Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.602
1.
Am J Reprod Immunol ; 91(5): e13863, 2024 May.
Article En | MEDLINE | ID: mdl-38796740

PROBLEM: Hypertensive disorders of pregnancy (HDP) are a common pregnancy disease. NANOG and Cyclin-dependent kinase 1 (CDK1) are essential for regulating the function of cell proliferation and apoptosis. However, the mechanism of action in HDP is yet unclear. METHOD: The microarray dataset GSE6573 was downloaded from the GEO database. Emt-related gene set was downloaded from Epithelial-Mesenchymal Transition gene database 2.0 were screened differentially expressed genes by bioinformatics analysis. Pathway Commons and Scansite 4.0 databases were used to predict the interaction between proteins. Placental tissue samples were collected from HDP patients and patients with uneventful pregnancies. RT-qPCR, Western blot and immunohistochemistry were used to detect the expression of NANOG, CDK1, MMP-2, MMP-9, EMT markers and the JAK/STAT3 pathway proteins. Transfection NANOG overexpression/knockdown, and CDK1 knockdown into the human chorionic trophoblast cells (HTR-8/Svneo). CCK-8, Transwell and Wound-healing assay were used to evaluate cell proliferation, invasion and migration. CO-IP and GST pull-down assays were used to confirm the protein interaction. RESULTS: A total obtained seven EMT-related differentially expressed genes, wherein NANOG, NODAL and LIN28A had protein interaction. In the HDP patients' tissue found that NANOG and CDK1 had lower expression. NANOG overexpression promoted HTR-8/Svneo proliferation, migration and EMT, while NANOG knockdown had the opposite effect. Further a protein interaction between STAT3 and CDK1 with NANOG. NANOG overexpression downregulated the JAK/STAT3 pathway to promote HTR-8/Svneo proliferation, migration and EMT, which was reversed by CDK1 knockdown. CONCLUSIONS: NANOG downregulated the JAK/STAT3 pathway to promote trophoblast cell proliferation, migration and EMT through protein interaction with CDK1.


CDC2 Protein Kinase , Cell Movement , Epithelial-Mesenchymal Transition , Janus Kinases , Nanog Homeobox Protein , STAT3 Transcription Factor , Signal Transduction , Trophoblasts , Humans , Female , STAT3 Transcription Factor/metabolism , Epithelial-Mesenchymal Transition/genetics , Trophoblasts/metabolism , Pregnancy , CDC2 Protein Kinase/metabolism , CDC2 Protein Kinase/genetics , Nanog Homeobox Protein/metabolism , Nanog Homeobox Protein/genetics , Janus Kinases/metabolism , Hypertension, Pregnancy-Induced/metabolism , Hypertension, Pregnancy-Induced/pathology , Hypertension, Pregnancy-Induced/genetics , Adult , Cell Proliferation , Cell Line
2.
Arch Dermatol Res ; 316(6): 290, 2024 May 29.
Article En | MEDLINE | ID: mdl-38809465

Enz_MoriL is a naturally occurring substance extracted from the leaves of Morus alba L. through enzymatic conversion. Historically, M. alba L. has been recognized for its potential to promote hair regrowth. However, the precise mechanism by which Enz_MoriL affects human hair follicle dermal papilla cells (hDPCs) remains unclear. The aim of this study was to investigate the molecular basis of Enz_MoriL's effect on hair growth in hDPCs. Interferon-gamma (IFN-γ) was used to examine the effects of Enz_MoriL on hDPCs during the anagen and catagen phases, as well as under conditions mimicking alopecia areata (AA). Enz_MoriL demonstrated the ability to promote cell proliferation in both anagen and catagen stages. It increased the levels of active ß-catenin in the catagen stage induced by IFN-γ, leading to its nuclear translocation. This effect was achieved by increasing the phosphorylation of GSK3ß and decreasing the expression of DKK-1. This stimulation induced proliferation in hDPCs and upregulated the expression of the Wnt family members 3a, 5a, and 7a at the transcript level. Additionally, Enz_MoriL suppressed JAK1 and STAT3 phosphorylation, contrasting with IFN-γ, which induced them in the catagen stage. In conclusion, Enz_MoriL directly induced signals for anagen re-entry into hDPCs by affecting the Wnt/ß-catenin pathway and enhancing the production of growth factors. Furthermore, Enz_MoriL attenuated and reversed the interferon-induced AA-like environment by blocking the JAK-STAT pathway in hDPCs.


Alopecia Areata , Cell Proliferation , Hair Follicle , Interferon-gamma , Wnt Signaling Pathway , beta Catenin , Humans , Hair Follicle/drug effects , Hair Follicle/cytology , Hair Follicle/metabolism , Cell Proliferation/drug effects , Wnt Signaling Pathway/drug effects , Interferon-gamma/metabolism , beta Catenin/metabolism , Alopecia Areata/metabolism , Alopecia Areata/drug therapy , Alopecia Areata/pathology , Cells, Cultured , Glycogen Synthase Kinase 3 beta/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Janus Kinases/metabolism , Dermis/cytology , Dermis/drug effects , Phosphorylation/drug effects , STAT3 Transcription Factor/metabolism , Hair/drug effects , Hair/growth & development , Wnt-5a Protein/metabolism , Janus Kinase 1/metabolism , Signal Transduction/drug effects , STAT Transcription Factors/metabolism
3.
Int J Med Sci ; 21(6): 1176-1186, 2024.
Article En | MEDLINE | ID: mdl-38774752

Background: To uncover the potential significance of JAK-STAT-SOCS1 axis in penile cancer, our study was the pioneer in exploring the altered expression processes of JAK-STAT-SOCS1 axis in tumorigenesis, malignant progression and lymphatic metastasis of penile cancer. Methods: In current study, the comprehensive analysis of JAK-STAT-SOCS1 axis in penile cancer was analyzed via multiple analysis approaches based on GSE196978 data, single-cell data (6 cancer samples) and bulk RNA data (7 cancer samples and 7 metastasis lymph nodes). Results: Our study observed an altered molecular expression of JAK-STAT-SOCS1 axis during three different stages of penile cancer, from tumorigenesis to malignant progression to lymphatic metastasis. STAT4 was an important dominant molecule in penile cancer, which mediated the immunosuppressive tumor microenvironment by driving the apoptosis of cytotoxic T cell and was also a valuable biomarker of immune checkpoint inhibitor treatment response. Conclusions: Our findings revealed that the complexity of JAK-STAT-SOCS1 axis and the predominant role of STAT4 in penile cancer, which can mediate tumorigenesis, malignant progression, and lymphatic metastasis. This insight provided valuable information for developing precise treatment strategies for patients with penile cancer.


Disease Progression , Janus Kinases , Lymphatic Metastasis , Penile Neoplasms , STAT4 Transcription Factor , Suppressor of Cytokine Signaling 1 Protein , Humans , Male , Penile Neoplasms/pathology , Penile Neoplasms/genetics , Penile Neoplasms/metabolism , Suppressor of Cytokine Signaling 1 Protein/genetics , Suppressor of Cytokine Signaling 1 Protein/metabolism , Lymphatic Metastasis/pathology , Lymphatic Metastasis/genetics , Janus Kinases/metabolism , STAT4 Transcription Factor/metabolism , STAT4 Transcription Factor/genetics , Gene Expression Regulation, Neoplastic , Carcinogenesis/genetics , Carcinogenesis/pathology , Signal Transduction , Tumor Microenvironment/immunology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology
4.
Cardiovasc Toxicol ; 24(6): 576-586, 2024 Jun.
Article En | MEDLINE | ID: mdl-38691302

Hypertension is a pathological state of the metabolic syndrome that increases the risk of cardiovascular disease. Managing hypertension is challenging, and we aimed to identify the pathogenic factors and discern therapeutic targets for metabolic hypertension (MHR). An MHR rat model was established with the combined treatment of a high-sugar, high-fat diet and ethanol. Histopathological observations were performed using hematoxylin-eosin and Sirius Red staining. Transcriptome sequencing was performed to screen differentially expressed genes. The role of ubiquitin-specific protease 18 (USP18) in the proliferation, apoptosis, and oxidative stress of HUVECs was explored using Cell Counting Kit-8, flow cytometry, and enzyme-linked immunosorbent assays. Moreover, USP18 downstream signaling pathways in MHR were screened, and the effects of USP18 on these signaling pathways were investigated by western blotting. In the MHR model, total cholesterol and low-density lipoprotein levels increased, while high-density lipoprotein levels decreased. Moreover, high vessel thickness and percentage of collagen were noted along with increased malondialdehyde, decreased superoxide dismutase and catalase levels. The staining results showed that the MHR model exhibited an irregular aortic intima and disordered smooth muscle cells. There were 78 differentially expressed genes in the MHR model, and seven hub genes, including USP18, were identified. USP18 overexpression facilitated proliferation and reduced apoptosis and oxidative stress in HUVECs treated with Ang in vitro. In addition, the JAK/STAT pathway was identified as a USP18 downstream signaling pathway, and USP18 overexpression inhibited the expression of JAK/STAT pathway-related proteins. Conclusively, USP18 restrained MHR progression by promoting cell proliferation, reversing apoptosis and oxidative stress, and suppressing the JAK/STAT pathway.


Apoptosis , Cell Proliferation , Disease Models, Animal , Human Umbilical Vein Endothelial Cells , Hypertension , Janus Kinases , Metabolic Syndrome , Oxidative Stress , Signal Transduction , Ubiquitin Thiolesterase , Animals , Humans , Male , Rats , Apoptosis/drug effects , Blood Pressure/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Disease Progression , Gene Expression Regulation , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/enzymology , Hypertension/metabolism , Hypertension/physiopathology , Hypertension/pathology , Hypertension/enzymology , Janus Kinases/metabolism , Metabolic Syndrome/metabolism , Metabolic Syndrome/pathology , Metabolic Syndrome/enzymology , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/enzymology , Oxidative Stress/drug effects , Rats, Sprague-Dawley , STAT Transcription Factors/metabolism , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Vascular Remodeling/drug effects
5.
Yakugaku Zasshi ; 144(5): 489-496, 2024.
Article Ja | MEDLINE | ID: mdl-38692922

The tumor necrosis factor receptor (TNFR)-associated factor (TRAF) family of molecules are intracellular adaptors that regulate cellular signaling through members of the TNFR and Toll-like receptor superfamily. Mammals have seven TRAF molecules numbered sequentially from TRAF1 to TRAF7. Although TRAF5 was identified as a potential regulator of TNFR superfamily members, the in vivo function of TRAF5 has not yet been fully elucidated. We identified an unconventional role of TRAF5 in interleukin-6 (IL-6) receptor signaling involving CD4+ T cells. Moreover, TRAF5 binds to the signal-transducing glycoprotein 130 (gp130) receptor for IL-6 and inhibits the activity of the janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway. In addition, Traf5-deficient CD4+ T cells exhibit significantly enhanced IL-6-driven differentiation of T helper 17 (Th17) cells, which exacerbates neuroinflammation in experimental autoimmune encephalomyelitis. Furthermore, TRAF5 demonstrates a similar activity to gp130 for IL-27, another cytokine of the IL-6 family. Additionally, Traf5-deficient CD4+ T cells display significantly increased IL-27-mediated differentiation of Th1 cells, which increases footpad swelling in delayed-type hypersensitivity response. Thus, TRAF5 functions as a negative regulator of gp130 in CD4+ T cells. This review aimed to explain how TRAF5 controls the differentiation of CD4+ T cells and discuss how the expression of TRAF5 in T cells and other cell types can influence the development and progression of autoimmune and inflammatory diseases.


CD4-Positive T-Lymphocytes , Encephalomyelitis, Autoimmune, Experimental , Signal Transduction , TNF Receptor-Associated Factor 5 , Humans , Animals , TNF Receptor-Associated Factor 5/genetics , TNF Receptor-Associated Factor 5/metabolism , TNF Receptor-Associated Factor 5/physiology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/etiology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Cytokine Receptor gp130/physiology , Cytokine Receptor gp130/metabolism , Th17 Cells/immunology , Interleukin-6/metabolism , Interleukin-6/physiology , Cell Differentiation , Receptors, Interleukin-6/physiology , Receptors, Interleukin-6/metabolism , Janus Kinases/metabolism , Janus Kinases/physiology , STAT Transcription Factors/physiology , STAT Transcription Factors/metabolism , Mice
6.
Bull Exp Biol Med ; 176(5): 576-580, 2024 Mar.
Article En | MEDLINE | ID: mdl-38724808

We performed a comparative in vitro study of the involvement of NF-κB, PI3K, cAMP, ERK1/2, p38, JAKs, STAT3, JNK, and p53-dependent intracellular signaling in the functioning of neural stem cells (NSC) under the influence of basic fibroblast growth factor (FGF) and FGF receptor agonist, diterpene alkaloid songorine. The significant differences in FGFR-mediated intracellular signaling in NSC were revealed for these ligands. In both cases, stimulation of progenitor cell proliferation occurs with the participation of NF-κB, PI3K, ERK1/2, JAKs, and STAT3, while JNK and p53, on the contrary, inhibit cell cycle progression. However, under the influence of songorin, cAMP- and p38-mediated cascades are additionally involved in the transmission of the NSC division-activating signal. In addition, unlike FGF, the alkaloid stimulates progenitor cell differentiation by activating ERK1/2, p38, JNK, p53, and STAT3.


Cell Differentiation , Cell Proliferation , Diterpenes , Neural Stem Cells , Receptors, Fibroblast Growth Factor , STAT3 Transcription Factor , Signal Transduction , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Animals , STAT3 Transcription Factor/metabolism , Receptors, Fibroblast Growth Factor/metabolism , Receptors, Fibroblast Growth Factor/agonists , Signal Transduction/drug effects , Cell Proliferation/drug effects , Diterpenes/pharmacology , Cell Differentiation/drug effects , NF-kappa B/metabolism , Fibroblast Growth Factor 2/metabolism , Fibroblast Growth Factor 2/pharmacology , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/agonists , Phosphatidylinositol 3-Kinases/metabolism , Alkaloids/pharmacology , MAP Kinase Signaling System/drug effects , Janus Kinases/metabolism , Cyclic AMP/metabolism , Cells, Cultured , Rats
7.
Cells ; 13(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38727296

Derangement of the epidermal barrier lipids and dysregulated immune responses are key pathogenic features of atopic dermatitis (AD). The Th2-type cytokines interleukin IL-4 and IL-13 play a prominent role in AD by activating the Janus Kinase/Signal Transduction and Activator of Transcription (JAK/STAT) intracellular signaling axis. This study aimed to investigate the role of JAK/STAT in the lipid perturbations induced by Th2 signaling in 3D epidermal equivalents. Tofacitinib, a low-molecular-mass JAK inhibitor, was used to screen for JAK/STAT-mediated deregulation of lipid metabolism. Th2 cytokines decreased the expression of elongases 1, 3, and 4 and serine-palmitoyl-transferase and increased that of sphingolipid delta(4)-desaturase and carbonic anhydrase 2. Th2 cytokines inhibited the synthesis of palmitoleic acid and caused depletion of triglycerides, in association with altered phosphatidylcholine profiles and fatty acid (FA) metabolism. Overall, the ceramide profiles were minimally affected. Except for most sphingolipids and very-long-chain FAs, the effects of Th2 on lipid pathways were reversed by co-treatment with tofacitinib. An increase in the mRNA levels of CPT1A and ACAT1, reduced by tofacitinib, suggests that Th2 cytokines promote FA beta-oxidation. In conclusion, pharmacological inhibition of JAK/STAT activation prevents the lipid disruption caused by the halted homeostasis of FA metabolism.


Cytokines , Janus Kinases , Lipid Metabolism , STAT Transcription Factors , Th2 Cells , Humans , Th2 Cells/metabolism , Th2 Cells/drug effects , STAT Transcription Factors/metabolism , Janus Kinases/metabolism , Cytokines/metabolism , Lipid Metabolism/drug effects , Epidermis/metabolism , Epidermis/drug effects , Signal Transduction/drug effects , Piperidines/pharmacology , Pyrimidines/pharmacology , Janus Kinase Inhibitors/pharmacology , Interleukin-4/metabolism , Fatty Acids/metabolism
8.
J Am Chem Soc ; 146(19): 13317-13325, 2024 May 15.
Article En | MEDLINE | ID: mdl-38700457

We describe the synthesis and biological testing of ruthenium-bipyridine ruxolitinib (RuBiRuxo), a photoreleasable form of ruxolitinib, a JAK inhibitor used as an antitumoral agent in cutaneous T-cell lymphomas (CTCL). This novel caged compound is synthesized efficiently, is stable in aqueous solution at room temperature, and is photoreleased rapidly by visible light. Irradiation of RuBiRuxo reduces cell proliferation and induces apoptosis in a light- and time-dependent manner in a CTCL cell line. This effect is specific and is mediated by a decreased phosphorylation of STAT proteins. Our results demonstrate the potential of ruthenium-based photocompounds and light-based therapeutic approaches for the potential treatment of cutaneous lymphomas and other pathologies.


Antineoplastic Agents , Apoptosis , Cell Proliferation , Nitriles , Pyrazoles , Pyrimidines , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Proliferation/drug effects , Nitriles/chemistry , Nitriles/pharmacology , Nitriles/chemical synthesis , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Apoptosis/drug effects , Pyrazoles/pharmacology , Pyrazoles/chemistry , Pyrazoles/chemical synthesis , Cell Line, Tumor , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/chemistry , Janus Kinase Inhibitors/chemical synthesis , Ruthenium/chemistry , Ruthenium/pharmacology , Light , Molecular Structure , Janus Kinases/antagonists & inhibitors , Janus Kinases/metabolism
9.
Front Immunol ; 15: 1385190, 2024.
Article En | MEDLINE | ID: mdl-38711523

The discovery of Suppressor of Cytokine Signaling 1 (SOCS1) in 1997 marked a significant milestone in understanding the regulation of Janus kinase/Signal transducer and activator of transcription (JAK/STAT) signaling pathways. Subsequent research deciphered its cellular functions, and recent insights into SOCS1 deficiencies in humans underscored its critical role in immune regulation. In humans, SOCS-haploinsufficiency (SOCS1-HI) presents a diverse clinical spectrum, encompassing autoimmune diseases, infection susceptibility, and cancer. Variability in disease manifestation, even within families sharing the same genetic variant, raises questions about clinical penetrance and the need for individualized treatments. Current therapeutic strategies include JAK inhibition, with promising results in controlling inflammation in SOCS1-HI patients. Hematopoietic stem cell transplantation and gene therapy emerge as promising avenues for curative treatments. The evolving landscape of SOCS1 research, emphasizes the need for a nuanced understanding of genetic variants and their functional consequences.


Signal Transduction , Suppressor of Cytokine Signaling 1 Protein , Humans , Suppressor of Cytokine Signaling 1 Protein/genetics , Suppressor of Cytokine Signaling 1 Protein/metabolism , Animals , Janus Kinases/metabolism , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Autoimmune Diseases/therapy , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/therapy , Haploinsufficiency , STAT Transcription Factors/metabolism , STAT Transcription Factors/genetics , Genetic Therapy
10.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731900

Psoriasis is a highly prevalent dermatological disease associated with an increased systemic inflammatory response. In addition, joint involvement is also present in around 20% of patients. Therefore, treatment modalities used in this condition should be simultaneously effective at improving skin manifestations, reducing inflammation, and addressing psoriatic arthritis when present. Twenty years ago, the introduction of biologic treatments for psoriasis was a turning point in the management of this condition, offering an effective and reasonably safe option for patients whose disease could not be adequately controlled with conventional therapies. At the moment, Janus Kinase inhibitors (JAKis) are a new class of promising molecules in the management of psoriasis. They are orally administered and can show benefits in patients who failed biologic therapy. We conducted a scoping review in order to identify randomized-controlled trials that investigated different JAKis in patients with plaque psoriasis and psoriatic arthritis, with an emphasis on molecules that have been approved by the European Medicines Agency and the Food and Drug Administration. The added value of this study is that it collected information about JAKis approved for two different indications, plaque psoriasis and psoriatic arthritis, in order to provide an integrated understanding of the range of effects that JAKis have on the whole spectrum of psoriasis manifestations.


Janus Kinase Inhibitors , Janus Kinases , Psoriasis , STAT Transcription Factors , Signal Transduction , Humans , Psoriasis/drug therapy , Psoriasis/metabolism , Janus Kinase Inhibitors/therapeutic use , Janus Kinase Inhibitors/pharmacology , Janus Kinases/metabolism , Janus Kinases/antagonists & inhibitors , Signal Transduction/drug effects , STAT Transcription Factors/metabolism , Arthritis, Psoriatic/drug therapy , Arthritis, Psoriatic/metabolism
11.
Phytomedicine ; 129: 155680, 2024 Jul.
Article En | MEDLINE | ID: mdl-38728923

OBJECTIVE: Influenza, a viral respiratory illness, leads to seasonal epidemics and occasional pandemics. Given the rising resistance and adverse reactions associated with anti-influenza drugs, Traditional Chinese Medicine (TCM) emerges as a promising approach to counteract the influenza virus. Specifically, Haoqin Qingdan Tang (HQQDT), a TCM formula, has been employed as an adjuvant treatment for influenza in China. However, the active compounds and underlying mechanisms of HQQDT remain unknown. AIM: The aim of this study was to investigate HQQDT's antiviral and anti-inflammatory activities in both in vivo and in vitro, and further reveal its active ingredients and mechanism. METHODS: In vivo and in vitro experiments were conducted to verify the antiviral and anti-inflammatory activities of HQQDT. Subsequently, the active ingredients and mechanism of HQQDT were explored through combining high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (HPLC-Q-TOF-MS) analysis and network pharmacology. Finally, the examinations of cell cytokines and signaling pathways aimed to elucidate the predicted mechanisms. RESULTS: The results indicated that HQQDT exhibited inhibitory effects on influenza viruses A/PR/8/34 (H1N1), A/HK/1/68 (H3N2), and A/California/4/2009 (H1N1) in vitro. Furthermore, HQQDT enhanced the survival rate of influenza-infected mice, reduced the lung index and lung virus titer, and mitigated lung tissue damage in vivo. The proinflammatory cytokine expression levels upon influenza virus infection in PR8-induced A549 cells or mice were suppressed by HQQDT, including IL-6, IL-1ß, CCL2, CCL4, IP-10, interferon ß1 (IFN-ß1), the interferon regulatory factor 3 (IRF3), and hemagglutinin (HA). Twenty-two active components of HQQDT against influenza were identified using HPLC-Q-TOF-MS analysis. Based on network pharmacological predictions, the JAK/STAT signaling pathway is considered the most relevant for HQQDT's action against influenza. Finally, western blot assays revealed that HQQDT regulated the protein level of the JAK/STAT signaling pathway in PR8-infected A549 cells and lung tissue. CONCLUSION: These findings verified the antiviral and anti-inflammatory effects of HQQDT through JAK-STAT signaling pathway in influenza infections, laying the foundation for its further development.


Antiviral Agents , Drugs, Chinese Herbal , Influenza A virus , Janus Kinases , Orthomyxoviridae Infections , Signal Transduction , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Antiviral Agents/pharmacology , Mice , Signal Transduction/drug effects , Orthomyxoviridae Infections/drug therapy , Janus Kinases/metabolism , Influenza A virus/drug effects , Cytokines/metabolism , Anti-Inflammatory Agents/pharmacology , Mice, Inbred BALB C , Humans , Influenza A Virus, H1N1 Subtype/drug effects , STAT Transcription Factors/metabolism , Dogs , Male , Chromatography, High Pressure Liquid , Lung/drug effects , Lung/virology , Madin Darby Canine Kidney Cells , Network Pharmacology , Female , A549 Cells
12.
Front Immunol ; 15: 1385473, 2024.
Article En | MEDLINE | ID: mdl-38720890

Interferons (IFNs) are a family of cytokines that activate the JAK-STAT signaling pathway to induce an antiviral state in cells. Interleukin 27 (IL-27) is a member of the IL-6 and/or IL-12 family that elicits both pro- and anti-inflammatory responses. Recent studies have reported that IL-27 also induces a robust antiviral response against diverse viruses, both in vitro and in vivo, suggesting that IFNs and IL-27 share many similarities at the functional level. However, it is still unknown how similar or different IFN- and IL-27-dependent signaling pathways are. To address this question, we conducted a comparative analysis of the transcriptomic profiles of human monocyte-derived macrophages (MDMs) exposed to IL-27 and those exposed to recombinant human IFN-α, IFN-γ, and IFN-λ. We utilized bioinformatics approaches to identify common differentially expressed genes between the different transcriptomes. To verify the accuracy of this approach, we used RT-qPCR, ELISA, flow cytometry, and microarrays data. We found that IFNs and IL-27 induce transcriptional changes in several genes, including those involved in JAK-STAT signaling, and induce shared pro-inflammatory and antiviral pathways in MDMs, leading to the common and unique expression of inflammatory factors and IFN-stimulated genes (ISGs)Importantly, the ability of IL-27 to induce those responses is independent of IFN induction and cellular lineage. Additionally, functional analysis demonstrated that like IFNs, IL-27-mediated response reduced chikungunya and dengue viruses replication in MDMs. In summary, IL-27 exhibits properties similar to those of all three types of human IFN, including the ability to stimulate a protective antiviral response. Given this similarity, we propose that IL-27 could be classified as a distinct type of IFN, possibly categorized as IFN-pi (IFN-π), the type V IFN (IFN-V).


Chikungunya virus , Dengue Virus , Dengue , Interferons , Janus Kinases , Macrophages , STAT Transcription Factors , Signal Transduction , Virus Replication , Humans , Chikungunya virus/physiology , Chikungunya virus/immunology , Dengue Virus/physiology , Dengue Virus/immunology , Janus Kinases/metabolism , Virus Replication/drug effects , STAT Transcription Factors/metabolism , Macrophages/immunology , Macrophages/virology , Macrophages/metabolism , Interferons/metabolism , Dengue/immunology , Dengue/virology , Chikungunya Fever/immunology , Chikungunya Fever/virology , Interleukin-27/metabolism , Interleukins/metabolism , Interleukins/pharmacology , Interleukins/immunology , Transcriptome , Cells, Cultured
13.
Sci Rep ; 14(1): 8762, 2024 04 16.
Article En | MEDLINE | ID: mdl-38627442

Metastatic colorectal cancer (CRC) is still in need of effective treatments. This study applies a holistic approach to propose new targets for treatment of primary and liver metastatic CRC and investigates their therapeutic potential in-vitro. An integrative analysis of primary and metastatic CRC samples was implemented for alternative target and treatment proposals. Integrated microarray samples were grouped based on a co-expression network analysis. Significant gene modules correlated with primary CRC and metastatic phenotypes were identified. Network clustering and pathway enrichments were applied to gene modules to prioritize potential targets, which were shortlisted by independent validation. Finally, drug-target interaction search led to three agents for primary and liver metastatic CRC phenotypes. Hesperadin and BAY-1217389 suppress colony formation over a 14-day period, with Hesperadin showing additional efficacy in reducing cell viability within 48 h. As both candidates target the G2/M phase proteins NEK2 or TTK, we confirmed their anti-proliferative properties by Ki-67 staining. Hesperadinin particular arrested the cell cycle at the G2/M phase. IL-29A treatment reduced migration and invasion capacities of TGF-ß induced metastatic cell lines. In addition, this anti-metastatic treatment attenuated TGF-ß dependent mesenchymal transition. Network analysis suggests IL-29A induces the JAK/STAT pathway in a preventive manner.


Colonic Neoplasms , Colorectal Neoplasms , Indoles , Liver Neoplasms , Rectal Neoplasms , Sulfonamides , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Transcriptome , Janus Kinases/metabolism , Signal Transduction , STAT Transcription Factors/metabolism , Colonic Neoplasms/genetics , Rectal Neoplasms/genetics , Liver Neoplasms/genetics , Liver Neoplasms/secondary , Transforming Growth Factor beta/metabolism , Cell Line, Tumor , Cell Movement , Gene Expression Regulation, Neoplastic , NIMA-Related Kinases/genetics
14.
Am J Physiol Renal Physiol ; 326(6): F931-F941, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38634132

Coronavirus disease 2019 (COVID-19) induces respiratory dysfunction as well as kidney injury. Although the kidney is considered a target organ of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and affected by the COVID-19-induced cytokine storm, the mechanisms of renal reaction in SARS-CoV-2 infection are unknown. In this study, a murine COVID-19 model was induced by nasal infection with mouse-adapted SARS-CoV-2 (MA10). MA10 infection induced body weight loss along with lung inflammation in mice 4 days after infection. Serum creatinine levels and the urinary albumin/creatinine ratio increased on day 4 after MA10 infection. Measurement of the urinary neutrophil gelatinase-associated lipocalin/creatinine ratio and hematoxylin and eosin staining revealed tubular damage in MA10-infected murine kidneys, indicating kidney injury in the murine COVID-19 model. Interferon (IFN)-γ and interleukin-6 upregulation in the sera of MA10-infected mice, along with the absence of MA10 in the kidneys, implied that the kidneys were affected by the MA10 infection-induced cytokine storm rather than by direct MA10 infection of the kidneys. RNA-sequencing analysis revealed that antiviral genes, such as the IFN/Janus kinase (JAK) pathway, were upregulated in MA10-infected kidneys. Upon administration of the JAK inhibitor baricitinib on days 1-3 after MA10 infection, an antiviral pathway was suppressed, and MA10 was detected more frequently in the kidneys. Notably, JAK inhibition upregulated the hypoxia response and exaggerated kidney injury. These results suggest that endogenous antiviral activity protects against SARS-CoV-2-induced kidney injury in the early phase of infection, providing valuable insights into the pathogenesis of COVID-19-associated nephropathy.NEW & NOTEWORTHY Patients frequently present with acute kidney injury or abnormal urinary findings after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Here, we investigated how the kidneys respond during SARS-CoV-2 infection using a murine coronavirus disease 2019 (COVID-19) model and showed that Janus kinase-mediated endogenous antiviral activity protects against kidney injury in the early phase of SARS-CoV-2 infection. These findings provide valuable insights into the renal pathophysiology of COVID-19.


COVID-19 , Janus Kinase Inhibitors , Purines , Pyrazoles , SARS-CoV-2 , Sulfonamides , Animals , COVID-19/complications , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/therapeutic use , Sulfonamides/pharmacology , Mice , Purines/pharmacology , Pyrazoles/pharmacology , Disease Models, Animal , Acute Kidney Injury/virology , Acute Kidney Injury/etiology , Acute Kidney Injury/metabolism , Azetidines/pharmacology , Azetidines/therapeutic use , Janus Kinases/metabolism , Janus Kinases/antagonists & inhibitors , Kidney/pathology , Kidney/virology , Kidney/metabolism , Kidney/drug effects , COVID-19 Drug Treatment , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Male , Mice, Inbred C57BL
15.
Nat Commun ; 15(1): 3593, 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38678021

Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic disease for which better therapies are urgently needed. Fibroblasts and macrophages are heterogeneous cell populations able to enhance metastasis, but the role of a macrophage-fibroblast crosstalk in regulating their pro-metastatic functions remains poorly understood. Here we deconvolve how macrophages regulate metastasis-associated fibroblast (MAF) heterogeneity in the liver. We identify three functionally distinct MAF populations, among which the generation of pro-metastatic and immunoregulatory myofibroblastic-MAFs (myMAFs) critically depends on macrophages. Mechanistically, myMAFs are induced through a STAT3-dependent mechanism driven by macrophage-derived progranulin and cancer cell-secreted leukaemia inhibitory factor (LIF). In a reciprocal manner, myMAF secreted osteopontin promotes an immunosuppressive macrophage phenotype resulting in the inhibition of cytotoxic T cell functions. Pharmacological blockade of STAT3 or myMAF-specific genetic depletion of STAT3 restores an anti-tumour immune response and reduces metastases. Our findings provide molecular insights into the complex macrophage-fibroblast interactions in tumours and reveal potential targets to inhibit PDAC liver metastasis.


Carcinoma, Pancreatic Ductal , Liver Neoplasms , Macrophages , Pancreatic Neoplasms , STAT3 Transcription Factor , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Animals , Liver Neoplasms/secondary , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/immunology , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Macrophages/metabolism , Macrophages/immunology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/immunology , Humans , Mice , Cell Line, Tumor , Signal Transduction , Janus Kinases/metabolism , Mice, Inbred C57BL , Fibroblasts/metabolism , Fibroblasts/pathology , Male , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Female
16.
Nature ; 629(8012): 688-696, 2024 May.
Article En | MEDLINE | ID: mdl-38658752

Although cancer initiation and progression are generally associated with the accumulation of somatic mutations1,2, substantial epigenomic alterations underlie many aspects of tumorigenesis and cancer susceptibility3-6, suggesting that genetic mechanisms might not be the only drivers of malignant transformation7. However, whether purely non-genetic mechanisms are sufficient to initiate tumorigenesis irrespective of mutations has been unknown. Here, we show that a transient perturbation of transcriptional silencing mediated by Polycomb group proteins is sufficient to induce an irreversible switch to a cancer cell fate in Drosophila. This is linked to the irreversible derepression of genes that can drive tumorigenesis, including members of the JAK-STAT signalling pathway and zfh1, the fly homologue of the ZEB1 oncogene, whose aberrant activation is required for Polycomb perturbation-induced tumorigenesis. These data show that a reversible depletion of Polycomb proteins can induce cancer in the absence of driver mutations, suggesting that tumours can emerge through epigenetic dysregulation leading to inheritance of altered cell fates.


Drosophila Proteins , Drosophila melanogaster , Epigenesis, Genetic , Janus Kinases , Neoplasms , Polycomb-Group Proteins , STAT Transcription Factors , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Polycomb-Group Proteins/metabolism , Polycomb-Group Proteins/genetics , Neoplasms/genetics , Neoplasms/pathology , STAT Transcription Factors/metabolism , STAT Transcription Factors/genetics , Janus Kinases/metabolism , Janus Kinases/genetics , Female , Carcinogenesis/genetics , Male , Signal Transduction/genetics , Gene Silencing , Cell Transformation, Neoplastic/genetics , Cell Lineage/genetics , Gene Expression Regulation, Neoplastic
17.
EMBO Rep ; 25(5): 2188-2201, 2024 May.
Article En | MEDLINE | ID: mdl-38649664

Transcription control is a major determinant of cell fate decisions in somatic tissues. By contrast, early germline fate specification in numerous vertebrate and invertebrate species relies extensively on RNA-level regulation, exerted on asymmetrically inherited maternal supplies, with little-to-no zygotic transcription. However delayed, a maternal-to-zygotic transition is nevertheless poised to complete the deployment of pre-gametic programs in the germline. Here, we focus on early germline specification in the tunicate Ciona to study zygotic genome activation. We first demonstrate that a peculiar cellular remodeling event excludes localized postplasmic Pem-1 mRNA, which encodes the general inhibitor of transcription. Subsequently, zygotic transcription begins in Pem-1-negative primordial germ cells (PGCs), as revealed by histochemical detection of elongating RNA Polymerase II, and nascent Mef2 transcripts. In addition, we uncover a provisional antagonism between JAK and MEK/BMPRI/GSK3 signaling, which controls the onset of zygotic gene expression, following cellular remodeling of PGCs. We propose a 2-step model for the onset of zygotic transcription in the Ciona germline and discuss the significance of germ plasm dislocation and remodeling in the context of developmental fate specification.


Gene Expression Regulation, Developmental , Germ Cells , Janus Kinases , Zygote , Animals , Zygote/metabolism , Germ Cells/metabolism , Janus Kinases/metabolism , Signal Transduction , Ciona/genetics , Ciona/metabolism , Ciona intestinalis/genetics , Ciona intestinalis/embryology , Transcription, Genetic
18.
Nat Immunol ; 25(5): 847-859, 2024 May.
Article En | MEDLINE | ID: mdl-38658806

Immune cells need to sustain a state of constant alertness over a lifetime. Yet, little is known about the regulatory processes that control the fluent and fragile balance that is called homeostasis. Here we demonstrate that JAK-STAT signaling, beyond its role in immune responses, is a major regulator of immune cell homeostasis. We investigated JAK-STAT-mediated transcription and chromatin accessibility across 12 mouse models, including knockouts of all STAT transcription factors and of the TYK2 kinase. Baseline JAK-STAT signaling was detected in CD8+ T cells and macrophages of unperturbed mice-but abrogated in the knockouts and in unstimulated immune cells deprived of their normal tissue context. We observed diverse gene-regulatory programs, including effects of STAT2 and IRF9 that were independent of STAT1. In summary, our large-scale dataset and integrative analysis of JAK-STAT mutant and wild-type mice uncovered a crucial role of JAK-STAT signaling in unstimulated immune cells, where it contributes to a poised epigenetic and transcriptional state and helps prepare these cells for rapid response to immune stimuli.


Homeostasis , Janus Kinases , Macrophages , Mice, Knockout , STAT Transcription Factors , Signal Transduction , Animals , Mice , Macrophages/immunology , Macrophages/metabolism , Janus Kinases/metabolism , STAT Transcription Factors/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/genetics , Mice, Inbred C57BL , Interferon-Stimulated Gene Factor 3, gamma Subunit/metabolism , Interferon-Stimulated Gene Factor 3, gamma Subunit/genetics , TYK2 Kinase/metabolism , TYK2 Kinase/genetics , Gene Expression Regulation
20.
Arch Biochem Biophys ; 756: 110002, 2024 Jun.
Article En | MEDLINE | ID: mdl-38636689

BACKGROUND: Phospholipid scramblase 1 (PLSCR1) is a calcium-dependent endofacial plasma-membrane protein that plays an essential role in multiple human cancers. However, little is known about its role in glioma. This study aimed to investigate PLSCR1 function in glioma, and elucidate its underlying molecular mechanisms. METHODS: PLSCR1 expression in human glioma cell lines (U87MG, U251, LN229, A172 and T98G) and human astrocytes was detected by western blot and qRT-PCR. PLSCR1 was silenced using si-PLSCR1-1 and si-PLSCR1-2 in LN229 and U251 cells. PLSCR1 was overexpressed using the pcDNA-PLSCR1 plasmid in T98G cells. Colony formation, 5-ethynyl-2'-deoxyuridine, flow cytometry and transwell assays were employed for measuring cell proliferation, apoptosis and mobility after PLSCR1 knockdown or overexpression. PLSCR1 function in glycolysis in glioma cells was determined through measuring the extracellular acidification rate, oxygen consumption rate, glucose consumption and lactate production. Besides, immunohistochemistry, western blot and qRT-PCR were utilized to assess mRNA and protein expression. Besides, the effect of PLSCR1 silencing on subcutaneous tumor was also monitored. RESULTS: PLSCR1 expression was upregulated in glioma. The downregulation of PLSCR1 repressed the proliferation, mobility, epithelial-to-mesenchymal transition (EMT) and glycolysis; however, it facilitated apoptosis in glioma cells. Whereas, PLSCR1 upregulation had the opposite effect. Moreover, PLSCR1 promoted the activation of the IL-6/JAK/STAT3 pathway in glioma cells. Besides, IL-6 treatment significantly reversed the function of PLSCR1 silencing on cell proliferation, mobility, EMT, apoptosis and glycolysis. In a nude mouse tumor model, silencing PLSCR1 suppressed tumor growth via inactivating IL-6/JAK/STAT3 signaling. CONCLUSION: Our results indicated that PLSCR1 could facilitate proliferation, mobility, EMT and glycolysis, but repress apoptosis through activating IL-6/JAK/STAT3 signaling in glioma. Therefore, PLSCR1 may function as a potential therapeutic target for glioma.


Cell Proliferation , Glioma , Interleukin-6 , Phospholipid Transfer Proteins , STAT3 Transcription Factor , Signal Transduction , Humans , Glioma/metabolism , Glioma/pathology , Glioma/genetics , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Phospholipid Transfer Proteins/metabolism , Phospholipid Transfer Proteins/genetics , Cell Line, Tumor , Animals , Interleukin-6/metabolism , Mice , Mice, Nude , Janus Kinases/metabolism , Apoptosis , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Glycolysis , Disease Progression , Gene Expression Regulation, Neoplastic , Mice, Inbred BALB C , Cell Movement
...