Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 835
Filter
1.
BMC Vet Res ; 20(1): 242, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38831422

ABSTRACT

BACKGROUND: ATPase activity and the antioxidant function of intestinal tissue can reflect intestinal cell metabolic activity and oxidative damage, which might be related to intestinal function. However, the specific influence of intestinal ATPase activity and antioxidant function on growth performance, feed conversion efficiency, and the intestinal microbiota in sheep remains unclear. RESULTS: This study analyzed the correlation between ATPase activity and antioxidant function in the jejunum of 92 Hu sheep and their growth performance and feed conversion efficiency. Additionally, individuals with the highest (H group) and lowest (L group) jejunum MDA content and Na+ K+-ATPase activity were further screened, and the effects of jejunum ATPase activity and MDA content on the morphology and microbial community of sheep intestines were analyzed. There was a significant correlation between jejunum ATPase and SOD activity and the initial weight of Hu sheep (P < 0.01). The H-MDA group exhibited significantly higher average daily gain (ADG) from 0 to 80 days old and higher body weight (BW) after 80 days. ATPase and SOD activities, and MDA levels correlated significantly and positively with heart weight. The jejunum crypt depth and circular muscle thickness in the H-ATP group were significantly higher than in the L-ATP group, and the villus length, crypt depth, and longitudinal muscle thickness in the H-MDA group were significantly higher than in the L-MDA group (P < 0.01). High ATPase activity and MDA content significantly reduced the jejunum microbial diversity, as indicated by the Chao1 index and observed species, and affected the relative abundance of specific taxa. Among species, the relative abundance of Olsenella umbonata was significantly higher in the H-MDA group than in the L-MDA group (P < 0.05), while Methanobrevibacter ruminantium abundance was significantly lower than in the L-MDA group (P < 0.05). In vitro culture experiments confirmed that MDA promoted the proliferation of Olsenella umbonata. Thus, ATPase and SOD activities in the jejunum tissues of Hu sheep are predominantly influenced by congenital factors, and lambs with higher birth weights exhibit lower Na+ K+-ATPase, Ca2+ Mg2+-ATPase, and SOD activities. CONCLUSIONS: The ATPase activity and antioxidant performance of intestinal tissue are closely related to growth performance, heart development, and intestinal tissue morphology. High ATPase activity and MDA content reduced the microbial diversity of intestinal tissue and affect the relative abundance of specific taxa, representing a potential interaction between the host and its intestinal microbiota.


Subject(s)
Adenosine Triphosphatases , Antioxidants , Gastrointestinal Microbiome , Jejunum , Animals , Jejunum/microbiology , Jejunum/enzymology , Antioxidants/metabolism , Gastrointestinal Microbiome/physiology , Adenosine Triphosphatases/metabolism , Sheep , Male , Malondialdehyde/metabolism , Superoxide Dismutase/metabolism
2.
BMC Genomics ; 25(1): 627, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38910254

ABSTRACT

Modern broiler breeds allow for high feed efficiency and rapid growth, which come at a cost of increased susceptibility to pathogens and disease. Broiler growth rate, feed efficiency, and health are affected by the composition of the gut microbiota, which in turn is influenced by diet. In this study, we therefore assessed how diet composition can affect the broiler jejunal gut microbiota. A total of 96 broiler chickens were divided into four diet groups: control, coated butyrate supplementation, medium-chain fatty acid supplementation, or a high-fibre low-protein content. Diet groups were sub-divided into age groups (4, 12 and 33 days of age) resulting in groups of 8 broilers per diet per age. The jejunum content was used for metagenomic shotgun sequencing to determine the microbiota taxonomic composition at species level. The composed diets resulted in a total of 104 differentially abundant bacterial species. Most notably were the butyrate-induced changes in the jejunal microbiota of broilers 4 days post-hatch, resulting in the reduced relative abundance of mainly Enterococcus faecium (-1.8 l2fc, Padj = 9.9E-05) and the opportunistic pathogen Enterococcus hirae (-2.9 l2fc, Padj = 2.7E-08), when compared to the control diet. This effect takes place during early broiler development, which is critical for broiler health, thus exemplifying the importance of how diet can influence the microbiota composition in relation to broiler health. Future studies should therefore elucidate how diet can be used to promote a beneficial microbiota in the early stages of broiler development.


Subject(s)
Animal Feed , Chickens , Enterococcus faecium , Enterococcus hirae , Gastrointestinal Microbiome , Jejunum , Animals , Chickens/microbiology , Chickens/growth & development , Enterococcus faecium/genetics , Gastrointestinal Microbiome/drug effects , Jejunum/microbiology , Diet/veterinary , Metagenomics/methods , Dietary Supplements
3.
Microb Pathog ; 192: 106691, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759933

ABSTRACT

Necrotic enteritis (NE) is a potentially fatal poultry disease that causes enormous economic losses in the poultry industry worldwide. The study aimed to evaluate the effects of dietary organic yeast-derived selenium (Se) on immune protection against experimental necrotic enteritis (NE) in commercial broilers. Chickens were fed basal diets supplemented with different Se levels (0.25, 0.50, and 1.00 Se mg/kg). To induce NE, Clostridium perfringens (C. perfringens) was orally administered at 14 days of age post hatch. The results showed that birds fed 0.25 Se mg/kg exhibited significantly increased body weight gain compared with the non-supplemented/infected birds. There were no significant differences in gut lesions between the Se-supplemented groups and the non-supplemented group. The antibody levels against α-toxin and NetB toxin increased with the increase between 0.25 Se mg/kg and 0.50 Se mg/kg. In the jejunal scrapings and spleen, the Se-supplementation groups up-regulated the transcripts for pro-inflammatory cytokines IL-1ß, IL-6, IL-8, iNOS, and LITAF and avian ß-defensin 6, 8, and 13 (AvBD6, 8 and 13). In conclusion, supplementation with organic yeast-derived Se alleviates the negative consequences and provides beneficial protection against experimental NE.


Subject(s)
Animal Feed , Chickens , Clostridium Infections , Clostridium perfringens , Cytokines , Dietary Supplements , Enteritis , Poultry Diseases , Selenium , Animals , Enteritis/prevention & control , Enteritis/veterinary , Enteritis/immunology , Enteritis/microbiology , Selenium/pharmacology , Selenium/administration & dosage , Poultry Diseases/prevention & control , Poultry Diseases/immunology , Clostridium perfringens/immunology , Clostridium Infections/prevention & control , Clostridium Infections/veterinary , Clostridium Infections/immunology , Cytokines/metabolism , Bacterial Toxins/immunology , Necrosis , beta-Defensins/metabolism , Jejunum/drug effects , Jejunum/immunology , Jejunum/microbiology , Jejunum/pathology , Spleen/immunology , Yeasts , Nitric Oxide Synthase Type II/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Interleukin-1beta/metabolism , Antibodies, Bacterial/blood
4.
Food Funct ; 15(12): 6536-6552, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38807503

ABSTRACT

A total of ninety-six weaned piglets were assigned to four dietary treatments in a 2 × 2 design. The treatments included: a standard milk formula (CTR); CTR + probiotics (6.4 × 108 cfu L-1Bifidobacterium longum subsp. infantis CECT 7210 and 1.1 × 108 cfu L-1Lactobacillus rhamnosus NH001) + prebiotics (galacto-oligosaccharides 4.36 g L-1 and human-milk-oligosaccharide 0.54 g L-1) (SYN); CTR + osteopontin (0.43 g L-1) (OPN); and CTR + SYN + OPN (CON). Daily records including feed intake, body weight, and clinical signs, were maintained throughout the 15-day trial. At the end of the study samples from blood, digestive content, and gut tissues were collected to determine serum TNF-α, intestinal fermentative activity (SCFA and ammonia), colonic microbiota (16S rRNA Illumina-MiSeq), histomorphology, and jejunal gene expression (Open-Array). No statistical differences were found in weight gain; however, the animals supplemented with osteopontin exhibited higher feed intake. In terms of clinical signs, synbiotic supplementation led to a shorter duration of diarrhoea episodes. Regarding gut health, the sequenced faecal microbiota revealed better control of potentially dysbiotic bacteria with the CON diet at day 15. In the colon compartment, a significant increase in SCFA concentration, a decrease in ammonia concentration, and a significant decrease in intraepithelial lymphocyte counts were particularly observed in CON animals. The supplemented diets were also associated with modified jejunal gene expression. The synbiotic combination was characterized by the upregulation of genes related to intestinal maturation (ALPI, SI) and nutrient transport (SLC13A1, SLC15A1, SLC5A1, SLC7A8), and the downregulation of genes related to the response to pathogens (GBP1, IDO, TLR4) or the inflammatory response (IDO, IL-1ß, TGF-ß1). Osteopontin promoted the upregulation of a digestive function gene (GCG). Correlational analysis between the microbiota population and various intestinal environmental factors (SCFA concentration, histology, and gene expression) proposes mechanisms of communication between the gut microbiota and the host. In summary, these results suggest an improvement in the colonic colonization process and a better modulation of the immune response when milk formula is supplemented with the tested synbiotic combined with osteopontin, benefiting from a synergistic effect.


Subject(s)
Colon , Gastrointestinal Microbiome , Jejunum , Osteopontin , Synbiotics , Animals , Synbiotics/administration & dosage , Swine , Colon/microbiology , Colon/metabolism , Osteopontin/metabolism , Osteopontin/genetics , Jejunum/metabolism , Jejunum/microbiology , Lactation , Infant Formula , Female , Humans , Prebiotics , Animal Feed/analysis , Dietary Supplements , Probiotics/pharmacology
5.
J Agric Food Chem ; 72(18): 10366-10375, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38651967

ABSTRACT

Intestinal stem cells (ISCs) sustain epithelial renewal by dynamically altering behaviors of proliferation and differentiation in response to various nutrition and stress inputs. However, how ISCs integrate bioactive substance morin cues to protect against heat-stable enterotoxin b (STb) produced by Escherichia coli remains an uncertain question with implications for treating bacterial diarrhea. Our recent work showed that oral mulberry leaf-derived morin improved the growth performance in STb-challenged mice. Furthermore, morin supplementation reinstated the impaired small-intestinal epithelial structure and barrier function by stimulating ISC proliferation and differentiation as well as supporting intestinal organoid expansion ex vivo. Importantly, the Wnt/ß-catenin pathway, an ISC fate commitment signal, was reactivated by morin to restore the jejunal crypt-villus architecture in response to STb stimulation. Mechanically, the extracellular morin-initiated ß-catenin axis is dependent or partially dependent on the Wnt membrane receptor Frizzled7 (FZD7). Our data reveal an unexpected role of leaf-derived morin, which represents molecular signaling targeting the FZD7 platform instrumental for controlling ISC regeneration upon STb injury.


Subject(s)
Antioxidants , Bacterial Toxins , Enterotoxins , Escherichia coli Infections , Escherichia coli Proteins , Jejunum , Morus , Plant Extracts , Mice , Morus/chemistry , Plant Leaves/chemistry , Wnt Signaling Pathway , Stem Cells/drug effects , Stem Cells/microbiology , Stem Cells/pathology , Escherichia coli Proteins/metabolism , In Vitro Techniques , Plant Extracts/pharmacology , Jejunum/drug effects , Jejunum/metabolism , Jejunum/microbiology , Jejunum/pathology , Regeneration , Bacterial Toxins/isolation & purification , Enterotoxins/isolation & purification , Escherichia coli Infections/drug therapy , Antioxidants/pharmacology
6.
J Sci Food Agric ; 104(10): 6262-6275, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38466088

ABSTRACT

BACKGROUND: Early weaning is prone to damage intestinal barrier function, resulting in diarrhea, whereas rutin, as a natural flavonoid with multiple biological functions, shows potential in piglets. Therefore, the effects of dietary rutin on growth, antidiarrheal, barrier function, antioxidant status and cecal microbiota of weaned piglets were investigated with the control group (CON) (basal diet) and Rutin (basal diet+500 mg kg-1 rutin) groups fed for 14 days. RESULTS: The results showed that dietary 500 mg kg-1 rutin significantly decreased diarrhea index, serum diamine oxidase activity and total aerobic bacterial population in mesenteric lymph nodes, whereas it significantly increased the gain-to-feed ratio (G:F) and serum growth hormone content, jejunal villus height and villus height to crypt depth ratio, and also enhanced jejunal claudin-1 and zonula occludens-1 mRNA and protein expression. Meanwhile, dietary rutin significantly decreased inflammation-associated mRNA expression, malondialdehyde (MDA) content, swollen mitochondrial number and mitochondrial area in the jejunum, whereas it increased the total superoxide dismutase (T-SOD) and glutathione peroxidase activities and activated the Nrf2 signaling pathway. Moreover, dietary rutin significantly increased Firmicutes abundance and decreased Campylobacterota abundance, which were closely associated with the decreased diarrhea index and MDA content or increased Claudin-1 expression and T-SOD activity. CONCLUSION: Dietary 500 mg kg-1 rutin increased G:F by improving intestinal morphology, and alleviated diarrhea by enhancing intestinal barrier, which might be associated with the enhanced antioxidant capacity via activating the Nrf2/Keap1 signaling pathway and the improved cecal microbial composition in weaned piglets. © 2024 Society of Chemical Industry.


Subject(s)
Antidiarrheals , Antioxidants , Cecum , Diarrhea , Gastrointestinal Microbiome , Intestinal Mucosa , Rutin , Weaning , Animals , Swine/metabolism , Swine/growth & development , Gastrointestinal Microbiome/drug effects , Antioxidants/metabolism , Cecum/microbiology , Cecum/metabolism , Intestinal Mucosa/metabolism , Diarrhea/microbiology , Diarrhea/diet therapy , Diarrhea/veterinary , Antidiarrheals/administration & dosage , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Bacteria/metabolism , Swine Diseases/microbiology , Swine Diseases/metabolism , Claudin-1/metabolism , Claudin-1/genetics , Animal Feed/analysis , Jejunum/metabolism , Jejunum/microbiology , Dietary Supplements/analysis , Male , Superoxide Dismutase/metabolism , Malondialdehyde/metabolism , Intestinal Barrier Function
7.
JPEN J Parenter Enteral Nutr ; 48(4): 502-511, 2024 May.
Article in English | MEDLINE | ID: mdl-38522020

ABSTRACT

BACKGROUND: The microbiome has a pivotal role in intestinal health, and nutrition has a major role shaping its structure. Enteral deprivation, in which no oral/enteral nutrition is administered, is common in hospitalized/gastrointestinal patients. The dynamics that enteral deprivation exerts on the microbial community, specifically in the small intestine, are not well understood. METHODS: Enteral deprivation was modeled with exclusive parenteral nutrition (EPN) mice. Mice were allocated to receive either EPN or saline and chow (control) and euthanized after 0, 2, 4, or 6 days. DNA was extracted from jejunum, ileum, and colon content. 16S sequencing was used to compare changes in microbial communities between groups. Functional pathways were predicted using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States. RESULTS: EPN-treated mice showed community changes throughout the intestine. Beta diversity in colon showed clear separation between the groups (Bray-Curtis, P < 0.001). Time-dependent dynamics were seen in ileal but not jejunal samples. Alpha diversity was lower in the colon of EPN mice compared with control/baseline mice (Chao1, P < 0.01) but not in ileum/jejunum. Progressive loss of single-taxon domination was seen, most notably in the small intestine. This was accompanied by increases/decreases in specific taxa. A clear separation was seen in the functional capacity of the community between fed and enterally deprived mice at the ileum and colon, which was observed early on. CONCLUSIONS: Enteral deprivation disturbs the microbial community in a spatial and dynamic manner. There should be further focus on studying the effect of these changes on the host.


Subject(s)
Colon , Gastrointestinal Microbiome , Ileum , Animals , Gastrointestinal Microbiome/physiology , Mice , Ileum/microbiology , Colon/microbiology , Colon/metabolism , Parenteral Nutrition , Male , Enteral Nutrition/methods , Mice, Inbred C57BL , Jejunum/microbiology , Intestine, Small/microbiology , Phylogeny , Bacteria/classification
8.
J Dairy Sci ; 107(7): 5162-5177, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38431250

ABSTRACT

The intestinal microbiota plays a pivotal role in digestive processes and maintains gut health and intestinal homeostasis. These functions may be compromised by increased environmental heat, which in turn reduces feed intake and gut integrity and activates the intestinal immune system. It remains unknown whether high ambient temperatures, which cause heat stress (HS) in dairy cows, disturb the eubiosis of the microbial community, and if so, to which extent the reduction in feed intake and the impairment of circulating and intestinal metabolites account for the alterations of the jejunal microbiota. To address these questions, jejunal digesta, mucosa, and plasma samples were collected from cows exposed to heat stress (HS; 28°C, temperature-humidity index [THI] = 76, n = 10), control conditions (CON; 16°C, THI = 60, n = 10), or pair-fed (PF; 16°C, THI = 60, n = 10) for 7 d. Digesta fluids were examined for pH, acetate, nonesterified fatty acids (NEFA), glucose, and lactate, and plasma samples were analyzed for glucose, lactate, BHB, triglycerides, NEFA, creatinine, and urea. The microbiota of the digesta and mucosa samples were analyzed by 16S rRNA sequencing. The α-diversity was higher in mucosa than digesta but was not affected by high ambient temperatures. However, the mucosa-associated microbiota appeared more responsive to ambient heat than the digesta microbiome. The adaptive responses under HS conditions comprised an increased mucosal abundance of Bifidobacteriaceae, Succinivibrionaceae UCG-001, Clostridia and Lactobacillus. In the digesta, HS has exerted effects on microbial abundance of Colidextribacter, and Lachnospiraceae UCG-008. Several correlations between plasma or intestinal metabolites and microbiota were elucidated, including Methanobacteriaceae correlating positively with plasma BHB and digesta glucose concentrations. Moreover, the reduction in feed intake during HS had non-negligible effects on microbial diversity and the abundance of certain taxa, underpinning the importance of nutrient supply on maintaining intestinal homeostasis.


Subject(s)
Gastrointestinal Microbiome , Jejunum , Animals , Cattle , Female , Jejunum/metabolism , Jejunum/microbiology , Hot Temperature , Microbiota
9.
BMC Vet Res ; 19(1): 174, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37759242

ABSTRACT

BACKGROUND: The early development of intestinal microbiota plays a fundamental role in host health and development. To investigate the difference in the intestinal microbial composition between Lantang and Landrace newborn piglets, we amplified and sequenced the V3-V4 region of 16 S rRNA gene in jejunal microbiota of Lantang and landrace newborn. RESULTS: The findings revealed that the dominant phyla in the jejunum of Lantang piglets were Firmicutes, Actinobacteria and Bacteroidetes, while the dominant phyla of Landrace is Proteobacteria and Fusobacteria. Specifically, Corynebacterium_1, Lactobacillus, Rothia, Granulicatella, Corynebacteriales_unclassified, Corynebacterium, Globicatella and Actinomycetales_unclassified were found to be the dominant genera of Lantang group, while Clostridium_sensu_stricto_1, Escherichia-Shigella, Actinobacillus and Bifidobacterium were the dominant genera of Landrace. Based on the functional prediction of bacteria, we found that bacterial communities from Lantang samples had a significantly greater abundance pathways of fatty acid synthesis, protein synthesis, DNA replication, recombination, repair and material transport across membranes, while the carrier protein of pathogenic bacteria was more abundant in Landrace samples. CONCLUSIONS: Overall, there was a tremendous difference in the early intestinal flora composition between Landang and Landrace piglets, which was related to the breed characteristics and may be one of the reasons affecting the growth characteristics. However, more further extensive studies should be included to reveal the underlying relationship between early intestinal flora composition in different breeds and pig growth characteristics.


Subject(s)
Gastrointestinal Microbiome , Animals , Swine , Animals, Newborn , Plant Breeding , Bacteria/genetics , Jejunum/microbiology , RNA, Ribosomal, 16S/genetics
10.
Sci Rep ; 13(1): 4488, 2023 03 18.
Article in English | MEDLINE | ID: mdl-36934111

ABSTRACT

Emus (Dromaius novaehollandiae), a large flightless omnivorous ratite, are farmed for their fat and meat. Emu fat can be rendered into oil for therapeutic and cosmetic use. They are capable of gaining a significant portion of its daily energy requirement from the digestion of plant fibre. Despite of its large body size and low metabolic rate, emus have a relatively simple gastroinstetinal (GI) tract with a short mean digesta retention time. However, little is known about the GI microbial diversity of emus. The objective of this study was to characterize the intraluminal intestinal bacterial community in the different segments of small intestine (duodenum, jejunum, and ileum) using pyrotag sequencing and compare that with the ceca. Gut content samples were collected from each of four adult emus (2 males, 2 females; 5-6 years old) that were free ranged but supplemented with a barley-alfalfa-canola based diet. We amplified the V3-V5 region of 16S rRNA gene to identify the bacterial community using Roche 454 Junior system. After quality trimming, a total of 165,585 sequence reads were obtained from different segments of the small intestine (SI). A total of 701 operational taxonomic units (OTUs) were identified in the different segments of small intestine. Firmicutes (14-99%) and Proteobacteria (0.5-76%) were the most predominant bacterial phyla in the small intestine. Based on species richness estimation (Chao1 index), the average number of estimated OTUs in the small intestinal compartments were 148 in Duodenum, 167 in Jejunum, and 85 in Ileum, respectively. Low number of core OTUs identified in each compartment of small intestine across individual birds (Duodenum: 13 OTUs, Jejunum: 2 OTUs, Ileum: 14 OTUs) indicated unique bacterial community in each bird. Moreover, only 2 OTUs (Escherichia and Sinobacteraceae) were identified as core bacteria along the whole small intestine. PICRUSt analysis has indicated that the detoxification of plant material and environmental chemicals seem to be performed by SI microbiota, especially those in the jejunum. The emu cecal microbiome has more genes than SI segments involving in protective or immune response to enteric pathogens. Microbial digestion and fermentation is mostly in the jejunum and ceca. This is the first study to characterize the microbiota of different compartments of the emu intestines via gut samples and not fecal samples. Results from this study allow us to further investigate the influence of the seasonal and physiological changes of intestinal microbiota on the nutrition of emus and indirectly influence the fatty acid composition of emu fat.


Subject(s)
Dromaiidae , Jejunum , Animals , Male , Female , Jejunum/microbiology , RNA, Ribosomal, 16S/genetics , Duodenum , Ileum , Bacteria/genetics
11.
Benef Microbes ; 14(5): 477-491, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-38656096

ABSTRACT

The probiotic Enterococcus faecium is a gut microbe with immunomodulatory effects, which has been widely used to prevent diarrhoea in pigs and birds. Escherichia coli is a common pathogen that causes inflammatory bowel disease in animals. The aim of this study was to investigate the protective effects of E. faecium on enteritis in goats. Forty goats were randomly divided into 4 treatment groups: control, E. faecium, E. coli, and E. faecium + E. coli. The changes of physiological indicators and diarrhoea scoring were evaluated on days -4, -2, 0, 2, 4, 6, and 8. The pathological examination, inflammatory cytokines mRNA expression and bacterial counts in jejunum and caecum were detected on day 4 and 8. The results showed that body temperature, respiratory rate, heart rate and leukocyte counts all increased from the 2nd to the 6th day after feeding with E. coli, and the diarrhoea score was significantly increased. However, E. faecium-pretreated goats had lower body temperatures and fewer leukocytes than E. coli-treated goats on day 2, as well as decreased diarrhoea scores. E. coli treatment caused histopathological damage and morphological changes in the jejunum and caecum, while pretreatment with E. faecium significantly alleviated these injuries. E. faecium pretreatment can reduce the load of E. coli and increase the prevalence of Lactobacillus, thereby balancing the microbiota in the intestine. Furthermore, E. coli-infected goats pretreated with E. faecium showed obvious inhibition of Toll-like receptor 4, interleukin (IL)-1ß, IL-6, IL-8 and tumour necrosis factor-α mRNA expression in the jejunum and caecum compared to that in the E. coli treatment group. In conclusion, the addition of E. faecium to goat feed is beneficial for improving clinical symptoms, maintaining intestinal mucosa integrity, balancing the microbiota and decreasing inflammatory responses in E. coli-induced intestinal injury.


Subject(s)
Cytokines , Enteritis , Enterococcus faecium , Escherichia coli Infections , Escherichia coli , Goat Diseases , Goats , Probiotics , Animals , Probiotics/administration & dosage , Probiotics/pharmacology , Escherichia coli Infections/veterinary , Escherichia coli Infections/prevention & control , Escherichia coli Infections/microbiology , Enteritis/prevention & control , Enteritis/veterinary , Enteritis/microbiology , Goat Diseases/microbiology , Goat Diseases/prevention & control , Cytokines/metabolism , Cytokines/genetics , Jejunum/microbiology , Jejunum/pathology , Diarrhea/veterinary , Diarrhea/microbiology , Diarrhea/prevention & control , Cecum/microbiology , Bacterial Load , Dietary Supplements
12.
Sci Rep ; 12(1): 1682, 2022 01 31.
Article in English | MEDLINE | ID: mdl-35102222

ABSTRACT

Descriptions of the small intestinal microbiota are deficient and conflicting. We aimed to get a reliable description of the jejunal bacterial microbiota by investigating samples from two separate jejunal segments collected from the luminal mucosa during surgery. Sixty patients with morbid obesity selected for elective gastric bypass surgery were included in this survey. Samples collected by rubbing a swab against the mucosa of proximal and mid jejunal segments were characterized both quantitatively and qualitatively using a combination of microbial culture, a universal quantitative PCR and 16S deep sequencing. Within the inherent limitations of partial 16S sequencing, bacteria were assigned to the species level. By microbial culture, 53 patients (88.3%) had an estimated bacterial density of < 1600 cfu/ml in both segments whereof 31 (51.7%) were culture negative in both segments corresponding to a bacterial density below 160 cfu/ml. By quantitative PCR, 46 patients (76.7%) had less than 104 bacterial genomes/ml in both segments. The most abundant and frequently identified species by 16S deep sequencing were associated with the oral cavity, most often from the Streptococcus mitis group, the Streptococcus sanguinis group, Granulicatella adiacens/para-adiacens, the Schaalia odontolytica complex and Gemella haemolysans/taiwanensis. In general, few bacterial species were identified per sample and there was a low consistency both between the two investigated segments in each patient and between patients. The jejunal mucosa of fasting obese patients contains relatively few microorganisms and a core microbiota could not be established. The identified microbes are likely representatives of a transient microbiota and there is a high degree of overlap between the most frequently identified species in the jejunum and the recently described ileum core microbiota.


Subject(s)
Bacteria/growth & development , Gastrointestinal Microbiome , Intestinal Mucosa/microbiology , Jejunum/microbiology , Obesity, Morbid/microbiology , Adult , Aged , Bacteria/genetics , DNA, Bacterial/genetics , Female , Gastric Bypass , High-Throughput Nucleotide Sequencing , Humans , Intestinal Mucosa/surgery , Jejunum/surgery , Male , Middle Aged , Obesity, Morbid/diagnosis , Obesity, Morbid/surgery , Real-Time Polymerase Chain Reaction , Ribotyping , Young Adult
13.
Gut Microbes ; 14(1): 2018898, 2022.
Article in English | MEDLINE | ID: mdl-35012435

ABSTRACT

Acute intestinal mucositis is a common off-target effect of chemotherapy, leading to co-morbidities such as vomiting, diarrhea, sepsis, and death. We previously demonstrated that the presence of enteric bacteria modulates the extent of jejunal epithelial damage induced by doxorubicin (DXR) in mice. Despite conventional thinking of the crypt as a sterile environment, recent evidence suggests that bacterial signaling influences aISC function. In this study, we labeled aISCs using transgenic Lgr5-driven fluorescence or with immunostaining for OLFM4. We examined the effect of DXR in both germ free (GF) mice and mice depleted of microbiota using an established antimicrobial treatment protocol (AMBx). We found differences in DXR-induced loss of aISCs between GF mice and mice treated with AMBx. aISCs were decreased after DXR in GF mice, whereas AMBx mice retained aISC expression after DXR. Neither group of mice exhibited an inflammatory response to DXR, suggesting the difference in aISC retention was not due to differences in local tissue inflammation. Therefore, we suspected that there was a protective microbial signal present in the AMBx mice that was not present in the GF mice. 16S rRNA sequencing of jejunal luminal contents demonstrated that AMBx altered the fecal and jejunal microbiota. In the jejunal contents, AMBx mice had increased abundance of Ureaplasma and Burkholderia. These results suggest pro-survival signaling from microbiota in AMBx-treated mice to the aISCs, and that this signaling maintains aISCs in the face of chemotherapeutic injury. Manipulation of the enteric microbiota presents a therapeutic target for reducing the severity of chemotherapy-associated mucositis.


Subject(s)
Antineoplastic Agents/adverse effects , Doxorubicin/adverse effects , Jejunum/drug effects , Mucositis/prevention & control , Stem Cells/drug effects , Administration, Oral , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/administration & dosage , Bacteria/classification , Bacteria/drug effects , Bacteria/genetics , Bacteria/isolation & purification , Cell Survival/drug effects , Doxorubicin/administration & dosage , Gastrointestinal Microbiome/drug effects , Germ-Free Life , Humans , Jejunum/cytology , Jejunum/microbiology , Mice , Mice, Inbred C57BL , Mucositis/microbiology , Stem Cells/cytology , Time Factors
14.
Virology ; 567: 26-33, 2022 02.
Article in English | MEDLINE | ID: mdl-34952414

ABSTRACT

Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus that cause severe diarrhea, resulting in high mortality in neonatal piglets. Little is known regarding the pathogenicity of PDCoV in different infective dose and the dynamic changes in the composition of the gut microbiota in PDCoV-induced diarrhea piglets. In this study, 5-day-old piglets were experimentally infected with different dose of PDCoV. The challenged piglets developed typical symptoms, characterized by acute and severe watery diarrhea from 1 to 8 days post-inoculation (DPI), and viral shedding was detected in rectal swab until 11 DPI. Tissues of small intestines displayed significant macroscopic and microscopic lesions with clear viral antigen expression. However, no significant differences among groups were found in challenged piglets. Then alteration in gut microbiota in the jejunum and colon of PDCoV infected-piglets were analyzed using 16S rRNA sequencing. PDCoV infection reduced bacterial diversity and richness, and significantly altered the structure and abundance of the microbiota from the phylum to genus. Fusobacterium, and Proteobacteria was significantly increased (P < 0.05), while the abundance of Bacteroidota was markedly decreased in the infected-piglets. Furthermore, microbial function prediction indicated that the changes in intestinal bacterial also affected the immune system, excretory system, circulatory system, neurodegenerative disease, cardiovascular disease, xenobiotics biodegradation and metabolism, etc. These findings suggest that regulating gut microbiota community may be an effective approach for preventing PDCoV infection.


Subject(s)
Coronavirus Infections/veterinary , Deltacoronavirus/pathogenicity , Gastrointestinal Microbiome , Swine Diseases/virology , Animals , Antigens, Viral/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Colon/microbiology , Coronavirus Infections/microbiology , Coronavirus Infections/pathology , Coronavirus Infections/virology , Diarrhea/pathology , Diarrhea/veterinary , Diarrhea/virology , Intestine, Small/metabolism , Intestine, Small/pathology , Jejunum/microbiology , Swine , Swine Diseases/microbiology , Swine Diseases/pathology , Virulence , Virus Shedding , Weight Gain
15.
Front Immunol ; 12: 771826, 2021.
Article in English | MEDLINE | ID: mdl-34899723

ABSTRACT

Clostridium butyricum (CB) can enhance antioxidant capacity and alleviate oxidative damage, but the molecular mechanism by which this occurs remains unclear. This study used enterotoxigenic Escherichia coli (ETEC) K88 as a pathogenic model, and the p62-Keap1-Nrf2 signaling pathway and intestinal microbiota as the starting point to explore the mechanism through which CB alleviates oxidative damage. After pretreatment with CB for 15 d, mice were challenged with ETEC K88 for 24 h. The results suggest that CB pretreatment can dramatically reduce crypt depth (CD) and significantly increase villus height (VH) and VH/CD in the jejunum of ETEC K88-infected mice and relieve morphological lesions of the liver and jejunum. Additionally, compared with ETEC-infected group, pretreatment with 4.4×106 CFU/mL CB can significantly reduce malondialdehyde (MDA) level and dramatically increase superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels in the serum. This pretreatment can also greatly increase the mRNA expression levels of tight junction proteins and genes related to the p62-Keap1-Nrf2 signaling pathway in the liver and jejunum in ETEC K88-infected mice. Meanwhile, 16S rDNA amplicon sequencing revealed that Clostridium disporicum was significantly enriched after ETEC K88 challenge relative to the control group, while Lactobacillus was significantly enriched after 4.4×106 CFU/mL CB treatment. Furthermore, 4.4×106 CFU/mL CB pretreatment increased the short-chain fatty acid (SCFA) contents in the cecum of ETEC K88-infected mice. Moreover, we found that Lachnoclostridium, Roseburia, Lactobacillus, Terrisporobacter, Akkermansia, and Bacteroides are closely related to SCFA contents and oxidative indicators. Taken together, 4.4×106 CFU/mL CB pretreatment can alleviate ETEC K88-induced oxidative damage through activating the p62-Keap1-Nrf2 signaling pathway and remodeling the cecal microbiota community in mice.


Subject(s)
Antibiosis/immunology , Bacterial Infections/immunology , Cecum/microbiology , Clostridium butyricum/immunology , Enterotoxigenic Escherichia coli/immunology , Oxidative Stress/immunology , Proteins/immunology , Animals , Antibiosis/physiology , Bacterial Infections/genetics , Bacterial Infections/microbiology , Cecum/metabolism , Clostridium butyricum/physiology , Enterotoxigenic Escherichia coli/physiology , Gene Expression Regulation/immunology , Heme Oxygenase-1/genetics , Heme Oxygenase-1/immunology , Heme Oxygenase-1/metabolism , Jejunum/immunology , Jejunum/metabolism , Jejunum/microbiology , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/immunology , Kelch-Like ECH-Associated Protein 1/metabolism , Male , Mice , Microbiota/genetics , Microbiota/immunology , Microbiota/physiology , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/immunology , NF-E2-Related Factor 2/metabolism , Proteins/genetics , Proteins/metabolism , Sequestosome-1 Protein/genetics , Sequestosome-1 Protein/immunology , Sequestosome-1 Protein/metabolism , Signal Transduction/genetics , Signal Transduction/immunology , Superoxide Dismutase/genetics , Superoxide Dismutase/immunology , Superoxide Dismutase/metabolism , Swine
16.
Sci Rep ; 11(1): 23488, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34873196

ABSTRACT

Weaning is a critical period in the life of pigs with repercussions on their health and welfare and on the economy of the swine industry. This study aimed to assess the effect of the commercial early weaning on gut microbiota, intestinal gene expression and serum metabolomic response via an integrated-omic approach combining 16S rRNA gene sequencing, the OpenArray gene expression technology and 1H-NMR spectroscopy. Fourteen piglets from different litters were sampled for blood, jejunum tissue and caecal content two days before (- 2d), and three days after (+ 3d) weaning. A clearly differential ordination of caecal microbiota was observed. Higher abundances of Roseburia, Ruminococcus, Coprococcus, Dorea and Lachnospira genera in weaned piglets compared to prior to weaning showed the quick microbial changes of the piglets' gut microbiota. Downregulation of OCLN, CLDN4, MUC2, MUC13, SLC15A1 and SLC13A1 genes, also evidenced the negative impact of weaning on gut barrier and digestive functions. Metabolomic approach pinpointed significant decreases in choline, LDL, triglycerides, fatty acids, alanine and isoleucine and increases in 3-hydroxybutyrate after weaning. Moreover, the correlation between microbiota and metabolome datasets revealed the existence of metabolic clusters interrelated to different bacterial clusters. Our results demonstrate the impact of weaning stress on the piglet and give insights regarding the associations between gut microbiota and the animal gene activity and metabolic response.


Subject(s)
Gastrointestinal Microbiome/genetics , Host Microbial Interactions/genetics , Animals , Bacteria/genetics , Cecum/microbiology , Feces/microbiology , Jejunum/microbiology , Metabolome/genetics , RNA, Ribosomal, 16S/genetics , Swine , Weaning
17.
Oxid Med Cell Longev ; 2021: 6867962, 2021.
Article in English | MEDLINE | ID: mdl-34594475

ABSTRACT

The purpose of this research is to explore the positive effects of Lactobacillus plantarum and Lactobacillus brevis on the tissue damage and microbial community in mice challenged by Enterotoxigenic Escherichia coli (ETEC). Twenty-four mice were divided into four groups randomly: the CON group, ETEC group, LP-ETEC group and LB-ETEC group. Our results demonstrated that, compared with the ETEC group, the LP-ETEC and LB-ETEC groups experienced less weight loss and morphological damage of the jejunum. We measured proinflammatory factors of colonic tissue and found that L. plantarum and L. brevis inhibited the expression of proinflammatory factors such as IL-ß, TNF-α, and IL-6 and promoted that of the tight junction protein such as claudin-1, occludin, and ZO-1. Additionally, L. plantarum and L. brevis altered the impact of ETEC on the intestinal microbial community of mice, significantly increased the abundance of probiotics such as Lactobacillus, and reduced that of pathogenic bacteria such as Proteobacteria, Clostridia, Epsilonproteobacteria, and Helicobacter. Therefore, we believe that L. plantarum and L. brevis can stabilize the intestinal microbiota and inhibit the growth of pathogenic bacteria, thus protecting mice from the gut inflammation induced by ETEC.


Subject(s)
Escherichia coli Infections/therapy , Jejunum/pathology , Lactobacillus plantarum/physiology , Levilactobacillus brevis/physiology , Probiotics/therapeutic use , Animals , Claudin-1/genetics , Claudin-1/metabolism , Disease Models, Animal , Enterotoxigenic Escherichia coli/pathogenicity , Escherichia coli Infections/microbiology , Escherichia coli Infections/pathology , Gastrointestinal Microbiome , Interleukin-1beta/metabolism , Jejunum/metabolism , Jejunum/microbiology , Mice , Mice, Inbred ICR , Tumor Necrosis Factor-alpha/metabolism
18.
Biomed Pharmacother ; 138: 111094, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34311521

ABSTRACT

Currently, several studies propose that the dominant intestinal bacteria are core flora. Besides keeping the homeostasis of the intestinal environment, the intestinal microflora also plays a role in body metabolism, production of some vitamins, and control of barrier function. The study aimed to investigate the jejunum microbiota in diabetic rats as well as it's the relationship with Ceftriaxone sodium-mediated gut dysbiosis, diabetic parameters, and intestinal permeability. Thirty-two Wistar rats (Male) were enrolled and divided into four groups (A, B, C, and D; N = 8). Subsequently, T2DM was induced in C and D groups by HFD/STZ model and then gut dysbiosis in B and D groups via intragastric administration of Ceftriaxone sodium for two weeks. The food-water intake, body weight, fasting blood glucose, plasma insulin, HOMA-IR, intestinal permeability, and jejunum microbiota and it's histology were investigated. In this study, T2DM was associated with a significant decrease in the richness and diversity of jejunum microbiota, elevation in the intestinal permeability, and higher abundance of some opportunistic pathogens. Ceftriaxone sodium-induced gut dysbiosis declined food-water intake, damagedthe villi of jejunum tissue, increased intestinal permeability, and affected the diversity of jejunum microbiota. In diabetic rats, Ceftriaxone sodium-mediated gut dysbiosis also declined the abundance of someSCFAs bacteria and raised the abundant of some opportunistic bacteria such as Staphylococcus_sciuri. Interestingly, we found that several bacteria were negatively correlated with HOMA-IR, fasting blood glucose, body weight, and intestinal permeability. Overall, the study highlighted the jejunum microflora alterations in HFD/STZ diabetic rats and assessed the effect of Ceftriaxone sodium-induced gut dysbiosis on diabetic parameters, jejunum microbiota and histology, and intestinal permeability, which are of potential for further studies.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/growth & development , Diabetes Mellitus, Experimental/microbiology , Diabetes Mellitus, Type 2/microbiology , Gastrointestinal Microbiome , Jejunum/microbiology , Animals , Bacteria/drug effects , Bacteria/metabolism , Ceftriaxone/pharmacology , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/chemically induced , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat , Dysbiosis , Gastrointestinal Microbiome/drug effects , Intestinal Absorption , Jejunum/drug effects , Jejunum/metabolism , Male , Permeability , Rats, Wistar , Streptozocin
19.
Int J Mol Sci ; 22(13)2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34206478

ABSTRACT

Prevalences of Campylobacter (C.) jejuni infections are progressively rising globally. Given that probiotic feed additives, such as the commercial product Aviguard®, have been shown to be effective in reducing enteropathogens, such as Salmonella, in vertebrates, including livestock, we assessed potential anti-pathogenic and immune-modulatory properties of Aviguard® during acute C. jejuni-induced murine enterocolitis. Therefore, microbiota-depleted IL-10-/- mice were infected with C. jejuni strain 81-176 by gavage and orally treated with Aviguard® or placebo from day 2 to 4 post-infection. The applied probiotic bacteria could be rescued from the intestinal tract of treated mice, but with lower obligate anaerobic bacterial counts in C. jejuni-infected as compared to non-infected mice. Whereas comparable gastrointestinal pathogen loads could be detected in both groups until day 6 post-infection, Aviguard® treatment resulted in improved clinical outcome and attenuated apoptotic cell responses in infected large intestines during acute campylobacteriosis. Furthermore, less distinct pro-inflammatory immune responses could be observed not only in the intestinal tract, but also in extra-intestinal compartments on day 6 post-infection. In conclusion, we show here for the first time that Aviguard® exerts potent disease-alleviating effects in acute C. jejuni-induced murine enterocolitis and might be a promising probiotic treatment option for severe campylobacteriosis in humans.


Subject(s)
Campylobacter Infections/microbiology , Campylobacter Infections/therapy , Campylobacter jejuni/physiology , Enterocolitis/microbiology , Enterocolitis/therapy , Probiotics/therapeutic use , Animals , Biomarkers , Campylobacter Infections/diagnosis , Cytokines/metabolism , Disease Models, Animal , Disease Susceptibility , Enterocolitis/diagnosis , Gastrointestinal Microbiome , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Immunity , Inflammation Mediators/metabolism , Interleukin-10/deficiency , Jejunum/microbiology , Jejunum/pathology , Mice , Mice, Knockout
20.
Molecules ; 26(9)2021 May 08.
Article in English | MEDLINE | ID: mdl-34066903

ABSTRACT

The effect of effective microorganisms (EM) on internal organ morphology, intestinal morphometry, and serum biochemical activity in Japanese quails under Clostridium perfringens challenge was determined. After 30 days of EM addition, one group of quails was orally inoculated with Clostridium perfringens. The second group did not receive EM and was inoculated with C. perfringens. In the gut, EM supplementation reduced the number of lesions, enhanced gut health, and protected the mucosa from pathogenic bacteria. EM showed an anti-inflammatory effect and fewer necrotic lesions in villi. In the internal organs, EM showed a protective effect against a typical lesion of C. perfringens infection. Necrosis and degeneration of the hepatocytes, necrosis of bile ducts, and bile duct proliferation were more severe in the infected group without EM. Morphometric evaluation showed significantly higher villi in the jejunum after EM addition. A greater crypt depth was observed in the C. perfringens group. Biochemical analysis of the blood indicated lower cholesterol on the 12th day of the experiment and between-group differences in total protein, lactate dehydrogenase (LDH), and albumin levels in the EM group. Further studies are needed to improve EM activity against pathologic bacteria as a potential alternative to antibiotics and to develop future natural production systems.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Bird Diseases/blood , Bird Diseases/diet therapy , Clostridium Infections/blood , Clostridium Infections/diet therapy , Clostridium perfringens , Enteritis/blood , Enteritis/diet therapy , Intestinal Mucosa/microbiology , Probiotics/therapeutic use , Protective Agents/therapeutic use , Quail/blood , Quail/microbiology , Animal Feed/microbiology , Animals , Bile Ducts/pathology , Bird Diseases/microbiology , Cholesterol/blood , Clostridium Infections/microbiology , Enteritis/microbiology , Female , Hepatocytes/pathology , Intestinal Mucosa/pathology , Jejunum/microbiology , Jejunum/pathology , L-Lactate Dehydrogenase/blood , Necrosis , Serum Albumin/analysis , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...