Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.450
1.
PLoS One ; 19(6): e0293717, 2024.
Article En | MEDLINE | ID: mdl-38829878

We present Isotòpia, an open-access database compiling over 36,000 stable isotope measurements (δ13C, δ15N, δ18O, δ34S, 87Sr/86Sr, 206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb, 207Pb/206Pb, and 208Pb/206Pb) on human, animal, and plant bioarchaeological remains dating to Classical Antiquity (approximately 800 BCE - 500 CE). These were recovered from different European regions, particularly from the Mediterranean. Isotòpia provides a comprehensive characterisation of the isotopic data, encompassing various historical, archaeological, biological, and environmental variables. Isotòpia is a resource for meta-analytical research of past human activities and paleoenvironments. The database highlights data gaps in isotopic classical archaeology, such as the limited number of isotopic measurements available for plants and animals, limited number of studies on spatial mobility, and spatial heterogeneity of isotopic research. As such, we emphasise the necessity to address and fill these gaps in order to unlock the reuse potential of this database.


Archaeology , Databases, Factual , Isotopes , Plants , Humans , Animals , Isotopes/analysis , Plants/chemistry , History, Ancient
2.
Environ Geochem Health ; 46(7): 230, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38849623

Soil in urban and industrial areas is one of the main sinks of pollutants. It is well known that there is a strong link between metal(loid)s bioaccessibility by inhalation pathway and human health. The critical size fraction is < 10 µm (inhalable fraction) since these particles can approach to the tracheobronchial region. Here, soil samples (< 10 µm) from a highly urbanized area and an industrialized city were characterized by combining magnetic measurements, bioaccessibility of metal(loids) and Pb isotope analyses. Thermomagnetic analysis indicated that the main magnetic mineral is impure magnetite. In vitro inhalation analysis showed that Cd, Mn, Pb and Zn were the elements with the highest bioaccessibility rates (%) for both settings. Anthropogenic sources that are responsible for Pb accumulation in < 10 µm fraction are traffic emissions for the highly urbanized environment, and Pb related to steel emissions and coal combustion in cement plant for the industrial setting. We did not establish differences in the Pb isotope composition between pseudo-total and bioaccessible Pb. The health risk assessment via the inhalation pathway showed limited non-carcinogenic risks for adults and children. The calculated risks based on pseudo-total and lung bioaccessible concentrations were identical for the two areas of contrasting anthropogenic pressures. Carcinogenic risks were under the threshold levels (CR < 10-4), with Ni being the dominant contributor to risk. This research contributes valuable insights into the lung bioaccessibility of metal(loids) in urban and industrial soils, incorporating advanced analytical techniques and health risk assessments for a comprehensive understanding.


Lead , Soil Pollutants , Risk Assessment , Humans , Soil Pollutants/analysis , Lead/analysis , Inhalation Exposure/analysis , Environmental Monitoring/methods , Isotopes/analysis , Biological Availability , Particle Size , Industry , Metals, Heavy/analysis , Child , Adult , Urbanization , Soil/chemistry , Cities
3.
Anal Chim Acta ; 1315: 342812, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38879212

BACKGROUND: Potassium isotopic analysis is increasingly performed in both geological and biological contexts as a result of the introduction of MC-ICP-MS instrumentation either equipped with a collision/reaction cell or having the capability of working at "extra-high" mass resolution in order to deal with spectral interference caused by argon hydride (ArH+) ions. Potassium plays an important role in the central nervous system, and its isotopic analysis could provide an enhanced insight into the corresponding processes, but K isotopic analysis of cerebrospinal fluid is challenging due to the small volume, a few microliter only, typically available. This work aimed at developing a method for determining the K isotopic signature of serum and cerebrospinal fluid at a final K concentration of 25 ng mL-1 using Faraday cup amplifiers equipped with a 1013 Ω resistor. RESULTS: Potassium isotope ratios obtained for reference materials measured at a final K concentration of 25 ng mL-1 were in excellent agreement with the corresponding reference values and the internal and external precision for the δ41K value was 0.11 ‰ (2SE, N = 50) and 0.10 ‰ (2SD, N = 6), respectively. The robustness against the presence of matrix elements and the concentration mismatch between sample and standard observed at higher K concentrations is preserved at low K concentration. Finally, K isotopic analysis of serum and cerebrospinal fluid (3-12 µL of sample) of healthy mice of both sexes was performed, revealing a trend towards an isotopically lighter signature for serum and cerebrospinal fluid from female individuals, however being significant for serum only. SIGNIFICANCE: This work provides a robust method for high-precision K isotopic analysis at a concentration of 25 ng mL-1. By monitoring both K isotopes, 39K and 41K, with Faraday cups connected to amplifiers with 1013 Ω resistors, accurate K isotope ratio results are obtained with a two-fold improvement in internal and external precision compared to those obtained with the set-up with traditional 1011 Ω resistors. The difference in the K isotope ratio in CSF and serum between the sexes, is possibly indicating an influence of the sex or hormones on the fractionation effects accompanying cellular uptake/release.


Mass Spectrometry , Potassium , Animals , Potassium/blood , Potassium/cerebrospinal fluid , Female , Male , Mice , Isotopes , Humans
4.
Ying Yong Sheng Tai Xue Bao ; 35(4): 951-960, 2024 Apr 18.
Article Zh | MEDLINE | ID: mdl-38884230

Precipitation in the plum rain period accounts for 40%-50% of annual precipitation in the monsoon region. To clarify the temporal variability of the isotopic composition of precipitation during the plum rain period from event to interannual time scale and identify the influencing factors, we analyzed the isotopic composition of precipitation and its influencing factors in Nanjing from 2015 to 2022. By using the Hybrid Single-particle Lagran-gian Integrated Trajectory (HYSPLIT) model with specific humidity analysis, we investigated the water vapor source and influencing factors. The results showed that 1) the isotopic abundance of atmospheric precipitation was depleted in the summer and enriched in winter. dx was lower in summer and higher in winter. The isotopic abundance of precipitation from the plum rain was depleted compared to mean value of the whole-year. 2) There was no significant correlation between δ2H and δ18O of the plum rain (precipitation) with local meteorological factors. However, dx was lower in light rain, reflecting the effect of sub-cloud evaporation. The average dx was higher during plum rain period in years with more total plum rain precipitation. 3) The low-latitude South China Sea and the western Pacific Ocean source area provided water vapor for the plum rain. The shift of moisture source region led to abrupt changes in precipitation isotopes. Our results could provide data support for studies on precipitation isotopes in the monsoon region, as well as a reference point for further understanding the precipitation mechanism of the plum rain and stu-dying the seasonal variability of atmospheric circulation in the East Asian monsoon region.


Rain , Seasons , Rain/chemistry , China , Oxygen Isotopes/analysis , Environmental Monitoring/methods , Deuterium/analysis , Isotopes/analysis , Prunus domestica/chemistry , Prunus domestica/growth & development
5.
Ying Yong Sheng Tai Xue Bao ; 35(4): 970-984, 2024 Apr 18.
Article Zh | MEDLINE | ID: mdl-38884232

Nitrate pollution in groundwater has become a global concern. One of the most important issues in controlling the nitrate pollution of groundwater is to identify the pollution source quickly and accurately. In this review, we firstly summarized the isotopic background values of potential sources of nitrate pollution in groundwater in 17 provinces (cities, autonomous regions) and 29 study areas in China, which could provide the fundamental database for subsequent research. Secondly, we reviewed the research progress of nitrate isotopes combined with multiple tracers for tracing nitrate in groundwater, and discussed their applicable conditions, advantages, and disadvantages. We found that halides and microorganisms combined with nitrate isotopes could accurately trace the pollution sources of domestic sewage, excrement and agricultural activities. The combination of Δ17O and nitrate isotopes could effectively distinguish the source of atmospheric deposition of nitrate in groundwater. The combination of groundwater age and nitrate isotopes could further determine the time scale of nitrate pollution. In addition, we summarized the application cases and compared the characteristics of mass balance mixing model, IsoSource model, Bayesian isotope mixing model, and EMMTE model for quantitative identification of nitrate pollution in groundwater. For the complexity and concealment of groundwater pollution sources, the coupling of nitrate isotopes with other chemical and biological tracing methods, as well as the application of nitrate isotope quantitative models, are effective tools for reliably identifying groundwater nitrate sources and transformation processes.


Environmental Monitoring , Groundwater , Nitrates , Water Pollutants, Chemical , Groundwater/analysis , Groundwater/chemistry , Nitrates/analysis , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , China , Oxygen Isotopes/analysis , Isotopes/analysis
6.
Front Endocrinol (Lausanne) ; 15: 1332895, 2024.
Article En | MEDLINE | ID: mdl-38694937

Background: More than 700 million people worldwide suffer from diseases of the pancreas, such as diabetes, pancreatitis and pancreatic cancer. Often dysregulation of potassium (K+) channels, co-transporters and pumps can promote development and progression of many types of these diseases. The role of K+ transport system in pancreatic cell homeostasis and disease development remains largely unexplored. Potassium isotope analysis (δ41K), however, might have the potential to detect minute changes in metabolic processes relevant for pancreatic diseases. Methods: We assessed urinary K isotope composition in a case-control study by measuring K concentrations and δ41K in spot urines collected from patients diagnosed with pancreatic cancer (n=18), other pancreas-related diseases (n=14) and compared those data to healthy controls (n=16). Results: Our results show that urinary K+ levels for patients with diseased pancreas (benign and pancreatic cancer) are significantly lower than the healthy controls. For δ41K, the values tend to be higher for individuals with pancreatic cancer (mean δ41K = -0.58 ± 0.33‰) than for healthy individuals (mean δ41K = -0.78 ± 0.19‰) but the difference is not significant (p=0.08). For diabetics, urinary K+ levels are significantly lower (p=0.03) and δ41K is significantly higher (p=0.009) than for the healthy controls. These results suggest that urinary K+ levels and K isotopes can help identify K disturbances related to diabetes, an associated factors of all-cause mortality for diabetics. Conclusion: Although the K isotope results should be considered exploratory and hypothesis-generating and future studies should focus on larger sample size and δ41K analysis of other K-disrupting diseases (e.g., chronic kidney disease), our data hold great promise for K isotopes as disease marker.


Diabetes Mellitus , Pancreatic Neoplasms , Potassium , Humans , Pancreatic Neoplasms/urine , Male , Female , Case-Control Studies , Middle Aged , Aged , Potassium/urine , Diabetes Mellitus/urine , Diabetes Mellitus/metabolism , Adult , Pancreas/metabolism , Isotopes/urine
7.
Environ Sci Technol ; 58(19): 8510-8517, 2024 May 14.
Article En | MEDLINE | ID: mdl-38695484

Anthropogenic activities have fundamentally changed the chemistry of the Baltic Sea. According to results reported in this study, not even the thallium (Tl) isotope cycle is immune to these activities. In the anoxic and sulfidic ("euxinic") East Gotland Basin today, Tl and its two stable isotopes are cycled between waters and sediments as predicted based on studies of other redox-stratified basins (e.g., the Black Sea and Cariaco Trench). The Baltic seawater Tl isotope composition (ε205Tl) is, however, higher than predicted based on the results of conservative mixing calculations. Data from a short sediment core from East Gotland Basin demonstrates that this high seawater ε205Tl value originated sometime between about 1940 and 1947 CE, around the same time other prominent anthropogenic signatures begin to appear in the same core. This juxtaposition is unlikely to be coincidental and suggests that human activities in the surrounding area have altered the seawater Tl isotope mass-balance of the Baltic Sea.


Geologic Sediments , Oceans and Seas , Seawater , Thallium , Seawater/chemistry , Geologic Sediments/chemistry , Human Activities , Humans , Environmental Monitoring , Water Pollutants, Chemical , Isotopes
8.
Bull Environ Contam Toxicol ; 112(5): 69, 2024 May 09.
Article En | MEDLINE | ID: mdl-38722440

The rapid development of livestock and poultry industry in China has caused serious environment pollution problems. To understand the heavy metals accumulation and identify their sources, 7 heavy metals contents and lead isotope ratios were determined in 24 soil samples from vegetable fields irrigated with swine wastewater in Dongxiang County, Jiangxi Province, China. The results showed that the concentration of Cr, Ni, Cu, Zn, As, Cd and Pb in the swine wastewater irrigated vegetable soils varied from 38.5 to 86.4, 7.57 to 30.6, 20.0 to 57.1, 37.5 to 174, 9.18 to 53.1, 0.043 to 0.274 and 12.8 to 37.1 mg/kg, respectively. The soils were moderately to heavily polluted by As, moderately polluted by Cr, Ni, Cu, Zn and Cd, and unpolluted to moderately polluted by Pb. Sampling soils were classified as moderately polluted according to the Nemerow comprehensive pollution index. Lead isotope and Principal Component Analysis (PCA) analysis indicated that swine wastewater irrigation and atmospheric deposition were the primary sources of the heavy metals.


Environmental Monitoring , Lead , Metals, Heavy , Soil Pollutants , Vegetables , Wastewater , Soil Pollutants/analysis , Animals , Metals, Heavy/analysis , China , Wastewater/chemistry , Swine , Vegetables/chemistry , Lead/analysis , Agricultural Irrigation , Soil/chemistry , Isotopes/analysis
9.
Environ Res ; 253: 119176, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38768887

This study investigates spatiotemporal dynamics in metal sedimentation in the North American Great Lakes and their underlying biogeochemical controls. Bulk geochemical and isotope analyses of n = 72 surface and core sediment samples show that metal (Cu, Zn, Pb) concentrations and their isotopic compositions vary spatially across oligotrophic to mesotrophic settings, with intra-lake heterogeneity being similar or higher than inter-lake (basin-scale) variability. Concentrations of Cu, Zn, and Pb in sediments from Lake Huron and Lake Erie vary from 5 to 73 mg/kg, 18-580 mg/kg, and 5-168 mg/kg, respectively, but metal enrichment factors were small (<2) across the surface- and core sediments. The isotopic signatures of surface sediment Cu (δ65Cu between -1.19‰ and +0.96‰), Zn (δ66Zn between -0.09‰ and +0.41‰) and Pb (206/207Pb from 1.200 to 1.263) indicate predominantly lithogenic metal sourcing. In addition, temporal trends in sediment cores from Lake Huron and Lake Erie show uniform metal concentrations, minor enrichment, and Zn and Pb isotopic signatures suggestive of negligible in-lake biogeochemical fractionation. In contrast, Cu isotopic signatures and correlation to chlorophyll and macronutrient levels suggest more differentiation from source variability and/or redox-dependent fractionation, likely related to biological scavenging. Our results are used to derive baseline metal sedimentation fluxes and will help optimize water quality management and strategies for reducing metal loads and enrichment in the Great Lakes and beyond.


Environmental Monitoring , Geologic Sediments , Lakes , Water Pollutants, Chemical , Geologic Sediments/chemistry , Geologic Sediments/analysis , Lakes/chemistry , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Isotopes/analysis , Great Lakes Region , Metals, Heavy/analysis
10.
J Hazard Mater ; 472: 134531, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38728863

Cadmium (Cd), one of the most severe environmental pollutants in soil, poses a great threat to food safety and human health. Understanding the potential sources, fate, and translocation of Cd in soil-plant systems can provide valuable information on Cd contamination and its environmental impacts. Stable Cd isotopic ratios (δ114/110Cd) can provide "fingerprint" information on the sources and fate of Cd in the soil environment. Here, we review the application of Cd isotopes in soil, including (i) the Cd isotopic signature of soil and anthropogenic sources, (ii) the interactions of Cd with soil constituents and associated Cd isotopic fractionation, and (iii) the translocation of Cd at soil-plant interfaces and inside plant bodies, which aims to provide an in-depth understanding of Cd transport and migration in soil and soil-plant systems. This review would help to improve the understanding and application of Cd isotopic techniques for tracing the potential sources and (bio-)geochemical cycling of Cd in soil environment.


Cadmium , Soil Pollutants , Cadmium/analysis , Soil Pollutants/analysis , Soil Pollutants/chemistry , Soil/chemistry , Isotopes , Plants/metabolism , Plants/chemistry , Environmental Monitoring/methods
11.
PLoS One ; 19(4): e0300867, 2024.
Article En | MEDLINE | ID: mdl-38598461

The study of spatial (paleo)ecology in mammals is critical to understand how animals adapt to and exploit their environment. In this work we analysed the 87Sr/86Sr, δ18O and δ13C isotope composition of 65 moose bone and antler samples from Sweden from wild-shot individuals dated between 1800 and 1994 to study moose mobility and feeding behaviour for (paleo)ecological applications. Sr data were compared with isoscapes of the Scandinavian region, built ad-hoc during this study, to understand how moose utilise the landscape in Northern Europe. The 87Sr/86Sr isoscape was developed using a machine-learning approach with external geo-environmental predictors and literature data. Similarly, a δ18O isoscape, obtained from average annual precipitation δ18O values, was employed to highlight differences in the isotope composition of the local environment vs. bone/antler. Overall, 82% of the moose samples were compatible with the likely local isotope composition (n = 53), suggesting that they were shot not far from their year-round dwelling area. 'Local' samples were used to calibrate the two isoscapes, to improve the prediction of provenance for the presumably 'non-local' individuals. For the latter (n = 12, of which two are antlers and ten are bones), the probability of geographic origin was estimated using a Bayesian approach by combining the two isoscapes. Interestingly, two of these samples (one antler and one bone) seem to come from areas more than 250 km away from the place where the animals were hunted, indicating a possible remarkable intra-annual mobility. Finally, the δ13C data were compared with the forest cover of Sweden and ultimately used to understand the dietary preference of moose. We interpreted a difference in δ13C values of antlers (13C-enriched) and bones (13C-depleted) as a joint effect of seasonal variations in moose diet and, possibly, physiological stresses during winter-time, i.e., increased consumption of endogenous 13C-depleted lipids.


Antlers , Deer , Humans , Animals , Strontium Isotopes/analysis , Sweden , Antlers/chemistry , Bayes Theorem , Isotopes/analysis
12.
Environ Sci Technol ; 58(15): 6825-6834, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38567993

Hg(I) may control Hg redox kinetics; however, its metastable nature hinders analysis. Herein, the stability of Hg(I) during standard preparation and analysis was studied. Gravimetric analysis showed that Hg(I) was stable in its stock solution (1000 mg L-1), yet completely disproportionated when its dilute solution (10 µg L-1) was analyzed using liquid chromatography (LC)-ICPMS. The Hg(I) dimer can form through an energetically favorable comproportionation between Hg(0) and Hg(II), as supported by density functional theory calculation and traced by the rapid isotope exchange between 199Hg(0)aq and 202Hg(II). However, the separation of Hg(0) and Hg(II) (e.g., LC process) triggered its further disproportionation. Polypropylene container, increasing headspace, decreasing pH, and increasing dissolved oxygen significantly enhanced the disproportionation or redox transformations of Hg(I). Thus, using a glass container without headspace and maintaining a slightly alkaline solution are recommended for the dilute Hg(I) stabilization. Notably, we detected elevated concentrations of Hg(I) (4.4-6.1 µg L-1) in creek waters from a heavily Hg-polluted area, accounting for 54-70% of total dissolved Hg. We also verified the reductive formation of Hg(I) in Hg(II)-spiked environmental water samples, where Hg(I) can stably exist in aquatic environments for at least 24 h, especially in seawater. These findings provide mechanistic insights into the transformation of Hg(I), which are indicative of its further environmental identification.


Mercury , Water Pollutants, Chemical , Mercury/analysis , Seawater/analysis , Seawater/chemistry , Isotopes/analysis , Water Pollutants, Chemical/analysis
13.
Environ Sci Technol ; 58(15): 6595-6604, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38573735

Meaningful interpretation of U isotope measurements relies on unraveling the impact of reduction mechanisms on the isotopic fractionation. Here, the isotope fractionation of hexavalent U [U(VI)] was investigated during its reductive mineralization by magnetite to intermediate pentavalent U [U(V)] and ultimately tetravalent U [U(IV)]. As the reaction proceeded, the remaining aqueous phase U [containing U(VI) and U(V)] systematically carried light isotopes, whereas in the bicarbonate-extracted solution [containing U(VI) and U(V)], the δ238U values varied, especially when C/C0 approached 0. This variation was interpreted as reflecting the variable relative contribution of unreduced U(VI) (δ238U < 0‰) and bicarbonate-extractable U(V) (δ238U > 0‰). The solid remaining after bicarbonate extraction included unextractable U(V) and U(IV), for which the δ238U values consistently followed the same trend that started at 0.3-0.5‰ and decreased to ∼0‰. The impact of PIPES buffer on isotopic fractionation was attributed to the variable abundance of U(V) in the aqueous phase. A few extremely heavy bicarbonate-extracted δ238U values were due to mass-dependent fractionation resulting from several hypothesized mechanisms. The results suggest the preferential accumulation of the heavy isotope in the reduced species and the significant influence of U(V) on the overall isotopic fractionation, providing insight into the U isotope fractionation behavior during its abiotic reduction process.


Ferrosoferric Oxide , Uranium , Bicarbonates , Isotopes , Chemical Fractionation
14.
Chemosphere ; 356: 141862, 2024 May.
Article En | MEDLINE | ID: mdl-38579954

Atmospheric exposure is an important pathway of accumulation of lead (Pb) in Oryza sativa L. grains. In this study, source contributions of soil, early atmospheric exposure, and late atmospheric exposure, along with their bioaccumulation ratios were examined both in the pot and field experiments using stable Pb isotope fingerprinting technology combined with a three-compartment accumulation model. Furthermore, genotype differences in airborne Pb accumulation among four field-grown rice cultivars were investigated using the partial least squares path model (PLS-PM) linking rice Pb accumulation to agronomic traits. The findings revealed that during the late growth period, the air-foliar-grain transfer of Pb was crucial for rice Pb accumulation. Approximately 69-82% of the Pb found in polished rice was contributed by atmospheric source, with more than 80% accumulating during the late growth stage. The air accumulation ratios of rice grains were genotype-specific and estimated to be 0.364-1.062 m3/g during the late growth. Notably, grain size exhibited the highest standardized total effects on the airborne Pb concentrations in the polished rice, followed by leaf Pb and the upward translocation efficiency of Pb. The present study indicates that mitigating the health risks associated with Pb in rice can be achieved by controlling atmospheric Pb levels during the late growth stage and choosing Japonica inbred varieties characterized by large grain size.


Air Pollutants , Genotype , Lead , Oryza , Oryza/genetics , Oryza/metabolism , Oryza/growth & development , Lead/metabolism , Air Pollutants/analysis , Air Pollutants/metabolism , Soil/chemistry , Soil Pollutants/metabolism , Soil Pollutants/analysis , Environmental Monitoring/methods , Isotopes
15.
Sci Data ; 11(1): 349, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38589396

The Caribbean & Mesoamerica Biogeochemical Isotope Overview (CAMBIO) is an archaeological data community designed to integrate published biogeochemical data from the Caribbean, Mesoamerica, and southern Central America to address questions about dynamic interactions among humans, animals, and the environment in the region over the past 10,000 years. Here we present the CAMBIO human dataset, which consists of more than 16,000 isotopic measurements from human skeletal tissue samples (δ13C, δ15N, δ34S, δ18O, 87Sr/86Sr, 206/204Pb, 207/204Pb, 208/204Pb, 207/206Pb) from 290 archaeological sites dating between 7000 BC to modern times. The open-access dataset also includes detailed chronological, contextual, and laboratory/sample preparation information for each measurement. The collated data are deposited on the open-access CAMBIO data community via the Pandora Initiative data platform ( https://pandoradata.earth/organization/cambio ).


Archaeology , Isotopes , Lead , Animals , Humans , Caribbean Region , Central America
16.
Anal Chim Acta ; 1303: 342511, 2024 May 15.
Article En | MEDLINE | ID: mdl-38609261

BACKGROUND: Mammalian cells both import exogenous fatty acids and synthesize them de novo. Palmitate, the end product of fatty acid synthase (FASN) is a substrate for stearoyl-CoA desaturases (Δ-9 desaturases) that introduce a single double bond into fatty acyl-CoA substrates such as palmitoyl-CoA and stearoyl-CoA. This process is particularly upregulated in lipogenic tissues and cancer cells. Tracer methodology is needed to determine uptake versus de novo synthesis of lipids and subsequent chain elongation and desaturation. Here we describe an NMR method to determine the uptake of 13C-palmitate from the medium into HCT116 human colorectal cancer cells, and the subsequent desaturation and incorporation into complex lipids. RESULTS: Exogenous 13C16-palmitate was absorbed from the medium by HCT116 cells and incorporated primarily into complex glycerol lipids. Desaturase activity was determined from the quantification of double bonds in acyl chains, which was greatly reduced by ablation of the major desaturase SCD1. SIGNIFICANCE: The NMR approach requires minimal sample preparation, is non-destructive, and provides direct information about the level of saturation and incorporation of fatty acids into complex lipids.


Bisphenol A-Glycidyl Methacrylate , Fatty Acids , Magnetic Resonance Imaging , Humans , Animals , Isotopes , Palmitates , Fatty Acid Desaturases , Mammals
17.
Sci Data ; 11(1): 336, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38575659

The South American Archaeological Isotopic Database (SAAID) is a comprehensive open-access resource that aggregates all available bioarchaeological stable and radiogenic isotope measurements, encompassing data from human individuals, animals, and plants across South America. Resulting from a collaborative effort of scholars who work with stable isotopes in this region, SAAID contains 53,781 isotopic measurements across 24,507 entries from individuals/specimens spanning over 12,000 years. SAAID includes valuable contextual information on archaeological samples and respective sites, such as chronology, geographical region, biome, and spatial coordinates, biological details like estimated sex and age for human individuals, and taxonomic description for fauna and flora. SAAID is hosted at the PACHAMAMA community within the Pandora data platform and the CORA repository to facilitate easy access. Because of its rich data structure, SAAID is particularly well-suited for conducting spatiotemporal meta-analyses. It serves as a valuable tool for addressing a variety of research topics, including the spread, adoption, and consumption intensification of food items, paleo-environmental reconstruction, as well as the exploration of mobility patterns across extensive geographic regions.


Archaeology , Isotopes , Animals , Humans , Ecosystem , South America
18.
Geobiology ; 22(2): e12596, 2024.
Article En | MEDLINE | ID: mdl-38591761

The formation of intracellular amorphous calcium carbonate (ACC) by various cyanobacteria is a widespread biomineralization process, yet its mechanism and importance in past and modern environments remain to be fully comprehended. This study explores whether calcium (Ca) isotope fractionation, linked to ACC-forming cyanobacteria, can serve as a reliable tracer for detecting these microorganisms in modern and ancient settings. Accordingly, we measured stable Ca isotope fractionation during Ca uptake by the intracellular ACC-forming cyanobacterium Cyanothece sp. PCC 7425. Our results show that Cyanothece sp. PCC 7425 cells are enriched in lighter Ca isotopes relative to the solution. This finding is consistent with the kinetic isotope effects observed in the Ca isotope fractionation during biogenic carbonate formation by marine calcifying organisms. The Ca isotope composition of Cyanothece sp. PCC 7425 was accurately modeled using a Rayleigh fractionation model, resulting in a Ca isotope fractionation factor (Δ44Ca) equal to -0.72 ± 0.05‰. Numerical modeling suggests that Ca uptake by these cyanobacteria is primarily unidirectional, with minimal back reaction observed over the duration of the experiment. Finally, we compared our Δ44Ca values with those of other biotic and abiotic carbonates, revealing similarities with organisms that form biogenic calcite. These similarities raise questions about the effectiveness of using the Ca isotope fractionation factor as a univocal tracer of ACC-forming cyanobacteria in the environment. We propose that the use of Δ44Ca in combination with other proposed tracers of ACC-forming cyanobacteria such as Ba and Sr isotope fractionation factors and/or elevated Ba/Ca and Sr/Ca ratios may provide a more reliable approach.


Cyanobacteria , Cyanothece , Calcium Carbonate , Carbonates , Calcium Isotopes , Isotopes/analysis , Aquatic Organisms , Calcium
19.
Sci Rep ; 14(1): 7899, 2024 04 03.
Article En | MEDLINE | ID: mdl-38570566

Hutchison's niche theory suggests that coexisting competing species occupy non-overlapping hypervolumes, which are theoretical spaces encompassing more than three dimensions, within an n-dimensional space. The analysis of multiple stable isotopes can be used to test these ideas where each isotope can be considered a dimension of niche space. These hypervolumes may change over time in response to variation in behaviour or habitat, within or among species, consequently changing the niche space itself. Here, we use isotopic values of carbon and nitrogen of ten amino acids, as well as sulphur isotopic values, to produce multi-isotope models to examine niche segregation among an assemblage of five coexisting seabird species (ancient murrelet Synthliboramphus antiquus, double-crested cormorant Phalacrocorax auritus, Leach's storm-petrel Oceanodrama leucorhoa, rhinoceros auklet Cerorhinca monocerata, pelagic cormorant Phalacrocorax pelagicus) that inhabit coastal British Columbia. When only one or two isotope dimensions were considered, the five species overlapped considerably, but segregation increased in more dimensions, but often in complex ways. Thus, each of the five species occupied their own isotopic hypervolume (niche), but that became apparent only when factoring the increased information from sulphur and amino acid specific isotope values, rather than just relying on proxies of δ15N and δ13C alone. For cormorants, there was reduction of niche size for both species consistent with a decline in their dominant prey, Pacific herring Clupea pallasii, from 1970 to 2006. Consistent with niche theory, cormorant species showed segregation across time, with the double-crested demonstrating a marked change in diet in response to prey shifts in a higher dimensional space. In brief, incorporating multiple isotopes (sulfur, PC1 of δ15N [baselines], PC2 of δ15N [trophic position], PC1 and PC2 of δ13C) metrics allowed us to infer changes and differences in food web topology that were not apparent from classic carbon-nitrogen biplots.


Amino Acids , Charadriiformes , Animals , Amino Acids/metabolism , Isotopes/metabolism , Birds/metabolism , Nitrogen/metabolism , Carbon/metabolism , Sulfur/metabolism , Nitrogen Isotopes/metabolism , Carbon Isotopes/metabolism
20.
Environ Geochem Health ; 46(5): 173, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38592592

Nitrate pollution in aquatic ecosystems has received growing concern, particularly in fragile karst basins. In this study, hydrochemical compositions, multiple stable isotopes (δ2H-H2O, δ18Ο-Η2Ο, δ15Ν-ΝΟ3-, and δ18Ο-ΝΟ3-), and Bayesian stable isotope mixing model (MixSIAR) were applied to elucidate nitrate pollution sources in groundwater of the Yangzhuang Basin. The Durov diagram identified the dominant groundwater chemical face as Ca-HCO3 type. The NO3- concentration ranged from 10.89 to 90.45 mg/L (average 47.34 mg/L), showing an increasing trend from the upstream forest and grassland to the downstream agricultural dominant area. It is worth noting that 47.2% of groundwater samples exceeded the NO3- threshold value of 50 mg/L for drinking water recommended by the World Health Organization. The relationship between NO3-/Cl- and Cl- ratios suggested that most groundwater samples were located in nitrate mixed endmember from agricultural input, soil organic nitrogen, and manure & sewage. The Self-Organizing Map (SOM) and Pearson correlations analysis further indicated that the application of calcium fertilizer, sodium fertilizer, and livestock and poultry excrement in farmland elevated NO3- level in groundwater. The output results of the MixSIAR model showed that the primary sources of NO3- in groundwater were soil organic nitrogen (55.3%), followed by chemical fertilizers (28.5%), sewage & manure (12.7%), and atmospheric deposition (3.4%). Microbial nitrification was a dominant nitrogen conversion pathway elevating NO3- levels in groundwater, while the denitrification can be neglectable across the study area. The human health risk assessment (HHRA) model identified that about 88.9%, 77.8%, 72.2%, and 50.0% of groundwater samples posing nitrate's non-carcinogenic health hazards (HQ > 1) through oral intake for infants, children, females, and males, respectively. The findings of this study can offer useful biogeochemical information on nitrogen pollution in karst groundwater to support sustainable groundwater management in similar human-affected karst regions.


Groundwater , Nitrates , Child , Female , Infant , Male , Humans , Bayes Theorem , Ecosystem , Fertilizers , Manure , Sewage , China , Isotopes , Nitrogen , Soil
...