Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.184
Filter
1.
Int J Mol Sci ; 25(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38928515

ABSTRACT

Glioblastoma is the most aggressive tumor in the central nervous system, with a survival rate of less than 15 months despite multimodal therapy. Tumor recurrence frequently occurs after removal. Tumoral angiogenesis, the formation of neovessels, has a positive impact on tumor progression and invasion, although there are controversial results in the specialized literature regarding its impact on survival. This study aims to correlate the immunoexpression of angiogenesis markers (CD34, CD105) with the proliferation index Ki67 and p53 in primary and secondary glioblastomas. This retrospective study included 54 patients diagnosed with glioblastoma at the Pathology Department of County Emergency Clinical Hospital Târgu Mureș. Microvascular density was determined using CD34 and CD105 antibodies, and the results were correlated with the immunoexpression of p53, IDH1, ATRX and Ki67. The number of neoformed blood vessels varied among cases, characterized by different shapes and calibers, with endothelial cells showing modified morphology and moderate to marked pleomorphism. Neovessels with a glomeruloid aspect, associated with intense positivity for CD34 or CD105 in endothelial cells, were observed, characteristic of glioblastomas. Mean microvascular density values were higher for the CD34 marker in all cases, though there were no statistically significant differences compared to CD105. Mutant IDH1 and ATRX glioblastomas, wild-type p53 glioblastomas, and those with a Ki67 index above 20% showed a more abundant microvascular density, with statistical correlations not reaching significance. This study highlighted a variety of percentage intervals of microvascular density in primary and secondary glioblastomas using immunohistochemical markers CD34 and CD105, respectively, with no statistically significant correlation between evaluated microvascular density and p53 or Ki67.


Subject(s)
Brain Neoplasms , Glioblastoma , Isocitrate Dehydrogenase , Ki-67 Antigen , Microvascular Density , Neovascularization, Pathologic , Tumor Suppressor Protein p53 , X-linked Nuclear Protein , Humans , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/blood supply , Glioblastoma/genetics , Tumor Suppressor Protein p53/metabolism , Ki-67 Antigen/metabolism , Female , Middle Aged , Male , Aged , Adult , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/blood supply , Brain Neoplasms/genetics , X-linked Nuclear Protein/metabolism , X-linked Nuclear Protein/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Retrospective Studies , Endoglin/metabolism , Endoglin/genetics , Antigens, CD34/metabolism , Biomarkers, Tumor/metabolism , Immunohistochemistry
2.
Nat Cell Biol ; 26(6): 1003-1018, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38858501

ABSTRACT

Patients with IDH-wild-type glioblastomas have a poor five-year survival rate along with limited treatment efficacy due to immune cell (glioma-associated microglia and macrophages) infiltration promoting tumour growth and resistance. To enhance therapeutic options, our study investigated the unique RNA-RNA-binding protein complex LOC-DHX15. This complex plays a crucial role in driving immune cell infiltration and tumour growth by establishing a feedback loop between cancer and immune cells, intensifying cancer aggressiveness. Targeting this complex with blood-brain barrier-permeable small molecules improved treatment efficacy, disrupting cell communication and impeding cancer cell survival and stem-like properties. Focusing on RNA-RNA-binding protein interactions emerges as a promising approach not only for glioblastomas without the IDH mutation but also for potential applications beyond cancer, offering new avenues for developing therapies that address intricate cellular relationships in the body.


Subject(s)
Brain Neoplasms , Glioblastoma , Isocitrate Dehydrogenase , RNA-Binding Proteins , Tumor Microenvironment , Glioblastoma/pathology , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/drug therapy , Humans , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/drug therapy , Animals , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Cell Line, Tumor , Mice , Mutation , Antineoplastic Agents/pharmacology , Xenograft Model Antitumor Assays , Cell Proliferation , Gene Expression Regulation, Neoplastic
3.
Nat Commun ; 15(1): 5285, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902266

ABSTRACT

Enzymes of the central metabolism tend to assemble into transient supramolecular complexes. However, the functional significance of the interactions, particularly between enzymes catalyzing non-consecutive reactions, remains unclear. Here, by co-localizing two non-consecutive enzymes of the TCA cycle from Bacillus subtilis, malate dehydrogenase (MDH) and isocitrate dehydrogenase (ICD), in phase separated droplets we show that MDH-ICD interaction leads to enzyme agglomeration with a concomitant enhancement of ICD catalytic rate and an apparent sequestration of its reaction product, 2-oxoglutarate. Theory demonstrates that MDH-mediated clustering of ICD molecules explains the observed phenomena. In vivo analyses reveal that MDH overexpression leads to accumulation of 2-oxoglutarate and reduction of fluxes flowing through both the catabolic and anabolic branches of the carbon-nitrogen intersection occupied by 2-oxoglutarate, resulting in impeded ammonium assimilation and reduced biomass production. Our findings suggest that the MDH-ICD interaction is an important coordinator of carbon-nitrogen metabolism.


Subject(s)
Bacillus subtilis , Carbon , Citric Acid Cycle , Isocitrate Dehydrogenase , Ketoglutaric Acids , Malate Dehydrogenase , Nitrogen , Nitrogen/metabolism , Carbon/metabolism , Malate Dehydrogenase/metabolism , Malate Dehydrogenase/genetics , Bacillus subtilis/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/enzymology , Isocitrate Dehydrogenase/metabolism , Isocitrate Dehydrogenase/genetics , Ketoglutaric Acids/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Ammonium Compounds/metabolism
4.
J Cell Mol Med ; 28(11): e18406, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38822457

ABSTRACT

Increasing evidence has shown that homologous recombination (HR) and metabolic reprogramming are essential for cellular homeostasis. These two processes are independent as well as closely intertwined. Nevertheless, they have rarely been reported in lung adenocarcinoma (LUAD). We analysed the genomic, immune microenvironment and metabolic microenvironment features under different HR activity states. Using cell cycle, EDU and cell invasion assays, we determined the impacts of si-SHFM1 on the LUAD cell cycle, proliferation and invasion. The levels of isocitrate dehydrogenase (IDH) and α-ketoglutarate dehydrogenase (α-KGDH) were determined by ELISA in the NC and si-SHFM1 groups of A549 cells. Finally, cell samples were used to extract metabolites for HPIC-MS/MS to analyse central carbon metabolism. We found that high HR activity was associated with a poor prognosis in LUAD, and HR was an independent prognostic factor for TCGA-LUAD patients. Moreover, LUAD samples with a high HR activity presented low immune infiltration levels, a high degree of genomic instability, a good response status to immune checkpoint blockade therapy and a high degree of drug sensitivity. The si-SHFM1 group presented a significantly higher proportion of cells in the G0/G1 phase, lower levels of DNA replication, and significantly lower levels of cell migration and both TCA enzymes. Our current results indicated that there is a strong correlation between HR and the TCA cycle in LUAD. The TCA cycle can promote SHFM1-mediated HR in LUAD, raising their activities, which can finally result in a poor prognosis and impair immunotherapeutic efficacy.


Subject(s)
Adenocarcinoma of Lung , Citric Acid Cycle , Homologous Recombination , Lung Neoplasms , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Prognosis , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/mortality , Cell Proliferation , Tumor Microenvironment , Cell Line, Tumor , Cell Cycle/genetics , Cellular Reprogramming/genetics , Female , A549 Cells , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Cell Movement , Ketoglutarate Dehydrogenase Complex/metabolism , Ketoglutarate Dehydrogenase Complex/genetics , Male , Gene Expression Regulation, Neoplastic , Metabolic Reprogramming
5.
Nat Commun ; 15(1): 3785, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710674

ABSTRACT

Mutations in human isocitrate dehydrogenase 1 (IDH1) drive tumor formation in a variety of cancers by replacing its conventional activity with a neomorphic activity that generates an oncometabolite. Little is understood of the mechanistic differences among tumor-driving IDH1 mutants. We previously reported that the R132Q mutant unusually preserves conventional activity while catalyzing robust oncometabolite production, allowing an opportunity to compare these reaction mechanisms within a single active site. Here, we employ static and dynamic structural methods and observe that, compared to R132H, the R132Q active site adopts a conformation primed for catalysis with optimized substrate binding and hydride transfer to drive improved conventional and neomorphic activity over R132H. This active site remodeling reveals a possible mechanism of resistance to selective mutant IDH1 therapeutic inhibitors. This work enhances our understanding of fundamental IDH1 mechanisms while pinpointing regions for improving inhibitor selectivity.


Subject(s)
Catalytic Domain , Isocitrate Dehydrogenase , Mutation , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Humans , Kinetics , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Drug Resistance, Neoplasm/genetics , Enzyme Inhibitors/pharmacology
6.
Biol Res ; 57(1): 30, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760850

ABSTRACT

BACKGROUND: Mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2), are present in most gliomas. IDH1 mutation is an important prognostic marker in glioma. However, its regulatory mechanism in glioma remains incompletely understood. RESULTS: miR-182-5p expression was increased within IDH1-mutant glioma specimens according to TCGA, CGGA, and online dataset GSE119740, as well as collected clinical samples. (R)-2-hydroxyglutarate ((R)-2HG) treatment up-regulated the expression of miR-182-5p, enhanced glioma cell proliferation, and suppressed apoptosis; miR-182-5p inhibition partially eliminated the oncogenic effects of R-2HG upon glioma cells. By direct binding to Cyclin Dependent Kinase Inhibitor 2 C (CDKN2C) 3'UTR, miR-182-5p inhibited CDKN2C expression. Regarding cellular functions, CDKN2C knockdown promoted R-2HG-treated glioma cell viability, suppressed apoptosis, and relieved cell cycle arrest. Furthermore, CDKN2C knockdown partially attenuated the effects of miR-182-5p inhibition on cell phenotypes. Moreover, CDKN2C knockdown exerted opposite effects on cell cycle check point and apoptosis markers to those of miR-182-5p inhibition; also, CDKN2C knockdown partially attenuated the functions of miR-182-5p inhibition in cell cycle check point and apoptosis markers. The engineered CS-NPs (antagomir-182-5p) effectively encapsulated and delivered antagomir-182-5p, enhancing anti-tumor efficacy in vivo, indicating the therapeutic potential of CS-NPs(antagomir-182-5p) in targeting the miR-182-5p/CDKN2C axis against R-2HG-driven oncogenesis in mice models. CONCLUSIONS: These insights highlight the potential of CS-NPs(antagomir-182-5p) to target the miR-182-5p/CDKN2C axis, offering a promising therapeutic avenue against R-2HG's oncogenic influence to glioma.


Subject(s)
Cell Cycle , Glioma , Glutarates , Isocitrate Dehydrogenase , MicroRNAs , MicroRNAs/genetics , MicroRNAs/metabolism , Glioma/genetics , Glioma/pathology , Glioma/metabolism , Humans , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Cell Line, Tumor , Cell Cycle/genetics , Glutarates/metabolism , Mutation , Apoptosis/genetics , Cell Proliferation/genetics , Animals , Mice , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Gene Expression Regulation, Neoplastic/genetics , Mice, Nude
7.
Cell Commun Signal ; 22(1): 293, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802896

ABSTRACT

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a severe and fatal disease. Although mesenchymal stem cell (MSC)-based therapy has shown remarkable efficacy in treating ARDS in animal experiments, clinical outcomes have been unsatisfactory, which may be attributed to the influence of the lung microenvironment during MSC administration. Extracellular vesicles (EVs) derived from endothelial cells (EC-EVs) are important components of the lung microenvironment and play a crucial role in ARDS. However, the effect of EC-EVs on MSC therapy is still unclear. In this study, we established lipopolysaccharide (LPS) - induced acute lung injury model to evaluate the impact of EC-EVs on the reparative effects of bone marrow-derived MSC (BM-MSC) transplantation on lung injury and to unravel the underlying mechanisms. METHODS: EVs were isolated from bronchoalveolar lavage fluid of mice with LPS - induced acute lung injury and patients with ARDS using ultracentrifugation. and the changes of EC-EVs were analysed using nanoflow cytometry analysis. In vitro assays were performed to establish the impact of EC-EVs on MSC functions, including cell viability and migration, while in vivo studies were performed to validate the therapeutic effect of EC-EVs on MSCs. RNA-Seq analysis, small interfering RNA (siRNA), and a recombinant lentivirus were used to investigate the underlying mechanisms. RESULTS: Compared with that in non-ARDS patients, the quantity of EC-EVs in the lung microenvironment was significantly greater in patients with ARDS. EVs derived from lipopolysaccharide-stimulated endothelial cells (LPS-EVs) significantly decreased the viability and migration of BM-MSCs. Furthermore, engrafting BM-MSCs pretreated with LPS-EVs promoted the release of inflammatory cytokines and increased pulmonary microvascular permeability, aggravating lung injury. Mechanistically, LPS-EVs reduced the expression level of isocitrate dehydrogenase 2 (IDH2), which catalyses the formation of α-ketoglutarate (α-KG), an intermediate product of the tricarboxylic acid (TCA) cycle, in BM-MSCs. α-KG is a cofactor for ten-eleven translocation (TET) enzymes, which catalyse DNA hydroxymethylation in BM-MSCs. CONCLUSIONS: This study revealed that EC-EVs in the lung microenvironment during ARDS can affect the therapeutic efficacy of BM-MSCs through the IDH2/TET pathway, providing potential strategies for improving the therapeutic efficacy of MSC-based therapy in the clinic.


Subject(s)
Endothelial Cells , Extracellular Vesicles , Isocitrate Dehydrogenase , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Respiratory Distress Syndrome , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/metabolism , Endothelial Cells/metabolism , Humans , Mice , Mesenchymal Stem Cell Transplantation/methods , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Mice, Inbred C57BL , Male , Lipopolysaccharides/pharmacology , Signal Transduction , Acute Lung Injury/therapy , Acute Lung Injury/metabolism , Cell Movement
8.
Sci Transl Med ; 16(747): eadj7685, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748774

ABSTRACT

Intrahepatic cholangiocarcinoma (ICC) is an aggressive bile duct malignancy that frequently exhibits isocitrate dehydrogenase (IDH1/IDH2) mutations. Mutant IDH (IDHm) ICC is dependent on SRC kinase for growth and survival and is hypersensitive to inhibition by dasatinib, but the molecular mechanism underlying this sensitivity is unclear. We found that dasatinib reduced p70 S6 kinase (S6K) and ribosomal protein S6 (S6), leading to substantial reductions in cell size and de novo protein synthesis. Using an unbiased phosphoproteomic screen, we identified membrane-associated guanylate kinase, WW, and PDZ domain containing 1 (MAGI1) as an SRC substrate in IDHm ICC. Biochemical and functional assays further showed that SRC inhibits a latent tumor-suppressing function of the MAGI1-protein phosphatase 2A (PP2A) complex to activate S6K/S6 signaling in IDHm ICC. Inhibiting SRC led to activation and increased access of PP2A to dephosphorylate S6K, resulting in cell death. Evidence from patient tissue and cell line models revealed that both intrinsic and extrinsic resistance to dasatinib is due to increased phospho-S6 (pS6). To block pS6, we paired dasatinib with the S6K/AKT inhibitor M2698, which led to a marked reduction in pS6 in IDHm ICC cell lines and patient-derived organoids in vitro and substantial growth inhibition in ICC patient-derived xenografts in vivo. Together, these results elucidated the mechanism of action of dasatinib in IDHm ICC, revealed a signaling complex regulating S6K phosphorylation independent of mTOR, suggested markers for dasatinib sensitivity, and described a combination therapy for IDHm ICC that may be actionable in the clinic.


Subject(s)
Adaptor Proteins, Signal Transducing , Cholangiocarcinoma , Dasatinib , Isocitrate Dehydrogenase , Mutation , src-Family Kinases , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/pathology , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/genetics , Humans , Dasatinib/pharmacology , Mutation/genetics , src-Family Kinases/metabolism , src-Family Kinases/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/metabolism , Cell Line, Tumor , Isocitrate Dehydrogenase/metabolism , Isocitrate Dehydrogenase/genetics , Animals , Cell Adhesion Molecules/metabolism , Cell Proliferation/drug effects , Phosphorylation/drug effects , Signal Transduction/drug effects , Mice , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/drug therapy , Ribosomal Protein S6 Kinases, 70-kDa/metabolism
9.
FASEB J ; 38(10): e23688, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38780519

ABSTRACT

Diabetic nephropathy (DN) is a major cause of chronic kidney disease. Microalbuminuria is currently the most common non-invasive biomarker for the early diagnosis of DN. However, renal structural damage may have advanced when albuminuria is detected. In this study, we sought biomarkers for early DN diagnosis through proteomic analysis of urinary extracellular vesicles (uEVs) from type 2 diabetic model rats and normal controls. Isocitrate dehydrogenase 1 (IDH1) was significantly increased in uEVs from diabetic model rats at the early stage despite minimal differences in albuminuria between the groups. Calorie restriction significantly suppressed the increase in IDH1 in uEVs and 24-hour urinary albumin excretion, suggesting that the increase in IDH1 in uEVs was associated with the progression of DN. Additionally, we investigated the origin of IDH1-containing uEVs based on their surface sugar chains. Lectin affinity enrichment and immunohistochemical staining showed that IDH1-containing uEVs were derived from proximal tubules. These findings suggest that the increase in IDH1 in uEVs reflects pathophysiological alterations in the proximal tubules and that IDH1 in uEVs may serve as a potential biomarker of DN in the proximal tubules.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Extracellular Vesicles , Isocitrate Dehydrogenase , Kidney Tubules, Proximal , Up-Regulation , Animals , Isocitrate Dehydrogenase/metabolism , Isocitrate Dehydrogenase/genetics , Extracellular Vesicles/metabolism , Rats , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Diabetes Mellitus, Type 2/urine , Diabetes Mellitus, Type 2/metabolism , Male , Diabetic Nephropathies/urine , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/urine , Rats, Sprague-Dawley , Biomarkers/urine , Biomarkers/metabolism
10.
Proc Natl Acad Sci U S A ; 121(20): e2310771121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38709917

ABSTRACT

Shifts in the hydrogen stable isotopic composition (2H/1H ratio) of lipids relative to water (lipid/water 2H-fractionation) at natural abundances reflect different sources of the central cellular reductant, NADPH, in bacteria. Here, we demonstrate that lipid/water 2H-fractionation (2εfattyacid/water) can also constrain the relative importance of key NADPH pathways in eukaryotes. We used the metabolically flexible yeast Saccharomyces cerevisiae, a microbial model for respiratory and fermentative metabolism in industry and medicine, to investigate 2εfattyacid/water. In chemostats, fatty acids from glycerol-respiring cells were >550‰ 2H-enriched compared to those from cells aerobically fermenting sugars via overflow metabolism, a hallmark feature in cancer. Faster growth decreased 2H/1H ratios, particularly in glycerol-respiring cells by 200‰. Variations in the activities and kinetic isotope effects among NADP+-reducing enzymes indicate cytosolic NADPH supply as the primary control on 2εfattyacid/water. Contributions of cytosolic isocitrate dehydrogenase (cIDH) to NAPDH production drive large 2H-enrichments with substrate metabolism (cIDH is absent during fermentation but contributes up to 20 percent NAPDH during respiration) and slower growth on glycerol (11 percent more NADPH from cIDH). Shifts in NADPH demand associated with cellular lipid abundance explain smaller 2εfattyacid/water variations (<30‰) with growth rate during fermentation. Consistent with these results, tests of murine liver cells had 2H-enriched lipids from slower-growing, healthy respiring cells relative to fast-growing, fermenting hepatocellular carcinoma. Our findings point to the broad potential of lipid 2H/1H ratios as a passive natural tracker of eukaryotic metabolism with applications to distinguish health and disease, complementing studies that rely on complex isotope-tracer addition methods.


Subject(s)
Fatty Acids , Fermentation , NADP , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/growth & development , Fatty Acids/metabolism , NADP/metabolism , Aerobiosis , Deuterium/metabolism , Humans , Glycerol/metabolism , Isocitrate Dehydrogenase/metabolism
11.
Bioorg Chem ; 149: 107483, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38805913

ABSTRACT

In this study, novel substituted 1,3,5-triazine candidates (4a-d, 5a-j, and 6a-d) were designed as second-generation small molecules to act as dual IDH1 and IDH2 inhibitors according to the pharmacophoric features of both vorasidenib and enasidenib. Compounds 6a and 6b for leukemia cell lines showed from low to sub-micromolar GI50. Moreover, compounds 4c, 5f, and 6b described the frontier antitumor activity against THP1 and Kasumi Leukemia cancer cells with IC50 values of (10 and 12), (10.5 and 7), and (6.2 and 5.9) µg/mL, which were superior to those of cisplatin (25 and 28) µg/mL, respectively. Interestingly, compounds 4c, 6b, and 6d represented the best dual IDH1(R132H)/IDH2(R140Q) inhibitory potentials with IC50 values of (0.72 and 1.22), (0.12 and 0.93), and (0.50 and 1.28) µg/mL, respectively, compared to vorasidenib (0.02 and 0.08) µg/mL and enasidenib (0.33 and 1.80) µg/mL. Furthermore, the most active candidate (6b) has very promising inhibitory potentials towards HIF-1α, VEGF, and SDH, besides, a marked increase of ROS was observed as well. Besides, compound 6b induced the upregulation of P53, BAX, Caspases 3, 6, 8, and 9 proteins by 3.70, 1.99, 2.06, 1.73, 1.75, and 1.85-fold changes, respectively, and the downregulation for the BCL-2 protein by 0.55-fold change compared to the control. Besides, the in vivo behavior of compound 6b as an antitumor agent was evaluated in female mice bearing solid Ehrlich carcinoma tumors. Notably, compound 6b administration resulted in a prominent decrease in the weight and volume of the tumors, accompanied by improvements in biochemical, hematological, and histological parameters.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , Isocitrate Dehydrogenase , Leukemia, Myeloid, Acute , Triazines , Triazines/chemistry , Triazines/pharmacology , Triazines/chemical synthesis , Isocitrate Dehydrogenase/antagonists & inhibitors , Isocitrate Dehydrogenase/metabolism , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Structure-Activity Relationship , Animals , Molecular Structure , Mice , Cell Proliferation/drug effects , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Cell Line, Tumor , Apoptosis/drug effects
12.
Curr Cancer Drug Targets ; 24(5): 534-545, 2024.
Article in English | MEDLINE | ID: mdl-38804345

ABSTRACT

BACKGROUND: The energy supply of certain cancer cells depends on aerobic glycolysis rather than oxidative phosphorylation. Our previous studies have shown that withaferin A (WA), a lactone compound derived from Withania somnifera, suppresses skin carcinogenesis at least partially by stabilizing IDH1 and promoting oxidative phosphorylation. Here, we have extended our studies to evaluate the anti-tumor effect of WA in liver cancer. METHODS: Differential expression of glycolysis-related genes between liver cancer tissues and normal tissues and prognosis were verified using an online database. Glycolysis-related protein expression was detected using western blot after overexpression and knockdown of IDH1 and mitochondrial membrane potential assay based on JC-1, and mitochondrial complex I activity was also detected. The inhibitory effect of WA on the biological functions of HepG2 cells was detected along with cell viability using MTT assay, scratch assay, clone formation assay, glucose consumption and lactate production assay. Western blot and qRT-PCR were used to detect the expression of proteins and genes related to IDH1, p53 and HIF1α signaling pathways. RESULTS: We first identified that IDH1 expression was downregulated in human liver cancer cells compared to normal liver cells. Next, we found that treatment of HepG2 cells with WA resulted in significantly increased protein levels of IDH1, accompanied by decreased levels of several glycolytic enzymes. Furthermore, we found that WA stabilized IDH1 proteins by inhibiting the degradation by the proteasome. The tumor suppressor p53 was also upregulated by WA treatment, which played a critical role in the upregulation of IDH1 and downregulation of the glycolysis-related genes. Under hypoxic conditions, glycolysis-related genes were induced, which was suppressed by WA treatment, and IDH1 expression was still maintained at higher levels under hypoxia. CONCLUSION: Taken together, our results indicated that WA suppresses liver cancer tumorigenesis by p53-mediated IDH1 upregulation, which promotes mitochondrial respiration, thereby inhibiting the HIF-1α pathway and blocking aerobic glycolysis.


Subject(s)
Glycolysis , Hypoxia-Inducible Factor 1, alpha Subunit , Isocitrate Dehydrogenase , Liver Neoplasms , Signal Transduction , Tumor Suppressor Protein p53 , Withanolides , Humans , Withanolides/pharmacology , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Glycolysis/drug effects , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Signal Transduction/drug effects , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Cell Proliferation/drug effects , Hep G2 Cells , Gene Expression Regulation, Neoplastic/drug effects , Carcinogenesis/drug effects
13.
J Med Chem ; 67(11): 8667-8692, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38651495

ABSTRACT

The targeting of cancer cell intrinsic metabolism has emerged as a promising strategy for antitumor intervention. In the study, we identified the first-in-class small molecules that effectively inhibit both mutant isocitrate dehydrogenase 1 (mIDH1) and nicotinamide phosphoribosyltransferase (NAMPT), two crucial targets in cancer metabolism, through structure-based drug design. Notably, compound 23h exhibits excellent and balanced inhibitory activities against both mIDH1 (IC50 = 14.93 nM) and NAMPT (IC50 = 12.56 nM), leading to significant suppression of IDH1-mutated glioma cell (U87 MG-IDH1R132H) proliferation. Significantly, compound 23h has the ability to cross the blood-brain barrier (B/P ratio, 0.76) and demonstrates remarkable in vivo antitumor efficacy (20 mg/kg) in the U87 MG-IDH1R132H orthotopic transplantation mouse models without any notable toxicity. This proof-of-concept investigation substantiates the viability of discovering small molecules that concurrently target mIDH1 and NAMPT, providing valuable leads for the treatment of glioma and an efficient approach for the discovery of multitarget antitumor drugs.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Cytokines , Glioma , Isocitrate Dehydrogenase , Nicotinamide Phosphoribosyltransferase , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Nicotinamide Phosphoribosyltransferase/metabolism , Isocitrate Dehydrogenase/antagonists & inhibitors , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Glioma/drug therapy , Glioma/pathology , Animals , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemical synthesis , Mice , Cytokines/metabolism , Cell Proliferation/drug effects , Cell Line, Tumor , Mutation , Drug Discovery , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Structure-Activity Relationship , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/therapeutic use , Enzyme Inhibitors/chemical synthesis , Mice, Nude
14.
J Neurooncol ; 168(2): 355-365, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38557927

ABSTRACT

PURPOSE: The proximate localization of MTAP, which encodes methylthioadenosine phosphorylase, and CDKN2A/B on Chromosome 9q21 has allowed the loss of MTAP expression as a surrogate for homozygous deletion of CDKN2A/B. This study aimed to determine whether MTAP status correlates with clinical outcomes and 11C-methionine uptake in astrocytomas with IDH mutations. METHODS: We conducted immunohistochemistry for MTAP in 30 patients with astrocytoma, IDH-mutant who underwent 11C-methionine positron emission tomography scans prior to surgical resection. The tumor-to-normal (T/N) ratio of 11C-methionine uptake was calculated using the mean standardized uptake value (SUV) for tumor and normal brain tissues. Cox regression analysis was used for multivariate survival analysis. RESULTS: Among IDH-mutant astrocytomas, 26.7% (8/30) exhibited the loss of cytoplasmic MTAP expression, whereas 73.3% (22/30) tumors retained MTAP expression. The median progression-free survival (PFS) was significantly shorter in patients with MTAP loss than those with MTAP retention (1.88 years vs. 6.80 years, p = 0.003). The median overall survival (OS) was also shorter in patients with MTAP loss than in MTAP-retaining counterparts (5.23 years vs. 10.69 years, p = 0.019). Multivariate analysis identified MTAP status (hazard ratio (HR), 0.081) and extent of resection (HR, 0.104) as independent prognostic factors for PFS. Astrocytomas lacking cytoplasmic MTAP expression showed a significantly higher median T/N ratio for 11C-methionine uptake than tumors retaining MTAP (2.12 vs. 1.65, p = 0.012). CONCLUSION: Our study revealed that the loss of MTAP expression correlates with poor prognosis and an elevated T/N ratio of 11C-methionine uptake in astrocytoma, IDH-mutant.


Subject(s)
Astrocytoma , Brain Neoplasms , Isocitrate Dehydrogenase , Methionine , Mutation , Purine-Nucleoside Phosphorylase , Humans , Purine-Nucleoside Phosphorylase/metabolism , Purine-Nucleoside Phosphorylase/genetics , Astrocytoma/genetics , Astrocytoma/metabolism , Astrocytoma/diagnostic imaging , Astrocytoma/pathology , Astrocytoma/mortality , Female , Male , Methionine/metabolism , Middle Aged , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Brain Neoplasms/mortality , Prognosis , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Adult , Aged , Positron-Emission Tomography , Carbon Radioisotopes , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Young Adult
15.
Nat Commun ; 15(1): 3445, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658533

ABSTRACT

Mutations in isocitrate dehydrogenases (IDH) are oncogenic events due to the generation of oncogenic metabolite 2-hydroxyglutarate. However, the role of wild-type IDH in cancer development remains elusive. Here we show that wild-type IDH2 is highly expressed in triple negative breast cancer (TNBC) cells and promotes their proliferation in vitro and tumor growth in vivo. Genetic silencing or pharmacological inhibition of wt-IDH2 causes a significant increase in α-ketoglutarate (α-KG), indicating a suppression of reductive tricarboxylic acid (TCA) cycle. The aberrant accumulation of α-KG due to IDH2 abrogation inhibits mitochondrial ATP synthesis and promotes HIF-1α degradation, leading to suppression of glycolysis. Such metabolic double-hit results in ATP depletion and suppression of tumor growth, and renders TNBC cells more sensitive to doxorubicin treatment. Our study reveals a metabolic property of TNBC cells with active utilization of glutamine via reductive TCA metabolism, and suggests that wild-type IDH2 plays an important role in this metabolic process and could be a potential therapeutic target for TNBC.


Subject(s)
Cell Proliferation , Citric Acid Cycle , Isocitrate Dehydrogenase , Ketoglutaric Acids , Triple Negative Breast Neoplasms , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Humans , Female , Animals , Cell Line, Tumor , Citric Acid Cycle/drug effects , Ketoglutaric Acids/metabolism , Mice , Cell Proliferation/drug effects , Glycolysis/drug effects , Adenosine Triphosphate/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mitochondria/metabolism , Mitochondria/drug effects , Glutamine/metabolism , Xenograft Model Antitumor Assays , Mutation
16.
Zhonghua Bing Li Xue Za Zhi ; 53(5): 439-445, 2024 May 08.
Article in Chinese | MEDLINE | ID: mdl-38678323

ABSTRACT

Objective: To examine whether immunohistochemistry of methylthioadenosine phosphorylase (MTAP) and p16 could be used to predict the CDKN2A status in various brain tumors. Methods: A total of 118 cases of IDH-mutant astrocytomas, 16 IDH-wildtype glioblastoma, 17 polymorphic xanthoastrocytoma (PXA) and 20 meningiomas diagnosed at Xuanwu Hospital, Capital Medical University, Beijing, China from November 2017 to October 2023 were collected and analyzed. The CDKN2A status was detected by using fluorescence in situ hybridization or next-generation sequencing. Expression of MTAP and p16 proteins was detected with immunohistochemistry. The association of loss of MTAP/p16 expression with CDKN2A homozygous/heterozygous deletion was examined. Results: Among the 118 cases of IDH-mutant astrocytoma, 13 cases showed homozygous deletion of CDKN2A. All of them had no expression of MTAP while 9 cases had no expression of p16. Among the 16 cases of IDH wild-type glioblastoma, 6 cases showed homozygous deletion of CDKN2A. All 6 cases had no expression of MTAP, while 3 of these cases had no expression of p16 expression. Among the 17 PXA cases, 4 cases showed homozygous deletion of CDKN2A, and the expression of MTAP and p16 was also absent in these 4 cases. Among the 20 cases of meningiomas, 4 cases showed homozygous deletion of CDKN2A. Their expression of MTAP and p16 was also absent. Among the four types of brain tumors, MTAP was significantly correlated with CDKN2A homozygous deletion (P<0.05), with a sensitivity of 100%. However, it was only significantly correlated with the loss of heterozygosity (LOH) of CDKN2A in astrocytomas (P<0.001). P16 was associated with CDKN2A homozygous deletion in IDH-mutant astrocytoma and PXA (P<0.001), but not with the LOH of CDKN2A. Its sensitivity and specificity were lower than that of MTAP. Conclusions: MTAP could serve as a predictive surrogate for CDKN2A homozygous deletion in adult IDH-mutant astrocytoma, PXA, adult IDH-wildtype glioblastoma and meningioma. However, p16 could only be used in the first two tumor types, and its specificity and sensitivity are lower than that of MTAP.


Subject(s)
Biomarkers, Tumor , Brain Neoplasms , Cyclin-Dependent Kinase Inhibitor p16 , Homozygote , Purine-Nucleoside Phosphorylase , Humans , Purine-Nucleoside Phosphorylase/genetics , Purine-Nucleoside Phosphorylase/metabolism , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p16/genetics , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Astrocytoma/genetics , Astrocytoma/metabolism , Meningioma/genetics , Meningioma/metabolism , Meningioma/pathology , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Immunohistochemistry , In Situ Hybridization, Fluorescence , Gene Deletion , Meningeal Neoplasms/genetics , Meningeal Neoplasms/metabolism , Mutation , Male , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Female , Adult , High-Throughput Nucleotide Sequencing
17.
Cell ; 187(10): 2485-2501.e26, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38653236

ABSTRACT

Glioma contains malignant cells in diverse states. Here, we combine spatial transcriptomics, spatial proteomics, and computational approaches to define glioma cellular states and uncover their organization. We find three prominent modes of organization. First, gliomas are composed of small local environments, each typically enriched with one major cellular state. Second, specific pairs of states preferentially reside in proximity across multiple scales. This pairing of states is consistent across tumors. Third, these pairwise interactions collectively define a global architecture composed of five layers. Hypoxia appears to drive the layers, as it is associated with a long-range organization that includes all cancer cell states. Accordingly, tumor regions distant from any hypoxic/necrotic foci and tumors that lack hypoxia such as low-grade IDH-mutant glioma are less organized. In summary, we provide a conceptual framework for the organization of cellular states in glioma, highlighting hypoxia as a long-range tissue organizer.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioblastoma/pathology , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Spatial Analysis , Transcriptome/genetics , Tumor Microenvironment , Proteomics , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Gene Expression Regulation, Neoplastic
18.
Adv Sci (Weinh) ; 11(23): e2310208, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582508

ABSTRACT

The progestin regimen is one of the main therapeutic strategies for women with endometrial cancer who undergo conservative management. Although many patients respond well to initial therapy, progestin-refractory disease inevitably emerges, and the molecular basis underlying progestin resistance has not been comprehensively elucidated. Herein, they demonstrated progestin results in p38-dependent IDH1 Thr 77 phosphorylation (pT77-IDH1). pT77-IDH1 translocates into the nucleus and is recruited to chromatin through its interaction with OCT6. IDH1-produced α-ketoglutarate (αKG) then facilitates the activity of OCT6 to promote focal adhesion related target gene transcription to confer progestin resistance. Pharmacological inhibition of p38 or focal adhesion signaling sensitizes endometrial cancer cells to progestin in vivo. The study reveals p38-dependent pT77-IDH1 as a key mediator of progestin resistance and a promising target for improving the efficacy of progestin therapy.


Subject(s)
Drug Resistance, Neoplasm , Endometrial Neoplasms , Isocitrate Dehydrogenase , Progestins , Female , Humans , Endometrial Neoplasms/genetics , Endometrial Neoplasms/metabolism , Endometrial Neoplasms/drug therapy , Progestins/pharmacology , Progestins/metabolism , Drug Resistance, Neoplasm/genetics , Mice , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Animals , Phosphorylation , Cell Line, Tumor , Disease Models, Animal
19.
Signal Transduct Target Ther ; 9(1): 105, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38679634

ABSTRACT

Impaired brain glucose metabolism is an early indicator of Alzheimer's disease (AD); however, the fundamental mechanism is unknown. In this study, we found a substantial decline in isocitrate dehydrogenase 3ß (IDH3ß) levels, a critical tricarboxylic acid cycle enzyme, in AD patients and AD-transgenic mice's brains. Further investigations demonstrated that the knockdown of IDH3ß induced oxidation-phosphorylation uncoupling, leading to reduced energy metabolism and lactate accumulation. The resulting increased lactate, a source of lactyl, was found to promote histone lactylation, thereby enhancing the expression of paired-box gene 6 (PAX6). As an inhibitory transcription factor of IDH3ß, the elevated PAX6 in turn inhibited the expression of IDH3ß, leading to tau hyperphosphorylation, synapse impairment, and learning and memory deficits resembling those seen in AD. In AD-transgenic mice, upregulating IDH3ß and downregulating PAX6 were found to improve cognitive functioning and reverse AD-like pathologies. Collectively, our data suggest that impaired oxidative phosphorylation accelerates AD progression via a positive feedback inhibition loop of IDH3ß-lactate-PAX6-IDH3ß. Breaking this loop by upregulating IDH3ß or downregulating PAX6 attenuates AD neurodegeneration and cognitive impairments.


Subject(s)
Alzheimer Disease , Isocitrate Dehydrogenase , PAX6 Transcription Factor , Animals , Female , Humans , Male , Mice , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Feedback, Physiological , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Mice, Transgenic , PAX6 Transcription Factor/genetics , PAX6 Transcription Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...