islet engraftment in immunocompetent T1DM mice. MAIN METHODS: We generated the hAMSC-islet organoid structure through culturing the mixture of hAMSCs and islets on 3-dimensional-agarose microwells. Flow cytometry, whole-body fluorescent imaging, immunofluorescence, Calcein-AM/PI staining, ELISA, and qPCR were used to assess the potential and mechanism of shielding hAMSCs to improve the efficiency of islet transplantation. KEY FINDINGS: Transplant of hAMSC-islet organoids results in remarkably better glycemic control, an enhanced glucose tolerance, and a higher ß cell mass in vivo compared with control islets. Our results show that hAMSCs shielding provides an immune privileged microenvironment for islets and promotes graft revascularization in vivo. In addition, hAMSC-islet organoids show higher viability and reduced dysfunction after exposure to hypoxia and inflammatory cytokines in vitro. Finally, our results show that shielding with hAMSCs leads to the activation of PKA-CREB-IRS2-PI3K and PKA-PDX1 signaling pathways, up-regulation of SIL1 mRNA levels, and down-regulation of MT1 mRNA levels in ß cells, which ultimately promotes the synthesis, folding and secretion of insulin, respectively. SIGNIFICANCE: hAMSC-islet organoids can evidently increase the efficiency of islet engraftment and might develop into a promising alternative for the clinical treatment of T1DM.


Subject(s)
Amnion , Diabetes Mellitus, Experimental , Islets of Langerhans Transplantation , Islets of Langerhans , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Organoids , Animals , Mesenchymal Stem Cells/cytology , Mice , Humans , Islets of Langerhans Transplantation/methods , Diabetes Mellitus, Experimental/therapy , Islets of Langerhans/metabolism , Islets of Langerhans/cytology , Amnion/cytology , Mesenchymal Stem Cell Transplantation/methods , Diabetes Mellitus, Type 1/therapy , Mice, Inbred C57BL , Male
5.
J Vis Exp ; (208)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38912778

ABSTRACT

Pancreatic islet transplantation is an emerging treatment for type I diabetes; however, it is limited by donor matching and availability. Porcine islet xenotransplantation offers a promising alternative to allotransplantation, with the potential for large-scale production of on-demand, functional islets. The yield and viability of isolated islets is highly susceptible to the quality of the donor pancreas and the method of procurement, particularly the duration of warm-ischemia time. To improve organ preservation and subsequent islet yield and viability, we have developed a protocol for surgical perfusion and resection of the porcine pancreas. This protocol employs direct infrarenal aortic cannulation and organ perfusion to both minimize warm-ischemia time and simplify the procedure for operators who do not have extensive surgical expertise. Subsequent arterial perfusion of the pancreas via the aorta flushes stagnant blood from the microvasculature, thereby reducing thrombosis and oxidative damage to the tissue. This manuscript provides a detailed protocol for surgical perfusion and resection of the porcine pancreas, followed by islet isolation and purification.


Subject(s)
Islets of Langerhans Transplantation , Islets of Langerhans , Pancreas , Perfusion , Animals , Swine , Islets of Langerhans/cytology , Islets of Langerhans Transplantation/methods , Perfusion/methods , Pancreas/surgery , Pancreas/blood supply , Pancreas/cytology , Transplantation, Heterologous/methods
6.
Cell Transplant ; 33: 9636897241259433, 2024.
Article in English | MEDLINE | ID: mdl-38877672

ABSTRACT

Islet transplantation may be the most efficient therapeutic technique for patients with type 1 diabetes mellitus (T1DM). However, the clinical application of this method is faced with numerous limitations, including isolated islet apoptosis, recipient rejection, and graft vascular reconstruction. Mesenchymal stem cells (MSCs) possess anti-apoptotic, immunomodulatory, and angiogenic properties. Here, we review recent studies on co-culture and co-transplantation of islets with MSCs. We have summarized the methods of preparation of co-transplantation, especially the merits of co-culture, and the effects of co-transplantation. Accumulating experimental evidence shows that co-culture of islets with MSCs promotes islet survival, enhances islet secretory function, and prevascularizes islets through various pretransplant preparations. This review is expected to provide a reference for exploring the use of MSCs for clinical islet co-transplantation.


Subject(s)
Coculture Techniques , Islets of Langerhans Transplantation , Islets of Langerhans , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Islets of Langerhans Transplantation/methods , Humans , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Islets of Langerhans/cytology , Animals , Coculture Techniques/methods , Diabetes Mellitus, Type 1/therapy
7.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892122

ABSTRACT

Pancreatic islet isolation is critical for type 2 diabetes research. Although -omics approaches have shed light on islet molecular profiles, inconsistencies persist; on the other hand, functional studies are essential, but they require reliable and standardized isolation methods. Here, we propose a simplified protocol applied to very small-sized samples collected from partially pancreatectomized living donors. Islet isolation was performed by digesting tissue specimens collected during surgery within a collagenase P solution, followed by a Lympholyte density gradient separation; finally, functional assays and staining with dithizone were carried out. Isolated pancreatic islets exhibited functional responses to glucose and arginine stimulation mirroring donors' metabolic profiles, with insulin secretion significantly decreasing in diabetic islets compared to non-diabetic islets; conversely, proinsulin secretion showed an increasing trend from non-diabetic to diabetic islets. This novel islet isolation method from living patients undergoing partial pancreatectomy offers a valuable opportunity for targeted study of islet physiology, with the primary advantage of being time-effective and successfully preserving islet viability and functionality. It enables the generation of islet preparations that closely reflect donors' clinical profiles, simplifying the isolation process and eliminating the need for a Ricordi chamber. Thus, this method holds promises for advancing our understanding of diabetes and for new personalized pharmacological approaches.


Subject(s)
Cell Separation , Islets of Langerhans , Humans , Islets of Langerhans/metabolism , Islets of Langerhans/cytology , Cell Separation/methods , Living Donors , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Male , Female , Middle Aged , Adult , Insulin/metabolism , Glucose/metabolism , Insulin Secretion
9.
Tissue Cell ; 88: 102413, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772274

ABSTRACT

Whether the endocrine pancreas exhibits structural features to couple with dietary patterns is not fully explored. Considering the lack of data comparing endocrine pancreas and islet cell distribution among different bat species in the same study, we considered this an opportunity to explore the topic, including five species within three different predominant diets. For this, we applied morphometric techniques to compare the islets of frugivorous Artibeus lituratus and Carollia perspicillata, insectivorous Molossus molossus and Myotis nigricans, and nectarivorous Glossophaga soricina bats. Data for islet size, cellularity, and mass were equivalent between frugivorous A. lituratus and nectarivorous G. soricina, which differed from insectivorous bats. The frugivorous C. perspicillata bat exhibited morphometric islet values between A. lituratus and the insectivorous species. A. lituratus and G. soricina but not C. perspicillata bats had higher islet mass than insectivorous species due to larger size, instead of a higher number of islets per area. Insectivorous bats, on the other hand, had a higher proportion of α-cells per islet. These differences in the endocrine pancreas across species with different eating habits indicate the occurrence of species-specific adjustments along the years of evolution, with the demand for α-cells higher in bats with higher protein intake.


Subject(s)
Chiroptera , Islets of Langerhans , Animals , Chiroptera/anatomy & histology , Islets of Langerhans/metabolism , Islets of Langerhans/cytology , Diet , Feeding Behavior/physiology , Species Specificity
10.
Cell Transplant ; 33: 9636897241249556, 2024.
Article in English | MEDLINE | ID: mdl-38742734

ABSTRACT

Pancreatic islet transplantation is one of the clinical options for certain types of diabetes. However, difficulty in maintaining islets prior to transplantation limits the clinical expansion of islet transplantations. Our study introduces a dynamic culture platform developed specifically for primary human islets by mimicking the physiological microenvironment, including tissue fluidics and extracellular matrix support. We engineered the dynamic culture system by incorporating our distinctive microwell-patterned porous collagen scaffolds for loading isolated human islets, enabling vertical medium flow through the scaffolds. The dynamic culture system featured four 12 mm diameter islet culture chambers, each capable of accommodating 500 islet equivalents (IEQ) per chamber. This configuration calculates > five-fold higher seeding density than the conventional islet culture in flasks prior to the clinical transplantations (442 vs 86 IEQ/cm2). We tested our culture platform with three separate batches of human islets isolated from deceased donors for an extended period of 2 weeks, exceeding the limits of conventional culture methods for preserving islet quality. Static cultures served as controls. The computational simulation revealed that the dynamic culture reduced the islet volume exposed to the lethal hypoxia (< 10 mmHg) to ~1/3 of the static culture. Dynamic culture ameliorated the morphological islet degradation in long-term culture and maintained islet viability, with reduced expressions of hypoxia markers. Furthermore, dynamic culture maintained the islet metabolism and insulin-secreting function over static culture in a long-term culture. Collectively, the physiological microenvironment-mimetic culture platform supported the viability and quality of isolated human islets at high-seeding density. Such a platform has a high potential for broad applications in cell therapies and tissue engineering, including extended islet culture prior to clinical islet transplantations and extended culture of stem cell-derived islets for maturation.


Subject(s)
Collagen , Islets of Langerhans , Tissue Scaffolds , Humans , Islets of Langerhans/cytology , Islets of Langerhans/metabolism , Tissue Scaffolds/chemistry , Porosity , Cell Culture Techniques/methods , Cell Culture Techniques/instrumentation , Islets of Langerhans Transplantation/methods
11.
Nat Commun ; 15(1): 3744, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702321

ABSTRACT

Cellular composition and anatomical organization influence normal and aberrant organ functions. Emerging spatial single-cell proteomic assays such as Image Mass Cytometry (IMC) and Co-Detection by Indexing (CODEX) have facilitated the study of cellular composition and organization by enabling high-throughput measurement of cells and their localization directly in intact tissues. However, annotation of cell types and quantification of their relative localization in tissues remain challenging. To address these unmet needs for atlas-scale datasets like Human Pancreas Analysis Program (HPAP), we develop AnnoSpat (Annotator and Spatial Pattern Finder) that uses neural network and point process algorithms to automatically identify cell types and quantify cell-cell proximity relationships. Our study of data from IMC and CODEX shows the higher performance of AnnoSpat in rapid and accurate annotation of cell types compared to alternative approaches. Moreover, the application of AnnoSpat to type 1 diabetic, non-diabetic autoantibody-positive, and non-diabetic organ donor cohorts recapitulates known islet pathobiology and shows differential dynamics of pancreatic polypeptide (PP) cell abundance and CD8+ T cells infiltration in islets during type 1 diabetes progression.


Subject(s)
Algorithms , Diabetes Mellitus, Type 1 , Pancreas , Proteomics , Humans , Proteomics/methods , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 1/metabolism , Pancreas/cytology , Pancreas/metabolism , Islets of Langerhans/metabolism , Islets of Langerhans/cytology , Single-Cell Analysis/methods , Neural Networks, Computer , CD8-Positive T-Lymphocytes/metabolism , Image Cytometry/methods
12.
Cell Transplant ; 33: 9636897241251621, 2024.
Article in English | MEDLINE | ID: mdl-38756050

ABSTRACT

Subcutaneous islet transplantation is a promising treatment for severe diabetes; however, poor engraftment hinders its prevalence. We previously revealed that a gelatin hydrogel nonwoven fabric (GHNF) markedly improved subcutaneous islet engraftment. We herein investigated whether the addition of adipose tissue-derived stem cells (ADSCs) to GHNF affected the outcome. A silicone spacer sandwiched between two GHNFs with (AG group) or without (GHNF group) ADSCs, or a silicone spacer alone (Silicone group) was implanted into the subcutaneous space of healthy mice at 6 weeks before transplantation, then diabetes was induced 7 days before transplantation. Syngeneic islets were transplanted into the pretreated space. Intraportal transplantation (IPO group) was also performed to compare the transplant efficiency. Blood glucose, intraperitoneal glucose tolerance, immunohistochemistry, and inflammatory mediators were evaluated. The results in the subcutaneous transplantation were compared using the Silicone group as a control. The results of the IPO group were also compared with those of the AG group. The AG group showed significantly better blood glucose changes than the Silicone and the IPO groups. The cure rate of AG group (72.7%) was the highest among the groups (GHNF; 40.0%, IPO; 40.0%, Silicone; 0%). The number of vWF-positive vessels in the subcutaneous space of the AG group was significantly higher than that in other groups before transplantation (P < 0.01). Lectin angiography also showed that the same results (P < 0.05). According to the results of the ADSCs tracing, ADSCs did not exist at the transplant site (6 weeks after implantation). The positive rates for laminin and collagen III constructed around the transplanted islets did not differ among groups. Inflammatory mediators were higher in the Silicone group, followed by the AG and GHNF groups. Pretreatment using bioabsorbable scaffolds combined with ADSCs enhanced neovascularization in subcutaneous space, and subcutaneous islet transplantation using GHNF with ADSCs was superior to intraportal islet transplantation.


Subject(s)
Adipose Tissue , Gelatin , Hydrogels , Islets of Langerhans Transplantation , Animals , Islets of Langerhans Transplantation/methods , Adipose Tissue/cytology , Gelatin/chemistry , Mice , Hydrogels/chemistry , Male , Diabetes Mellitus, Experimental/therapy , Stem Cells/cytology , Stem Cells/metabolism , Islets of Langerhans/cytology , Blood Glucose/metabolism , Mice, Inbred C57BL
13.
Sci Rep ; 14(1): 11640, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773268

ABSTRACT

Porcine islet xenotransplantation is a promising therapy for severe diabetes mellitus. Maintenance of the quality and quantity of porcine islets is important for the success of this treatment. Here, we aimed to elucidate the influence of relatively short-term (14 days) culture on adult porcine islets isolated from three micro-minipigs (P111, P112 and P121). Morphological characteristics of islets changed little after 14 days of culture. The viability of cultured islets was also maintained at a high level (> 80%). Furthermore, cultured islets exhibited similar glucose-stimulated insulin secretion and insulin content at Day 14 were preserved comparing with Day 1, while the expressions of Ins, Gcg and Sst were attenuated at Day 14. Xenotransplantation using diabetic nude mice showed no normalization of blood glucose but increased levels of plasma porcine C-peptide after the transplantation of 14 day cultured porcine islets. Histological assessment revealed that relatively short-term cultured porcine islets were successfully engrafted 56 days following transplantation. These data show that relatively short-term culture did not impair the quality of adult porcine islets in regard to function, morphology, and viability. Prevention of impairment of gene correlated with endocrine hormone is warranted for further improvement.


Subject(s)
Insulin , Islets of Langerhans Transplantation , Islets of Langerhans , Transplantation, Heterologous , Animals , Islets of Langerhans/metabolism , Islets of Langerhans/cytology , Swine , Islets of Langerhans Transplantation/methods , Insulin/metabolism , Mice , Mice, Nude , Insulin Secretion , Diabetes Mellitus, Experimental/therapy , Blood Glucose/metabolism , Swine, Miniature , Cell Survival , C-Peptide/metabolism , C-Peptide/blood
14.
PLoS Comput Biol ; 20(5): e1012130, 2024 May.
Article in English | MEDLINE | ID: mdl-38739680

ABSTRACT

Within the islets of Langerhans, beta cells orchestrate synchronized insulin secretion, a pivotal aspect of metabolic homeostasis. Despite the inherent heterogeneity and multimodal activity of individual cells, intercellular coupling acts as a homogenizing force, enabling coordinated responses through the propagation of intercellular waves. Disruptions in this coordination are implicated in irregular insulin secretion, a hallmark of diabetes. Recently, innovative approaches, such as integrating multicellular calcium imaging with network analysis, have emerged for a quantitative assessment of the cellular activity in islets. However, different groups use distinct experimental preparations, microscopic techniques, apply different methods to process the measured signals and use various methods to derive functional connectivity patterns. This makes comparisons between findings and their integration into a bigger picture difficult and has led to disputes in functional connectivity interpretations. To address these issues, we present here a systematic analysis of how different approaches influence the network representation of islet activity. Our findings show that the choice of methods used to construct networks is not crucial, although care is needed when combining data from different islets. Conversely, the conclusions drawn from network analysis can be heavily affected by the pre-processing of the time series, the type of the oscillatory component in the signals, and by the experimental preparation. Our tutorial-like investigation aims to resolve interpretational issues, reconcile conflicting views, advance functional implications, and encourage researchers to adopt connectivity analysis. As we conclude, we outline challenges for future research, emphasizing the broader applicability of our conclusions to other tissues exhibiting complex multicellular dynamics.


Subject(s)
Islets of Langerhans , Islets of Langerhans/physiology , Islets of Langerhans/metabolism , Islets of Langerhans/cytology , Animals , Computational Biology/methods , Mice , Insulin/metabolism , Humans , Insulin-Secreting Cells/physiology , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/cytology , Insulin Secretion/physiology , Models, Biological , Calcium/metabolism , Calcium Signaling/physiology
15.
Physiol Rep ; 12(9): e16040, 2024 May.
Article in English | MEDLINE | ID: mdl-38725080

ABSTRACT

The endocrine pancreas is composed of clusters of cell groups called pancreatic islets. These cells are responsible for the synthesis and secretion of hormones crucial for glycemic homeostasis, such as insulin and glucagon. Therefore, these cells were the targets of many studies. One method to study and/or understand endocrine pancreatic physiology is the isolation of these islets and stimulation of hormone production using different concentrations of glucose, agonists, and/or antagonists of specific secretagogues and mimicking the stimulation of hormonal synthesis and secretion. Many researchers studied pancreatic physiology in murine models due to their ease of maintenance and rapid development. However, the isolation of pancreatic islets involves meticulous processes that may vary between rodent species. The present study describes a simple and effective technical protocol for isolating intact islets from mice and rats for use as a practical guide for researchers. The method involves digestion of the acinar parenchyma by intraductal collagenase. Isolated islets are suitable for in vitro endocrine secretion analyses, microscopy techniques, and biochemical analyses.


Subject(s)
Islets of Langerhans , Animals , Islets of Langerhans/metabolism , Islets of Langerhans/cytology , Mice , Rats , Male , Mice, Inbred C57BL , Cell Separation/methods
16.
Diabetes ; 73(7): 1127-1139, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38603470

ABSTRACT

Pluripotent stem cell-derived islets (SC-islets) have emerged as a new source for ß-cell replacement therapy. The function of human islet transplants is hampered by excessive cell death posttransplantation; contributing factors include inflammatory reactions, insufficient revascularization, and islet amyloid formation. However, there is a gap in knowledge of the engraftment process of SC-islets. In this experimental study, we investigated the engraftment capability of SC-islets at 3 months posttransplantation and observed that cell apoptosis rates were lower but vascular density was similar in SC-islets compared with human islets. Whereas the human islet transplant vascular structures were a mixture of remnant donor endothelium and ingrowing blood vessels, the SC-islets contained ingrowing blood vessels only. Oxygenation in the SC-islet grafts was twice as high as that in the corresponding grafts of human islets, suggesting better vascular functionality. Similar to the blood vessel ingrowth, reinnervation of the SC-islets was four- to fivefold higher than that of the human islets. Both SC-islets and human islets contained amyloid at 1 and 3 months posttransplantation. We conclude that the vascular and neural engraftment of SC-islets are superior to those of human islets, but grafts of both origins develop amyloid, with potential long-term consequences.


Subject(s)
Islets of Langerhans Transplantation , Islets of Langerhans , Humans , Islets of Langerhans Transplantation/methods , Islets of Langerhans/blood supply , Islets of Langerhans/cytology , Islets of Langerhans/physiology , Animals , Mice , Apoptosis/physiology , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/physiology , Graft Survival/physiology , Male
17.
BMC Genomics ; 25(1): 427, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689254

ABSTRACT

BACKGROUND: Current approaches to profile the single-cell transcriptomics of human pancreatic endocrine cells almost exclusively rely on freshly isolated islets. However, human islets are limited in availability. Furthermore, the extensive processing steps during islet isolation and subsequent single cell dissolution might alter gene expressions. In this work, we report the development of a single-nucleus RNA sequencing (snRNA-seq) approach with targeted islet cell enrichment for endocrine-population focused transcriptomic profiling using frozen archival pancreatic tissues without islet isolation. RESULTS: We cross-compared five nuclei isolation protocols and selected the citric acid method as the best strategy to isolate nuclei with high RNA integrity and low cytoplasmic contamination from frozen archival human pancreata. We innovated fluorescence-activated nuclei sorting based on the positive signal of NKX2-2 antibody to enrich nuclei of the endocrine population from the entire nuclei pool of the pancreas. Our sample preparation procedure generated high-quality single-nucleus gene-expression libraries while preserving the endocrine population diversity. In comparison with single-cell RNA sequencing (scRNA-seq) library generated with live cells from freshly isolated human islets, the snRNA-seq library displayed comparable endocrine cellular composition and cell type signature gene expression. However, between these two types of libraries, differential enrichments of transcripts belonging to different functional classes could be observed. CONCLUSIONS: Our work fills a technological gap and helps to unleash frozen archival pancreatic tissues for molecular profiling targeting the endocrine population. This study opens doors to retrospective mappings of endocrine cell dynamics in pancreatic tissues of complex histopathology. We expect that our protocol is applicable to enrich nuclei for transcriptomics studies from various populations in different types of frozen archival tissues.


Subject(s)
Cell Nucleus , Homeobox Protein Nkx-2.2 , Homeodomain Proteins , Islets of Langerhans , Nuclear Proteins , Sequence Analysis, RNA , Single-Cell Analysis , Transcription Factors , Humans , Islets of Langerhans/metabolism , Islets of Langerhans/cytology , Single-Cell Analysis/methods , Sequence Analysis, RNA/methods , Cell Nucleus/genetics , Cell Nucleus/metabolism , Gene Expression Profiling/methods , Pancreas/metabolism , Pancreas/cytology , Transcriptome
18.
Am J Physiol Endocrinol Metab ; 326(5): E723-E734, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38506753

ABSTRACT

Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of beta cells by immune cells. The interactions among cells within the islets may be closely linked to the pathogenesis of T1D. In this study, we used single-cell RNA sequencing (scRNA-Seq) to analyze the cellular heterogeneity within the islets of a T1D mouse model. We established a T1D mouse model induced by streptozotocin and identified cell subpopulations using scRNA-Seq technology. Our results revealed 11 major cell types in the pancreatic islets of T1D mice, with heterogeneity observed in the alpha and beta cell subgroups, which may play a crucial role in the progression of T1D. Flow cytometry further confirmed a mature alpha and beta cell reduction in T1D mice. Overall, our scRNA-Seq analysis provided insights into the cellular heterogeneity of T1D islet tissue and highlighted the potential importance of alpha and beta cells in developing T1D.NEW & NOTEWORTHY In this study, we created a comprehensive single-cell atlas of pancreatic islets in a T1D mouse model using scRNA-Seq and identified 11 major cell types in the islets, highlighting the role of alpha and beta cells in T1D. This study revealed a significant reduction in the maturity alpha and beta cells in T1D mice through flow cytometry. It also demonstrated the heterogeneity of alpha and beta cells, potentially crucial for T1D progression. Overall, our scRNA-Seq analysis provided new insights for understanding and treating T1D by studying cell subtype changes and functions.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Islets of Langerhans , Sequence Analysis, RNA , Single-Cell Analysis , Animals , Mice , Diabetes Mellitus, Type 1/genetics , Single-Cell Analysis/methods , Islets of Langerhans/metabolism , Islets of Langerhans/cytology , Insulin-Secreting Cells/metabolism , Sequence Analysis, RNA/methods , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/pathology , Glucagon-Secreting Cells/metabolism , Female , RNA-Seq/methods , Mice, Inbred C57BL
20.
Diabet Med ; 41(6): e15279, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38185936

ABSTRACT

AIMS: Evidence is accumulating of the therapeutic benefits of mesenchymal stromal cells (MSCs) in diabetes-related conditions. We have identified a novel population of stromal cells within islets of Langerhans - islet stellate cells (ISCs) - which have a similar morphology to MSCs. In this study we characterize mouse ISCs and compare their morphology and function to MSCs to determine whether ISCs may also have therapeutic potential in diabetes. METHODS: ISCs isolated from mouse islets were compared to mouse bone marrow MSCs by analysis of cell morphology; expression of cell-surface markers and extracellular matrix (ECM) components; proliferation; apoptosis; paracrine activity; and differentiation into adipocytes, chondrocytes and osteocytes. We also assessed the effects of co-culture with ISCs or MSCs on the insulin secretory capacity of islet beta cells. RESULTS: Although morphological similar, ISCs were functionally distinct from MSCs. Thus, ISCs were less proliferative and more apoptotic; they had different expression levels of important paracrine factors; and they were less efficient at differentiation down multiple lineages. Co-culture of mouse islets with ISCs enhanced glucose induced insulin secretion more effectively than co-culture with MSCs. CONCLUSIONS: ISCs are a specific sub-type of islet-derived stromal cells that possess biological behaviors distinct from MSCs. The enhanced beneficial effects of ISCs on islet beta cell function suggests that they may offer a therapeutic target for enhancing beta cell functional survival in diabetes.


Subject(s)
Cell Differentiation , Coculture Techniques , Insulin-Secreting Cells , Islets of Langerhans , Mesenchymal Stem Cells , Animals , Mice , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/physiology , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/physiology , Insulin-Secreting Cells/cytology , Cell Differentiation/physiology , Islets of Langerhans/cytology , Islets of Langerhans/metabolism , Pancreatic Stellate Cells/metabolism , Pancreatic Stellate Cells/physiology , Cell Proliferation/physiology , Insulin/metabolism , Cells, Cultured , Insulin Secretion/physiology , Mice, Inbred C57BL , Male , Apoptosis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL