Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.819
Filter
1.
Chem Commun (Camb) ; 60(53): 6757-6760, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38864269

ABSTRACT

The total synthesis of 1,4a-di-epi-ent-pancratistatin, a novel stereoisomer of the anti-tumor Amaryllidaceae alkaloid pancratistatin, was achieved in 14 steps starting from D-mannitol. The construction of the pancratistatin skeleton involved conjugate addition of organocuprate to a nitrosoolefin, which was generated in situ from inosose oxime. This was followed by stereoselective reduction of the oxime to an amine and site-selective formylation. Biological evaluations revealed that the newly synthesized compounds exhibit cytotoxicity toward cancer cells and significant ferroptosis inhibitory activity. These compounds constitute a promising small-molecule library for the development of potent bioactive agents.


Subject(s)
Amaryllidaceae Alkaloids , Amaryllidaceae Alkaloids/chemistry , Amaryllidaceae Alkaloids/pharmacology , Amaryllidaceae Alkaloids/chemical synthesis , Humans , Stereoisomerism , Cell Line, Tumor , Isoquinolines/chemistry , Isoquinolines/pharmacology , Isoquinolines/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Drug Screening Assays, Antitumor , Molecular Structure , Cell Proliferation/drug effects , Structure-Activity Relationship , Cell Survival/drug effects
2.
Alkaloids Chem Biol ; 91: 1-410, 2024.
Article in English | MEDLINE | ID: mdl-38811064

ABSTRACT

Naphthylisoquinoline alkaloids are a fascinating class of natural biaryl compounds. They show characteristic mono- and dimeric scaffolds, with chiral axes and stereogenic centers. Since the appearance of the last comprehensive overview on these secondary plant metabolites in this series in 1995, the number of discovered representatives has tremendously increased to more than 280 examples known today. Many novel-type compounds have meanwhile been discovered, among them naphthylisoquinoline-related follow-up products like e.g., the first seco-type (i.e., ring-opened) and ring-contracted analogues. As highlighted in this review, the knowledge on the broad structural chemodiversity of naphthylisoquinoline alkaloids has been decisively driven forward by extensive phytochemical studies on the metabolite pattern of Ancistrocladus abbreviatus from Coastal West Africa, which is a particularly "creative" plant. These investigations furnished a considerable number of more than 80-mostly new-natural products from this single species, with promising antiplasmodial activities and with pronounced cytotoxic effects against human leukemia, pancreatic, cervical, and breast cancer cells. Another unique feature of naphthylisoquinoline alkaloids is their unprecedented biosynthetic origin from polyketidic precursors and not, as usual for isoquinoline alkaloids, from aromatic amino acids-a striking example of biosynthetic convergence in nature. Furthermore, remarkable botanical results are presented on the natural producers of naphthylisoquinoline alkaloids, the paleotropical Dioncophyllaceae and Ancistrocladaceae lianas, including first investigations on the chemoecological role of these plant metabolites and their storage and accumulation in particular plant organs.


Subject(s)
Alkaloids , Isoquinolines , Humans , Alkaloids/chemistry , Alkaloids/pharmacology , Alkaloids/metabolism , Isoquinolines/chemistry , Isoquinolines/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Animals , Molecular Structure
3.
Bioorg Med Chem Lett ; 108: 129793, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38735343

ABSTRACT

Neuromuscular blocking agents (NMBAs) are widely used in anesthesia for intubation and surgical muscle relaxation. Novel atracurium and mivacurium derivatives were developed, with compounds 18c, 18d, and 29a showing mivacurium-like relaxation at 27.27 nmol/kg, and 15b, 15c, 15e, and 15h having a shorter duration at 272.7 nmol/kg. The structure-activity and configuration-activity relationships of these derivatives and 29a's binding to nicotinic acetylcholine receptors were analyzed through molecular docking. Rabbit trials showed 29a has a shorter duration compared to mivacurium. This suggests that linker properties, ammonium group substituents, and configuration are crucial for NMBA activity and duration, with compound 29a emerging as a potential ultra-short-acting NMBA.


Subject(s)
Drug Design , Isoquinolines , Neuromuscular Blocking Agents , Neuromuscular Blocking Agents/pharmacology , Neuromuscular Blocking Agents/chemical synthesis , Neuromuscular Blocking Agents/chemistry , Structure-Activity Relationship , Animals , Isoquinolines/chemistry , Isoquinolines/pharmacology , Isoquinolines/chemical synthesis , Rabbits , Receptors, Nicotinic/metabolism , Molecular Docking Simulation , Molecular Structure , Dose-Response Relationship, Drug , Mivacurium , Atracurium/analogs & derivatives , Atracurium/pharmacology , Atracurium/chemical synthesis , Atracurium/chemistry
4.
Exp Cell Res ; 439(1): 114098, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38796136

ABSTRACT

The involvement of γδT cells, Th17 cells, and CD4+CD25+ regulatory T cells (Tregs) is crucial in the progression of pulmonary fibrosis (PF), particularly in maintaining immune tolerance and homeostasis. However, the dynamics of these cells in relation to PF progression, especially under pharmacological interventions, remains poorly understood. This study aims to unravel the interplay between the dynamic changes of these cells and the effect of pharmacological agents in a mouse model of PF induced by intratracheal instillation of bleomycin. We analyzed changes in lung histology, lung index, hydroxyproline levels, and the proportions of γδT cells, Th17 cells, and Tregs on the 3rd, 14th, and 28th days following treatment with Neferine, Isoliensinine, Pirfenidone, and Prednisolone. Our results demonstrate that these drugs can partially or dynamically reverse weight loss, decrease lung index and hydroxyproline levels, and ameliorate lung histopathological damage. Additionally, they significantly modulated the abnormal changes in γδT, Th17, and Treg cell proportions. Notably, on day 3, the proportion of γδT cells increased in the Neferine and Prednisolone groups but decreased in the Isoliensinine and Pirfenidone groups, while the proportion of Th17 cells decreased across all treated groups. On day 14, the Neferine group showed an increase in all three cell types, whereas the Pirfenidone group exhibited a decrease. In the Isoliensinine group, γδT and Th17 cells increased, and in the Prednisolone group, only Tregs increased. By day 28, an increase in Th17 cell proportion was observed in all treatment groups, with a decrease in γδT cells noted in the Neferine group. These shifts in cell proportions are consistent with the pathogenesis changes induced by these anti-PF drugs, suggesting a correlation between cellular dynamics and pharmacological interventions in PF progression. Our findings imply potential strategies for assessing the efficacy and timing of anti-PF treatments based on these cellular changes.


Subject(s)
Bleomycin , Pulmonary Fibrosis , T-Lymphocytes, Regulatory , Th17 Cells , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Th17 Cells/drug effects , Th17 Cells/immunology , Mice , Pyridones/pharmacology , Male , Prednisolone/pharmacology , Disease Progression , Mice, Inbred C57BL , Disease Models, Animal , Lung/pathology , Lung/immunology , Lung/drug effects , Interleukin-2 Receptor alpha Subunit/metabolism , Isoquinolines/pharmacology , Benzylisoquinolines/pharmacology
5.
Langmuir ; 40(22): 11381-11389, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38776135

ABSTRACT

The nanomaterialization of traditional Chinese medicine (TCM) has aroused widespread interest among researchers. Sanguinarine (SAN) is a kind of TCM with good antibacterial properties, which has important applications in anti-infection of wounds. Additionally, the combination of photothermal therapy and chemotherapy can overcome bacterial resistance, further improving bactericidal and wound healing efficiency. In this paper, we prepared an antibacterial agent by loading SAN on the zwitterion-modified MXene quantum dot nanocarrier (SAN@AHEP@Ta4C3), realizing pH/NIR controlled drug release and photothermal/chemotherapy synergistic antibacterial and wound healing. The particle size of SAN@AHEP@Ta4C3 is about 120 nm, and it has a good water solubility and stability. In addition, it also has excellent photothermal conversion performance (η = 39.2%), which can effectively convert light energy into heat energy under near-infrared (NIR) laser irradiation, further promoting drug release and achieving bactericidal effects by synergistic chemotherapy and photothermal therapy. The in vitro and in vivo experiments show that SAN@AHEP@Ta4C3 exhibits an excellent antibacterial effect against Staphylococcus aureus and Escherichia coli, and it can effectively promote the wound healing of mice. Moreover, the SAN@AHEP@Ta4C3 also has good biocompatibility and has no side effects on normal tissue and organs. This work introduces a multifunctional antibacterial agent based on TCM and hot-spot material MXene, which will have considerable application prospects in biomedical fields.


Subject(s)
Anti-Bacterial Agents , Benzophenanthridines , Drug Carriers , Escherichia coli , Isoquinolines , Quantum Dots , Staphylococcus aureus , Wound Healing , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Wound Healing/drug effects , Quantum Dots/chemistry , Staphylococcus aureus/drug effects , Animals , Benzophenanthridines/chemistry , Benzophenanthridines/pharmacology , Escherichia coli/drug effects , Mice , Drug Carriers/chemistry , Isoquinolines/chemistry , Isoquinolines/pharmacology , Medicine, Chinese Traditional , Photothermal Therapy , Drug Liberation , Microbial Sensitivity Tests
6.
Phytochemistry ; 223: 114139, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750707

ABSTRACT

Eleven undescribed isoquinoline alkaloids (1-8, 14, 15, and 24), along with 19 analogues (9-13, 16-23, and 25-30) were isolated from the barks of Alangium salviifolium. The structures of the undescribed compounds were elucidated through the analysis of their HR-ESI-MS, 1D and 2D NMR, IR, UV, and X-ray diffraction. The absolute configuration of 8 was established via the ECD calculation. Notably, compounds 1/2 and 3/4 were two pairs of C-14 epimers. The isolated alkaloids were evaluated for their cytotoxicity against various cancer cell lines, including SGC-7901, HeLa, K562, A549, BEL-7402, HepG2, and B16, ß-carboline-benzoquinolizidine (14-22) and cepheline-type (24-28) alkaloids exhibited remarkable cytotoxicity, with IC50 values ranging from 0.01 to 48.12 µM. Remarkably, compounds 17 and 21 demonstrated greater cytotoxicity than the positive control doxorubicin hydrochloride. Furthermore, a significant proportion of these bioactive alkaloids possess a C-1' epimer configuration. The exploration of their structure-activity relationship holds promise for directing future investigations into alkaloids derived from Alangium, potentially leading to novel insights and therapeutic advancements.


Subject(s)
Alkaloids , Antineoplastic Agents, Phytogenic , Drug Screening Assays, Antitumor , Isoquinolines , Plant Bark , Humans , Alkaloids/chemistry , Alkaloids/pharmacology , Alkaloids/isolation & purification , Plant Bark/chemistry , Isoquinolines/chemistry , Isoquinolines/pharmacology , Isoquinolines/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Molecular Structure , Structure-Activity Relationship , Cell Line, Tumor , Alangiaceae/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug
7.
BMC Complement Med Ther ; 24(1): 202, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783288

ABSTRACT

BACKGROUND: 6-Methoxydihydrosanguinarine (6-MDS) has shown promising potential in fighting against a variety of malignancies. Yet, its anti­lung adenocarcinoma (LUAD) effect and the underlying mechanism remain largely unexplored. This study sought to explore the targets and the probable mechanism of 6-MDS in LUAD through network pharmacology and experimental validation. METHODS: The proliferative activity of human LUAD cell line A549 was evaluated by Cell Counting Kit-8 (CCK8) assay. LUAD related targets, potential targets of 6-MDS were obtained from databases. Venn plot analysis were performed on 6-MDS target genes and LUAD related genes to obtain potential target genes for 6-MDS treatment of LUAD. The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database was utilized to perform a protein-protein interaction (PPI) analysis, which was then visualized by Cytoscape. The hub genes in the network were singled out by CytoHubba. Metascape was employed for GO and KEGG enrichment analyses. molecular docking was carried out using AutoDock Vina 4.2 software. Gene expression levels, overall survival of hub genes were validated by the GEPIA database. Protein expression levels, promotor methylation levels of hub genes were confirmed by the UALCAN database. Timer database was used for evaluating the association between the expression of hub genes and the abundance of infiltrating immune cells. Furthermore, correlation analysis of hub genes expression with immune subtypes of LUAD were performed by using the TISIDB database. Finally, the results of network pharmacology analysis were validated by qPCR. RESULTS: Experiments in vitro revealed that 6-MDS significantly reduced tumor growth. A total of 33 potential targets of 6-MDS in LUAD were obtained by crossing the LUAD related targets with 6-MDS targets. Utilizing CytoHubba, a network analysis tool, the top 10 genes with the highest centrality measures were pinpointed, including MMP9, CDK1, TYMS, CCNA2, ERBB2, CHEK1, KIF11, AURKB, PLK1 and TTK. Analysis of KEGG enrichment hinted that these 10 hub genes were located in the cell cycle signaling pathway, suggesting that 6-MDS may mainly inhibit the occurrence of LUAD by affecting the cell cycle. Molecular docking analysis revealed that the binding energies between 6-MDS and the hub proteins were all higher than - 6 kcal/Mol with the exception of AURKB, indicating that the 9 targets had strong binding ability with 6-MDS.These results were corroborated through assessments of mRNA expression levels, protein expression levels, overall survival analysis, promotor methylation level, immune subtypes andimmune infiltration. Furthermore, qPCR results indicated that 6-MDS can significantly decreased the mRNA levels of CDK1, CHEK1, KIF11, PLK1 and TTK. CONCLUSIONS: According to our findings, it appears that 6-MDS could possibly serve as a promising option for the treatment of LUAD. Further investigations in live animal models are necessary to confirm its potential in fighting cancer and to delve into the mechanisms at play.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Molecular Docking Simulation , Network Pharmacology , Humans , Lung Neoplasms/drug therapy , Adenocarcinoma of Lung/drug therapy , A549 Cells , Isoquinolines/pharmacology , Isoquinolines/chemistry , Protein Interaction Maps , Cell Proliferation/drug effects , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Mice
8.
ACS Chem Biol ; 19(6): 1303-1310, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38743035

ABSTRACT

Isoquinolinequinones represent an important family of natural alkaloids with profound biological activities. Heterologous expression of a rare bifunctional indole prenyltransferase/tryptophan indole-lyase enzyme from Streptomyces mirabilis P8-A2 in S. albidoflavus J1074 led to the activation of a putative isoquinolinequinone biosynthetic gene cluster and production of a novel isoquinolinequinone alkaloid, named maramycin (1). The structure of maramycin was determined by analysis of spectroscopic (1D/2D NMR) and MS spectrometric data. The prevalence of this bifunctional biosynthetic enzyme was explored and found to be a recent evolutionary event with only a few representatives in nature. Maramycin exhibited moderate cytotoxicity against human prostate cancer cell lines, LNCaP and C4-2B. The discovery of maramycin (1) enriched the chemical diversity of natural isoquinolinequinones and also provided new insights into crosstalk between the host biosynthetic genes and the heterologous biosynthetic genes in generating new chemical scaffolds.


Subject(s)
Dimethylallyltranstransferase , Isoquinolines , Streptomyces , Streptomyces/genetics , Streptomyces/metabolism , Streptomyces/enzymology , Humans , Dimethylallyltranstransferase/metabolism , Dimethylallyltranstransferase/genetics , Cell Line, Tumor , Isoquinolines/chemistry , Isoquinolines/metabolism , Isoquinolines/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Terpenes/metabolism , Terpenes/chemistry , Multigene Family
9.
Med Sci Monit ; 30: e943630, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38693676

ABSTRACT

BACKGROUND Mivacurium is a non-depolarizing neuromuscular blocking agent. TOF-Cuff® is a device that monitors intraoperative neuromuscular blockade and blood pressure. TOF-Scan® measures muscle relaxation status of an anaesthetized patient. This study included 36 patients aged 18 to 75 years presenting for elective surgery, to compare neuromuscular blockade measured using the TOF-Cuff of the upper arm and the TOF-Scan of the facial corrugator supercilii muscle during general anesthesia and following administration of mivacurium. MATERIAL AND METHODS Train-of-four (TOF) values were obtained every 30 s before intubation and successively every 5 min until extubation. RESULTS The median onset time for TOF-Cuff was longer than for TOF-Scan (210 s vs 90 s, P<0.00001). Multiplying the time to relaxation (according to TOF-Scan) by 1 to 8, respectively, provided concordance with the TOF-Cuff result for the following cumulative percentages of patients: 5.5%, 38.9%, 58.3%, 77.8%, 83.3%, 86.1%, 88.9%, and 91.7%. Analogue values for time to recovery from the last dose were 11.1%, 63.9%, 83.3%, 86.1%, 86.1%, 88.9%, 88.9%, and 91.7%. The proportion of patients who still had TOFratio=0 in the assessment performed at min 15 did not differ significantly between these 2 methods (P=0.088). Both TOF-Scan and TOF-Cuff showed a false-negative result in patients with clinical symptoms of preterm recovery; the numerical difference favored TOF-Cuff (1.6% vs 2.1%) but without statistical significance (P=0.2235). CONCLUSIONS When measurement on the limb is not possible, TOF-Scan on the eyelid can be an alternative for TOF-Cuff on the upper arm, if the time to relaxation is multiplied by at least 8, which is enough for 90% of patients.


Subject(s)
Anesthesia, General , Arm , Eyelids , Mivacurium , Neuromuscular Blockade , Humans , Anesthesia, General/methods , Middle Aged , Male , Adult , Female , Neuromuscular Blockade/methods , Aged , Eyelids/drug effects , Adolescent , Isoquinolines/pharmacology , Young Adult , Neuromuscular Nondepolarizing Agents
10.
J Med Chem ; 67(9): 7006-7032, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38668707

ABSTRACT

G-quadruplexes are noncanonical four-stranded DNA secondary structures. MYC is a master oncogene and the G-quadruplex formed in the MYC promoter functions as a transcriptional silencer and can be stabilized by small molecules. We have previously revealed a novel mechanism of action for indenoisoquinoline anticancer drugs, dual-downregulation of MYC and inhibition of topoisomerase I. Herein, we report the design and synthesis of novel 7-aza-8,9-methylenedioxyindenoisoquinolines based on desirable substituents and π-π stacking interactions. These compounds stabilize the MYC promoter G-quadruplex, significantly lower MYC levels in cancer cells, and inhibit topoisomerase I. MYC targeting was demonstrated by differential activities in Raji vs CA-46 cells and cytotoxicity in MYC-dependent cell lines. Cytotoxicities in the NCI-60 panel of human cancer cell lines were investigated. Favorable pharmacokinetics were established, and in vivo anticancer activities were demonstrated in xenograft mouse models. Furthermore, favorable brain penetration, brain pharmacokinetics, and anticancer activity in an orthotopic glioblastoma mouse model were demonstrated.


Subject(s)
Antineoplastic Agents , Drug Design , G-Quadruplexes , Isoquinolines , Promoter Regions, Genetic , Proto-Oncogene Proteins c-myc , Topoisomerase I Inhibitors , G-Quadruplexes/drug effects , Humans , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Isoquinolines/pharmacology , Isoquinolines/chemistry , Isoquinolines/pharmacokinetics , Isoquinolines/chemical synthesis , Mice , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Topoisomerase I Inhibitors/pharmacology , Topoisomerase I Inhibitors/chemical synthesis , Topoisomerase I Inhibitors/pharmacokinetics , Topoisomerase I Inhibitors/chemistry , Topoisomerase I Inhibitors/therapeutic use , Structure-Activity Relationship , DNA Topoisomerases, Type I/metabolism , Xenograft Model Antitumor Assays
11.
Mar Drugs ; 22(4)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38667758

ABSTRACT

Nemertean worms contain toxins that are used to paralyze their prey and to deter potential predators. Hoplonemerteans often contain pyridyl alkaloids like anabaseine that act through nicotinic acetylcholine receptors and crustacean chemoreceptors. The chemical reactivity of anabaseine, the first nemertean alkaloid to be identified, has been exploited to make drug candidates selective for alpha7 subtype nAChRs. GTS-21, a drug candidate based on the anabaseine scaffold, has pro-cognitive and anti-inflammatory actions in animal models. The circumpolar chevron hoplonemertean Amphiporus angulatus contains a multitude of pyridyl compounds with neurotoxic, anti-feeding, and anti-fouling activities. Here, we report the isolation and structural identification of five new compounds, doubling the number of pyridyl alkaloids known to occur in this species. One compound is an isomer of the tobacco alkaloid anatabine, another is a unique dihydroisoquinoline, and three are analogs of the tetrapyridyl nemertelline. The structural characteristics of these ten compounds suggest several possible pathways for their biosynthesis.


Subject(s)
Alkaloids , Isoquinolines , Animals , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification , Isoquinolines/pharmacology , Isoquinolines/chemistry , Isoquinolines/isolation & purification , Invertebrates/chemistry , Pyridines/pharmacology , Pyridines/chemistry , Pyridines/isolation & purification , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/drug effects , Molecular Structure
12.
J Ethnopharmacol ; 330: 118218, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38677570

ABSTRACT

ETHNOPHARMACOLOGY RELEVANCE: Zanthoxylum bungeanum Maxim. (Z. bungeanum), a member of the Rutaceae family, has a rich history of traditional use in Asia for treating arthritis and toothache conditions. As characteristic chemical components, numerous kinds of alkaloids have been extracted from plants and their diverse biological activities have been reported. However, research on the isoquinoline alkaloid, a specific type of alkaloids, in Z. bungeanum was scarce. AIM OF THE STUDY: The study aimed to isolate a novel isoquinoline alkaloid from Z. bungeanum and explore its pharmacological activity in vitro and analgesic activity in vivo. MATERIALS AND METHODS: Isoquinoline alkaloid isolation and identification from Z. bungeanum were conducted using chromatographic and spectroscopic methods. The whole-cell patch-clamp technique was applied to assess its impact on neuronal excitability, and endogenous voltage-gated potassium (Kv) and sodium (Nav) currents in acutely isolated mouse small-diameter dorsal root ganglion (DRG) neurons. Its inhibitory impacts on channels were further validated with HEK293 cells stably expressing Nav1.7 and Nav1.8, and Chinese hamster ovary (CHO) cells transiently expressing Kv2.1. The formalin inflammatory pain model was utilized to evaluate the potential analgesic activity in vivo. RESULTS: A novel isoquinoline alkaloid named HJ-69 (N-13-(3-methoxyprop-1-yl)rutaecarpine) was isolated and identified from Z. bungeanum for the first time. HJ-69 significantly suppressed the firing frequency and amplitudes of action potentials in DRG neurons. Consistently, it state-dependently inhibited endogenous Nav currents of DRG neurons, with half maximal inhibitory concentration (IC50) values of 13.06 ± 2.06 µM and 30.19 ± 2.07 µM for the inactivated and resting states, respectively. HJ-69 significantly suppressed potassium currents in DRG neurons, which notably inhibited the delayed rectifier potassium (IK) currents (IC50 = 6.95 ± 1.29 µM) and slightly affected the transient outward potassium (IA) currents (IC50 = 523.50 ± 39.16 µM). Furtherly, HJ-69 exhibited similar potencies on heterologously expressed Nav1.7, Nav1.8, and Kv2.1 channels, which correspondingly represent the main components in neurons. Notably, intraperitoneal administration of 30 mg/kg and 100 mg/kg HJ-69 significantly alleviated pain behaviors in the mouse inflammatory pain model induced by formalin. CONCLUSION: The study concluded that HJ-69 is a novel and active isoquinoline alkaloid, and the inhibition of Nav and Kv channels contributes to its analgesic activity. HJ-69 may be a promising prototype for future analgesic drug discovery based on the isoquinoline alkaloid.


Subject(s)
Analgesics , Ganglia, Spinal , Pain , Zanthoxylum , Animals , Zanthoxylum/chemistry , Humans , HEK293 Cells , Analgesics/pharmacology , Analgesics/chemistry , Analgesics/isolation & purification , Analgesics/therapeutic use , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Mice , Male , Pain/drug therapy , Isoquinolines/pharmacology , Isoquinolines/isolation & purification , Isoquinolines/chemistry , Alkaloids/pharmacology , Alkaloids/isolation & purification , Alkaloids/chemistry , Alkaloids/therapeutic use , Potassium Channel Blockers/pharmacology , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Inflammation/drug therapy , Voltage-Gated Sodium Channel Blockers/pharmacology , Voltage-Gated Sodium Channel Blockers/isolation & purification , Potassium Channels, Voltage-Gated/metabolism , Potassium Channels, Voltage-Gated/drug effects , Neurons/drug effects , Neurons/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/chemistry , Mice, Inbred C57BL , Cricetulus
13.
Eur J Med Chem ; 271: 116417, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38688063

ABSTRACT

Since synovial hypoxic microenvironment significantly promotes the pathological progress of rheumatoid arthritis (RA), hypoxia-inducible factor 1 (HIF-1) has been emerged as a promising target for the development of novel therapeutic agents for RA treatment. In this study, we designed and synthesized a series of diaryl substituted isoquinolin-1(2H)-one derivatives as HIF-1 signaling inhibitors using scaffold-hopping strategy. By modifying the substituents on N-atom and 6-position of isoquinolin-1-one, we discovered compound 17q with the most potent activities against HIF-1 (IC50 = 0.55 µM) in a hypoxia-reactive element (HRE) luciferase reporter assay. Further pharmacological studies revealed that 17q concentration-dependently blocked hypoxia-induced HIF-1α protein accumulation, reduced inflammation response, inhibited cellular invasiveness and promoted VHL-dependent HIF-1α degradation in human RA synovial cell line. Moreover, 17q improved the pathological injury of ankle joints, decreased angiogenesis and attenuated inflammation response in the adjuvant-induced arthritis (AIA) rat model, indicating the promising therapeutic potential of compound 17q as an effective HIF-1 inhibitor for RA therapy.


Subject(s)
Arthritis, Rheumatoid , Isoquinolines , Signal Transduction , Animals , Humans , Male , Rats , Antirheumatic Agents/pharmacology , Antirheumatic Agents/chemistry , Antirheumatic Agents/chemical synthesis , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Dose-Response Relationship, Drug , Drug Discovery , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Isoquinolines/chemistry , Isoquinolines/pharmacology , Isoquinolines/chemical synthesis , Molecular Structure , Signal Transduction/drug effects , Structure-Activity Relationship , Quinolones/chemical synthesis , Quinolones/chemistry , Quinolones/pharmacology
14.
Phytochemistry ; 222: 114093, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615927

ABSTRACT

Nine 3-arylisoquinoline alkaloids including five undescribed ones, hypectumines A-E (1-5), were isolated from the whole herb of Hypecoum erectum L. with the guidance of 1H-NMR. Their structures were established by a combination of 1D, 2D NMR, and HRESIMS spectrometry. Among them, hypectumines A and B possessed rare urea moieties while hypectumines C and D were characterized by 3-(methylamino)propanoic acid scaffolds. Biological assay demonstrated that alkaloids hypectumine B and 2,3-dimethoxy-N-formylcorydamine had anti-inflammatory effects by inhibiting NO production on LPS-induced RAW264.7 cells with IC50 values of 24.4 and 44.2 µM, respectively. Furthermore, hypectumine B could reduce the expression of pro-inflammatory cytokines TNF-α and IL-6, suggesting it might be a potential candidate for treating inflammatory disease.


Subject(s)
Alkaloids , Lipopolysaccharides , Animals , Mice , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification , RAW 264.7 Cells , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Molecular Structure , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Isoquinolines/pharmacology , Isoquinolines/chemistry , Isoquinolines/isolation & purification , Nitric Oxide/biosynthesis , Nitric Oxide/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism , Structure-Activity Relationship , Interleukin-6/metabolism , Dose-Response Relationship, Drug , Proton Magnetic Resonance Spectroscopy
15.
Antimicrob Agents Chemother ; 68(5): e0161223, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38602413

ABSTRACT

Mycetoma is a devastating neglected tropical infection of the subcutaneous tissues. It is caused by fungal and bacterial pathogens recognized as eumycetoma and actinomycetoma, respectively. Mycetoma treatment involves diagnosing the causative microorganism as a prerequisite to prescribing a proper medication. Current therapy of fungal eumycetoma causative agents, such as Madurella mycetomatis, consists of long-term antifungal medication with itraconazole followed by surgery, yet with usually unsatisfactory clinical outcomes. Actinomycetoma, on the contrary, usually responds to treatment with co-trimoxazole and amikacin. Therefore, there is a pressing need to discover novel broad-spectrum antimicrobial agents to circumvent the time-consuming and costly diagnosis. Using the resazurin assay, a series of 23 naphthylisoquinoline (NIQ) alkaloids and related naphthoquinones were subjected to in vitro screening against two fungal strains of M. mycetomatis and three bacterial strains of Actinomadura madurae and A. syzygii. Seven NIQs, mostly dimers, showed promising in vitro activities against at least one strain of the mycetoma-causative pathogens, while the naphthoquinones did not show any activity. A synthetic NIQ dimer, 8,8'''-O,O-dimethylmichellamine A (18), inhibited all tested fungal and bacterial strains (IC50 = 2.81-12.07 µg/mL). One of the dimeric NIQs, michellamine B (14), inhibited a strain of M. mycetomatis and significantly enhanced the survival rate of Galleria mellonella larvae infected with M. mycetomatis at concentrations of 1 and 4 µg/mL, without being toxic to the uninfected larvae. As a result, broad-spectrum dimeric NIQs like 14 and 18 with antimicrobial activity are considered hit compounds that could be worth further optimization to develop novel lead antimycetomal agents.


Subject(s)
Alkaloids , Antifungal Agents , Madurella , Microbial Sensitivity Tests , Mycetoma , Mycetoma/drug therapy , Mycetoma/microbiology , Antifungal Agents/pharmacology , Animals , Alkaloids/pharmacology , Alkaloids/chemistry , Madurella/drug effects , Isoquinolines/pharmacology , Actinomadura/drug effects , Naphthoquinones/pharmacology , Larva/microbiology , Larva/drug effects , Moths/microbiology
16.
Biomed Pharmacother ; 174: 116541, 2024 May.
Article in English | MEDLINE | ID: mdl-38565063

ABSTRACT

BACKGROUND: Hypertension, a highly prevalent chronic disease, is known to inflict severe damage upon blood vessels. In our previous study, isoliensinine, a kind of bibenzyl isoquinoline alkaloid which isolated from a TCM named Lotus Plumule (Nelumbo nucifera Gaertn), exhibits antihypertensive and vascular smooth muscle proliferation-inhibiting effects, but its application is limited due to poor water solubility and low bioavailability. In this study, we proposed to prepare isoliensinine loaded by PEG-PLGA polymer nanoparticles to increase its efficacy METHOD: We synthesized and thoroughly characterized PEG-PLGA nanoparticles loaded with isoliensinine using a nanoprecipitation method, denoted as, PEG-PLGA@Isoliensinine. Additionally, we conducted comprehensive investigations into the stability of PEG-PLGA@Isoliensinine, in vitro drug release profiles, and in vivo pharmacokinetics. Furthermore, we assessed the antihypertensive efficacy of this nano-system through in vitro experiments on A7R5 cells and in vivo studies using AngII-induced mice. RESULT: The findings reveal that PEG-PLGA@Isoliensinine significantly improves isoliensinine absorption by A7R5 cells and enhances targeted in vivo distribution. This translates to a more effective reduction of AngII-induced hypertension and vascular smooth muscle proliferation. CONCLUSION: In this study, we successfully prepared PEG-PLGA@Isoliensinine by nano-precipitation, and we confirmed that PEG-PLGA@Isoliensinine surpasses free isoliensinine in its effectiveness for the treatment of hypertension, as demonstrated through both in vivo and in vitro experiments. SIGNIFICANCE: This study lays the foundation for isoliensinine's clinical use in hypertension treatment and vascular lesion protection, offering new insights for enhancing the bioavailability of traditional Chinese medicine components. Importantly, no toxicity was observed, affirming the successful implementation of this innovative drug delivery system in vivo and offers a promising strategy for enhancing the effectiveness of Isoliensinine and propose an innovative avenue for developing novel formulations of traditional Chinese medicine monomers.


Subject(s)
Antihypertensive Agents , Drug Liberation , Hypertension , Isoquinolines , Polyethylene Glycols , Animals , Hypertension/drug therapy , Polyethylene Glycols/chemistry , Antihypertensive Agents/administration & dosage , Antihypertensive Agents/pharmacology , Antihypertensive Agents/chemistry , Antihypertensive Agents/pharmacokinetics , Male , Isoquinolines/pharmacology , Isoquinolines/administration & dosage , Isoquinolines/chemistry , Isoquinolines/pharmacokinetics , Rats , Mice , Nanoparticles/chemistry , Cell Line , Nanoparticle Drug Delivery System/chemistry , Rats, Sprague-Dawley , Drug Carriers/chemistry , Blood Pressure/drug effects , Polyesters/chemistry
17.
Poult Sci ; 103(5): 103654, 2024 May.
Article in English | MEDLINE | ID: mdl-38537403

ABSTRACT

Extensive mechanistic evidence to support the beneficial function of dietary phytobiotic applications for broiler performance, gut function and health is highly warranted. In particular, for isoquinoline alkaloids (IQ) the underlying mechanisms related to critical gut homeostasis components such as cytoprotection and gut barrier are scarce, especially for young broilers at the starter growth stage (d1-10). The aim of this study was to investigate the effect of a standardized blend of IQs on the relative gene expression of critical biomarkers relevant for antioxidant response and barrier function along the intestine of young broilers at the end of starter growth phase. For this purpose, 182 one-day-old Ross 308 broilers were allocated in 2 treatments with 7 replicates of 13 broilers each: control diet-no other additions (NC), and control diet containing a standardized blend of IQs at 200 mg/kg of diet (M) for the starter growth period (1-10d). The results revealed that the IQs blend significantly upregulated (P < 0.05) the expression of genes related to antioxidant response in all intestinal segments. Moreover, the IQs blend enhanced (P < 0.05) gut barrier components primarily at duodenal level. In conclusion, the blend of IQs beneficially affected critical pathway components relevant for the gut antioxidant capacity and barrier along the intestine of young broilers.


Subject(s)
Animal Feed , Antioxidants , Chickens , Diet , Dietary Supplements , Isoquinolines , Animals , Chickens/physiology , Chickens/growth & development , Diet/veterinary , Antioxidants/metabolism , Isoquinolines/administration & dosage , Isoquinolines/pharmacology , Animal Feed/analysis , Dietary Supplements/analysis , Alkaloids/administration & dosage , Alkaloids/pharmacology , Intestines/drug effects , Intestines/physiology , Random Allocation , Male , Gene Expression/drug effects
18.
Phytomedicine ; 128: 155414, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38503155

ABSTRACT

BACKGROUND: Chagas disease and leishmaniasis affect a significant portion of the Latin American population and still lack efficient treatments. In this context, natural products emerge as promising compounds for developing more effective therapies, aiming to mitigate side effects and drug resistance. Notably, species from the Amaryllidaceae family emerge as potential reservoirs of antiparasitic agents due to the presence of diverse biologically active alkaloids. PURPOSE: To assess the anti-Trypanosoma cruzi and anti-Leishmania infantum activity of five isolated alkaloids from Hippeastrum aulicum Herb. (Amaryllidaceae) against different life stages of the parasites using in silico and in vitro assays. Furthermore, molecular docking was employed to evaluate the interaction of the most active alkaloids. METHODS: Five natural isoquinoline alkaloids isolated in suitable quantities for in vitro testing underwent preliminary in silico analysis to predict their potential efficacy against Trypanosoma cruzi (amastigote and trypomastigote forms) and Leishmania infantum (amastigote and promastigote forms). The in vitro antiparasitic activity and mammalian cytotoxicity were investigated with a subsequent comparison of both analysis (in silico and in vitro) findings. Additionally, this study employed the molecular docking technique, utilizing cruzain (T. cruzi) and sterol 14α-demethylase (CYP51, L. infantum) as crucial biological targets for parasite survival, specifically focusing on compounds that exhibited promising activities against both parasites. RESULTS: Through computational techniques, it was identified that the alkaloids haemanthamine (1) and lycorine (8) were the most active against T. cruzi (amastigote and trypomastigote) and L. infantum (amastigote and promastigote), while also revealing unprecedented activity of alkaloid 7­methoxy-O-methyllycorenine (6). The in vitro analysis confirmed the in silico tests, in which compound 1 presented the best activities against the promastigote and amastigote forms of L. infantum with half-maximal inhibitory concentration (IC50) 0.6 µM and 1.78 µM, respectively. Compound 8 exhibited significant activity against the amastigote form of T. cruzi (IC50 7.70 µM), and compound 6 demonstrated activity against the trypomastigote forms of T. cruzi and amastigote of L. infantum, with IC50 values of 89.55 and 86.12 µM, respectively. Molecular docking analyses indicated that alkaloids 1 and 8 exhibited superior interaction energies compared to the inhibitors. CONCLUSION: The hitherto unreported potential of compound 6 against T. cruzi trypomastigotes and L. infantum amastigotes is now brought to the forefront. Furthermore, the acquired dataset signifies that the isolated alkaloids 1 and 8 from H. aulicum might serve as prototypes for subsequent structural refinements aimed at the exploration of novel leads against both T. cruzi and L. infantum parasites.


Subject(s)
Alkaloids , Amaryllidaceae , Isoquinolines , Leishmania infantum , Molecular Docking Simulation , Trypanosoma cruzi , Trypanosoma cruzi/drug effects , Leishmania infantum/drug effects , Amaryllidaceae/chemistry , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification , Isoquinolines/pharmacology , Isoquinolines/chemistry , Isoquinolines/isolation & purification , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , Humans , Antiparasitic Agents/pharmacology , Antiparasitic Agents/chemistry , Antiparasitic Agents/isolation & purification , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/isolation & purification
19.
Bioorg Med Chem Lett ; 104: 129710, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38518997

ABSTRACT

A novel series of benzo[6,7]indolo[3,4-c]isoquinolines 3a-3f was designed by scaffold hopping of topoisomerase I inhibitor benzo[g][1]benzopyrano[4,3-b]indol-6(13H)-ones (BBPIs), which were developed by structural modification of the natural marine product lamellarin. The unconventional pentacycle was constructed by Bischler-Napieralski-type condensation of amide 11 and subsequent intramolecular Heck reaction. In vitro anticancer activity of the synthesized benzo[6,7]indolo[3,4-c]isoquinolines was evaluated on a panel of 39 human cancer cell lines (JFCR39). Among the compounds tested, N-(3-morpholinopropyl) derivative 3e showed the most potent antiproliferative activity, with a mean GI50 value of 39 nM. This compound inhibited topoisomerase I activity by stabilizing the enzyme-DNA complex.


Subject(s)
Antineoplastic Agents , Coumarins , Heterocyclic Compounds, 4 or More Rings , Isoquinolines , Topoisomerase I Inhibitors , Humans , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Topoisomerases, Type I/metabolism , Drug Screening Assays, Antitumor , Isoquinolines/chemical synthesis , Isoquinolines/chemistry , Isoquinolines/pharmacology , Structure-Activity Relationship , Topoisomerase I Inhibitors/chemical synthesis , Topoisomerase I Inhibitors/chemistry , Topoisomerase I Inhibitors/pharmacology , Drug Design , Coumarins/chemical synthesis , Coumarins/chemistry , Coumarins/pharmacology , Heterocyclic Compounds, 4 or More Rings/chemical synthesis , Heterocyclic Compounds, 4 or More Rings/chemistry , Heterocyclic Compounds, 4 or More Rings/pharmacology
20.
Arch Pharm (Weinheim) ; 357(7): e2300756, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38501877

ABSTRACT

The nuclear receptors hepatocyte nuclear factor 4α (HNF4α) and retinoic acid receptor-related orphan receptor-ß (RORß) are ligand-regulated transcription factors and potential drug targets for metabolic disorders. However, there is a lack of small molecular, selective ligands to explore the therapeutic potential in further detail. Here, we report the discovery of greater celandine (Chelidonium majus) isoquinoline alkaloids as nuclear receptor modulators: Berberine is a selective RORß inverse agonist and modulated target genes involved in the circadian clock, photoreceptor cell development, and neuronal function. The structurally related chelidonine was identified as a ligand for the constitutively active HNF4α receptor, with nanomolar potency in a cellular reporter gene assay. In human liver cancer cells naturally expressing high levels of HNF4α, chelidonine acted as an inverse agonist and downregulated genes associated with gluconeogenesis and drug metabolism. Both berberine and chelidonine are promising tool compounds to further investigate their target nuclear receptors and for drug discovery.


Subject(s)
Berberine , Chelidonium , Hepatocyte Nuclear Factor 4 , Isoquinolines , Humans , Berberine/pharmacology , Berberine/chemistry , Berberine/chemical synthesis , Ligands , Hepatocyte Nuclear Factor 4/metabolism , Hepatocyte Nuclear Factor 4/genetics , Chelidonium/chemistry , Isoquinolines/pharmacology , Isoquinolines/chemistry , Isoquinolines/chemical synthesis , Benzophenanthridines/pharmacology , Benzophenanthridines/chemistry , Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Structure-Activity Relationship , Hep G2 Cells , Dose-Response Relationship, Drug , Molecular Structure , Cell Line, Tumor , Chelidonium majus
SELECTION OF CITATIONS
SEARCH DETAIL
...