Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.925
Filter
1.
Sci Rep ; 14(1): 6038, 2024 03 13.
Article in English | MEDLINE | ID: mdl-38472365

ABSTRACT

Pacing has been proposed as a therapy to restore function in motility disorders associated with electrical dysrhythmias. The spatial response of bioelectrical activity in the small intestine to pacing is poorly understood due to a lack of high-resolution investigations. This study systematically varied pacing parameters to determine the optimal settings for the spatial entrainment of slow wave activity in the jejunum. An electrode array was developed to allow simultaneous pacing and high-resolution mapping of the small intestine. Pacing parameters including pulse-width (50, 100 ms), pulse-amplitude (2, 4, 8 mA) and pacing electrode orientation (antegrade, retrograde, circumferential) were systematically varied and applied to the jejunum (n = 15 pigs). Pulse-amplitudes of 4 mA (p = 0.012) and 8 mA (p = 0.002) were more effective than 2 mA in achieving spatial entrainment while pulse-widths of 50 ms and 100 ms had comparable effects (p = 0.125). A pulse-width of 100 ms and a pulse-amplitude of 4 mA were determined to be most effective for slow wave entrainment when paced in the antegrade or circumferential direction with a success rate of greater than 75%. These settings can be applied in chronic studies to evaluate the long-term efficacy of pacing, a critical aspect in determining its therapeutic potential.


Subject(s)
Gastrointestinal Motility , Jejunum , Animals , Swine , Jejunum/physiology , Gastrointestinal Motility/physiology , Electric Stimulation , Electrodes
2.
Biomech Model Mechanobiol ; 23(1): 73-86, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37548873

ABSTRACT

Remodeling of Intestinal properties and hypersensitivity of intestinal afferents to mechanical stimulation were previously demonstrated in a fasting rat model. Other studies investigated the association between mechanical and histological remodeling during fasting. This study aimed to further explore the relationship between the jejunal remodeling and intestinal afferent hypersensitivity by combining afferent nerve recordings with histological and mechanical data. Eight male Sprague Dawley rats had no access to food for 7 days (Fasting group). Seven male rats served as controls (Control group). Jejunal segments were studied in vitro in an organ bath for analysis of afferent signaling and for analysis of mechanical and histomorphological parameters. Correlation analyses were done to analyze association between nerve activity (spike rate increase ratio, SRIR) at distension levels of 20, 40 and 80 cmH2O and mechanical stress and histomorphological changes of the jejunal segments. Compared with the Control group, the main findings in jejunal segments in the Fasting group were (1) Most histomorphometry parameters were reduced (P < 0.05-P < 0.001), (2) SRIR values were higher (P < 0.001), (3) The relative numbers of intermuscular and submucosal neurons were increased (P < 0.05-P < 0.01), and (4) SRIR was negatively correlated with intestinal wall thickness, circumferential muscle layer thickness and positively correlated with the inner residual strain, the number of neurons, and the mechanical stress. In conclusion, the fasting-induced histomorphological remodeling (reduced wall thickness and increased relative number of neurons) and biomechanical remodeling (residual strain changes and high stress level) of the intestine in fasting rats were associated with hypersensitivity of intestinal afferents. Afferent hypersensitivity appears to be dependent on stress rather than on strain.


Subject(s)
Intestines , Jejunum , Rats , Male , Animals , Rats, Sprague-Dawley , Biomechanical Phenomena , Jejunum/innervation , Jejunum/physiology , Fasting
3.
IEEE Trans Biomed Eng ; 71(3): 750-757, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37729575

ABSTRACT

OBJECTIVE: Compromised bowel function is associated with a range of motility disorders such as post-operative ileus and chronic intestinal pseudo-obstruction. Disordered or weak motility compromise the efficient movement of luminal contents necessary for digestion and nutrient absorption. This study investigated the potential of high-energy pacing to enhance contractions in the proximal jejunum of the small intestine. METHODS: Pacing pulse parameters (pulse-width: 100 ms, 200 ms, 400 ms, pulse-amplitude: 4 mA, 6 mA, 8 mA) were systematically varied in the in vivo porcine jejunum (n = 7) and the induced contractile responses were evaluated using a video mapping system. Localized segmental contractions were quantified by measuring the intestinal diameter and thereby computing the strain. The impact of pacing parameters on contractile strain was investigated. Finally, histological studies were conducted on paced tissue to assess for potential tissue damage. RESULTS: Segmental contractions were successfully induced at all pulse-settings and evaluated across 67 pacing sessions. In response to pacing, the intestine segment at the site of pacing contracted, with diameter reduced by 6-18%. Contractile response significantly increased with increasing pulse-amplitude. However, with increasing pulse-width, the increase in contractile response was significant only between 100 ms and 400 ms. Histology showed no tissue damage occurred when maximal pacing energy (pulse-amplitude = 4-8 mA, pulse-width = 400 ms, 5 minute duration) was applied. CONCLUSION: High-energy pacing induced periodic segmental contractions in response to pacing pulses and the contractile strain was proportional to the energy applied on the intestine. The ability to enhance motility through pacing may hold promising therapeutic potential for bowel disorders and awaits clinical translation. SIGNIFICANCE: Small intestine pacing elicits localized segmental contractions which increase in magnitude with increasing pulse settings. This study marks the first adaptation of video mapping techniques to track the pacing response in the small intestine.


Subject(s)
Gastrointestinal Motility , Jejunum , Animals , Swine , Jejunum/physiology , Gastrointestinal Motility/physiology , Electric Stimulation/methods , Intestine, Small , Muscle Contraction
4.
Front Immunol ; 13: 847861, 2022.
Article in English | MEDLINE | ID: mdl-35185936

ABSTRACT

Gut barrier disruption is the initial pathogenesis of various diseases. We previously reported that dietary allicin improves tight junction proteins in the endoplasmic reticulum stressed jejunum. However, whether the allicin benefits the gut barrier within mycotoxin or endotoxin exposure is unknown. In the present study, IPEC-J2 cell monolayers within or without deoxynivalenol (DON) or lipopolysaccharide (LPS) challenges were employed to investigate the effects of allicin on intestinal barrier function and explore the potential mechanisms. Results clarified that allicin at 2 µg/mL increased the viability, whereas the allicin higher than 10 µg/mL lowered the viability of IPEC-J2 cells via inhibiting cell proliferation. Besides, allicin increased trans-epithelial electric resistance (TEER), decreased paracellular permeability, and enhanced ZO-1 integrity of the IPEC-J2 cell monolayers. Finally, allicin supplementation prevented the LPS-induced barrier damages via activating Nrf2/HO-1 pathway-dependent antioxidant system. In conclusion, the present study strongly confirmed allicin as an effective nutrient to improve intestinal barrier function and prevent bacterial endotoxin-induced barrier damages.


Subject(s)
Disulfides/pharmacology , Endoplasmic Reticulum Stress/drug effects , Jejunum/drug effects , Lipopolysaccharides/toxicity , Permeability/drug effects , Sulfinic Acids/pharmacology , Animals , Cell Line , Electric Impedance , Epithelial Cells/metabolism , Heme Oxygenase-1/metabolism , Jejunum/metabolism , Jejunum/physiology , NF-E2-Related Factor 2/metabolism , Signal Transduction/drug effects , Swine , Tight Junction Proteins/metabolism
5.
Nat Prod Res ; 36(16): 4238-4242, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34652246

ABSTRACT

The antidiarrheal effect of methanolic extract of Trillium govanianum Wall. ex D. Don (Melanthiaceae alt. Trilliaceae) was studied at doses of 12.5, 25, and 50 mg/kg in different animal models of diarrhea including castor oil (6 mL/kg), magnesium sulfate (2 gm/kg), sodium picosulfate (2 mL/kg) and lactitol (0.25 mL/kg). The antispasmodic effect of T. govanianum was studied on isolated rabbit's jejunum, using acetylcholine as tissue stabiliser and verapamil as calcium channel blocker. T. govanianum attenuated the diarrhea by producing a significant decrease in the number and weight of stool, and an increase in stool latency time. T. govanianum completely inhibited both spontaneous as well as high potassium induced contractions of isolated rabbit's jejunum, which was analogous to verapamil. Moreover, T. govanianum produced a right shift in calcium concentration response curve, confirming its calcium channel blocking activity. These findings provide scientific ground to its medicinal use in diarrhea and gut spasms.


Subject(s)
Antidiarrheals , Trillium , Animals , Antidiarrheals/pharmacology , Calcium , Calcium Channels/pharmacology , Calcium Channels/therapeutic use , Diarrhea/drug therapy , Jejunum/physiology , Parasympatholytics/pharmacology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Rabbits , Rhizome , Verapamil/pharmacology , Verapamil/therapeutic use
6.
IEEE Trans Biomed Eng ; 69(6): 2077-2086, 2022 06.
Article in English | MEDLINE | ID: mdl-34910629

ABSTRACT

OBJECTIVE: To develop a method to quantify strain fields from in vivo intestinal motility recordings that mitigate accumulation of tracking error. METHODS: The deforming geometry of the intestine in video sequences was modeled by a biquadratic B-spline mesh. Green-Lagrange strain fields were computed to quantify the surface deformations. A nonlinear optimization scheme was applied to mitigate the accumulation of tracking error associated with image registration. RESULTS: The optimization scheme maintained the RMS strain error under 1% and reduced the rate of strain error by 97% during synthetic tests. The algorithm was applied to map 64 segmental, 12 longitudinal, and 23 propagating circular contractions in the jejunum. Coordinated activity of the two muscle layers could be identified and the strain fields were able to map and quantify the anisotropic contractions of the intestine. Frequency and velocity were also quantified, from which two types of propagating circular contractions were identified: (i) [Formula: see text] strain contractions that originated spontaneously and propagated at [Formula: see text] mm/s in two pigs, and (ii) cyclic propagating contractions of [Formula: see text] strain occurred at [Formula: see text] cpm and propagated at [Formula: see text] mm/s in a rabbit. CONCLUSION: The algorithm simultaneously mapped the circular, longitudinal activity of the intestine with high spatial resolution and quantified anisotropic contractions and relaxations. SIGNIFICANCE: The proposed algorithm can now be used to define the interactions of muscle layers during motility patterns. It can be integrated with high-resolution bioelectrical recordings to investigate the regulatory mechanisms of motility.


Subject(s)
Gastrointestinal Motility , Muscle Contraction , Algorithms , Animals , Gastrointestinal Motility/physiology , Jejunum/physiology , Muscle Contraction/physiology , Rabbits , Swine , Urinary Bladder
7.
Food Funct ; 12(18): 8647-8658, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34346452

ABSTRACT

Endoplasmic reticulum stress (ERS) and apoptosis are widely considered as essential factors associated with intestinal disorders, whereas nutritional therapeutic approaches targeting ERS may control disease activity. Thus, we focus on the potential benefit of chitosan oligosaccharide (COS) on repressing ERS and ERS-induced apoptosis. In this study, we used the ERS model with tunicamycin (TM)-induced IPEC-J2 cells in vitro and nutrient deprivation-induced ERS in piglets to evaluate the protective mechanism of COS against ERS and ERS-induced apoptosis. The results showed that cells were characterized by activation of the unfolded protein response (UPR) and increased epithelial apoptosis upon exposure to TM. However, these changes were significantly attenuated by COS and the expressions of Akt and mTORC1 were inhibited. Furthermore, a specific inhibitor of mTOR confirmed the suppression of Akt and reduced the activation of the UPR and apoptosis. In vivo, COS protected against nutrient deprivation-induced ERS in the jejunum of piglets, in which the overexpression of the UPR and apoptosis was rescued. Consistently, COS attenuated nutrient deprivation-induced disruption of intestinal barrier integrity and functional capacity. Together, we provided the first evidence that COS could protect against intestinal apoptosis through alleviating severe ERS, which may be related to the inhibition of the Akt/mTOR signaling pathway.


Subject(s)
Apoptosis , Chitosan/administration & dosage , Dietary Supplements , Endoplasmic Reticulum Stress , Jejunum/physiology , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Cell Line , Gene Expression , Male , Malnutrition/pathology , Malnutrition/physiopathology , Malnutrition/veterinary , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction , Swine , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/genetics , Tunicamycin/pharmacology , Unfolded Protein Response
8.
Neurogastroenterol Motil ; 33(12): e14240, 2021 12.
Article in English | MEDLINE | ID: mdl-34378830

ABSTRACT

BACKGROUND: The manometric diagnosis of severe intestinal dysmotility is performed at most institutions using catheters with 2-8 sensors 5-10 cm apart. The recent application of high-resolution manometry catheters with closely spaced sensors to other gut segments has been highly successful. The objective of the present study was to determine the feasibility of a jejunal high-resolution manometry method and to carry out a descriptive analysis of normal jejunal motor function. METHODS: A 36-channel high-resolution water-perfused manometry catheter (MMS-Laborie, Enschede, The Netherlands) was orally placed in the jejunum of 18 healthy subjects (10 men, eight women; 21-38 age range). Intestinal motility was recorded during 5 h, 3 during fasting, and 2 after a 450 kcal solid-liquid meal. Analysis of motility patterns was supported by computerized tools. KEY RESULTS: All healthy subjects except one showed at least one complete migrating motor complex during the 3 h fasting period. Phase III activity lasted 5 ± 1 min and migrated aborally at a velocity of 7 ± 3 cm/min. High-resolution spatial analysis showed that during phase III each individual contraction propagated rapidly (75 ± 37 cm/min) over a 32 ± 10 cm segment of the jejunum. During phase II, most contractile activity corresponded to propagated contractile events which increased in frequency from early to late phase II (0.5 ± 0.9 vs 2.5 ± 1.3 events/10 min, respectively; p < 0.001). After meal ingestion, non-propagated activity increased, whereas propagated events were less frequent than during late phase II. CONCLUSIONS & INFERENCES: Jejunal motility analysis with high-resolution manometry identifies propagated contractile patterns which are not apparent with conventional manometric catheters.


Subject(s)
Eating/physiology , Jejunum/physiology , Myoelectric Complex, Migrating/physiology , Adult , Fasting/physiology , Female , Humans , Male , Manometry , Prospective Studies , Water , Young Adult
9.
Int J Mol Sci ; 22(16)2021 Aug 14.
Article in English | MEDLINE | ID: mdl-34445450

ABSTRACT

Tumor necrosis factor alpha (TNFα) has been shown to impair the intestinal barrier, inducing and maintaining inflammatory states of the intestine. The aim of the current study was to analyze functional, molecular and regulatory effects of TNFα in a newly established non-transformed jejunal enterocyte model, namely IPEC-J2 monolayers. Incubation with 1000 U/mL TNFα induced a marked decrease in transepithelial electrical resistance (TEER), and an increase in permeability for the paracellular flux marker [3H]-D-mannitol compared to controls. Immunoblots revealed a significant decrease in tight junction (TJ) proteins occludin, claudin-1 and claudin-3. Moreover, a dose-dependent increase in the TNF receptor (TNFR)-1 was detected, explaining the exponential nature of pro-inflammatory effects, while TNFR-2 remained unchanged. Recovery experiments revealed reversible effects after the removal of the cytokine, excluding apoptosis as a reason for the observed changes. Furthermore, TNFα signaling could be inhibited by the specific myosin light chain kinase (MLCK) blocker ML-7. Results of confocal laser scanning immunofluorescence microscopy were in accordance with all quantitative changes. This study explains the self-enhancing effects of TNFα mediated by MLCK, leading to a differential regulation of TJ proteins resulting in barrier impairment in the intestinal epithelium.


Subject(s)
Intestinal Mucosa/metabolism , Receptors, Tumor Necrosis Factor, Type I/genetics , Tight Junction Proteins/genetics , Tight Junctions , Tumor Necrosis Factor-alpha/metabolism , Animals , Cell Line , Claudin-1/genetics , Claudin-3/genetics , Gene Expression Regulation , Intestinal Mucosa/physiology , Jejunum/metabolism , Jejunum/physiology , Mannitol/metabolism , Myosin-Light-Chain Kinase/metabolism , Occludin/genetics , Permeability , Signal Transduction , Sus scrofa/metabolism , Sus scrofa/physiology , Tumor Necrosis Factor-alpha/pharmacology
10.
Int J Mol Sci ; 22(10)2021 May 15.
Article in English | MEDLINE | ID: mdl-34063472

ABSTRACT

The pathogenic mechanisms underlying nonalcoholic fatty liver disease (NAFLD) are beginning to be understood. RUNX1 is involved in angiogenesis, which is crucial in inflammation, but its role in nonalcoholic steatohepatitis (NASH) remains unclear. The aim of this study was to analyze RUNX1 mRNA hepatic and jejunal abundance in women with morbid obesity (MO) and NAFLD. RUNX1, lipid metabolism-related genes, and TLRs in women with MO and normal liver (NL, n = 28), NAFLD (n = 41) (simple steatosis (SS, n = 24), or NASH (n = 17)) were analyzed by RT-qPCR. The RUNX1 hepatic expression was higher in SS than in NL or NASH, as likewise confirmed by immunohistochemistry. An increased expression of hepatic FAS was found in NAFLD. Hepatic RUNX1 correlated positively with FAS. There were no significant differences in the jejunum RUNX1 expressions in the different groups. Jejunal FXR expression was lower in NASH than in NL, while the TLR9 expression increased as NAFLD progressed. Jejunal RUNX1 correlated positively with jejunal PPARγ, TLR4, and TLR5. In summary, the hepatic expression of RUNX1 seems to be involved in the first steps of the NAFLD process; however, in NASH, it seems to be downregulated. Our findings provide important insights into the role of RUNX1 in the context of NAFLD/NASH, suggesting a protective role.


Subject(s)
Core Binding Factor Alpha 2 Subunit/genetics , Non-alcoholic Fatty Liver Disease/genetics , Obesity, Morbid/genetics , Adult , Core Binding Factor Alpha 2 Subunit/metabolism , Female , Humans , Jejunum/physiology , Lipid Metabolism/genetics , Liver/pathology , Liver/physiology , Non-alcoholic Fatty Liver Disease/pathology , Obesity, Morbid/pathology , RNA, Messenger , Toll-Like Receptor 9/genetics , Toll-Like Receptors/genetics , Transcriptome
11.
Pflugers Arch ; 473(6): 921-936, 2021 06.
Article in English | MEDLINE | ID: mdl-33913004

ABSTRACT

The present study aims to investigate the roles of water intake in serotonin production and release in rat jejunum. We evaluated the changes in concentrations of serotonin in the portal vein and mesenteric lymph vessel induced by the intragastric administration of distilled water. The density of granules in enterochromaffin cells and the immunoreactivity of serotonin in the jejunal villi were investigated before and after water intake. The effects of intravenous administration of serotonin and/or ketanserin on mesenteric lymph flow and concentrations of albumin and IL-22 in the lymph were also addressed. Water intake increased serotonin concentration in the portal vein, but not in the mesenteric lymph vessel. The flux of serotonin through the portal vein was significantly larger than that through the mesenteric lymph vessel. Water intake decreased the density of granules in the enterochromaffin cells and increased the immunoreactivity of serotonin in the jejunal villi. The intravenous administration of serotonin increased significantly mesenteric lymph flow and the concentrations of albumin and IL-22; both were significantly reduced by the intravenous pretreatment with ketanserin. We showed that serotonin released from enterochromaffin cells by water intake was mainly transported through the portal vein. Additionally, serotonin in blood was found to increase mesenteric lymph formation with permeant albumin in the jejunal villi via the activation of 5-HT2 receptor.


Subject(s)
Drinking , Enterochromaffin Cells/metabolism , Jejunum/metabolism , Serotonin/metabolism , Albumins/metabolism , Animals , Cytoplasmic Granules/metabolism , Interleukins/blood , Jejunum/cytology , Jejunum/physiology , Male , Portal Vein/physiology , Rats , Rats, Sprague-Dawley , Serotonin/blood , Interleukin-22
12.
Exp Biol Med (Maywood) ; 246(11): 1307-1317, 2021 06.
Article in English | MEDLINE | ID: mdl-33653159

ABSTRACT

Intestinal tissue is highly susceptible to ischemia/reperfusion injury in many hazardous health conditions. The anti-inflammatory and antioxidant glycoprotein fetuin-A showed efficacy in cerebral ischemic injury; however, its protective role against intestinal ischemia/reperfusion remains elusive. Therefore, this study investigated the protective role of fetuin-A supplementation against intestinal structural changes and dysfunction in a rat model of intestinal ischemia/reperfusion. We equally divided 72 male rats into control, sham, ischemia/reperfusion, and fetuin-A-pretreated ischemia/reperfusion (100 mg/kg/day fetuin-A intraperitoneally for three days prior to surgery and a third dose 1 h prior to the experiment) groups. After 2 h of reperfusion, the jejunum was dissected and examined for spontaneous contractility. A jejunal homogenate was used to assess inflammatory and oxidative stress enzymes. Staining of histological sections was carried out with hematoxylin, eosin and Masson's trichrome stain for evaluation. Immunohistochemistry was performed to detect autophagy proteins beclin-1, LC3, and p62. This study found that fetuin-A significantly improved ischemia/reperfusion-induced mucosal injury by reducing the percentage of areas of collagen deposition, increasing the amplitude of spontaneous contraction, decreasing inflammation and oxidative stress, and upregulating p62 expression, which was accompanied by beclin-1 and LC3 downregulation. Our findings suggest that fetuin-A treatment can prevent ischemia/reperfusion-induced jejunal structural and functional changes by increasing antioxidant activity and regulating autophagy disturbances observed in the ischemia/reperfusion rat model. Furthermore, fetuin-A may provide a protective influence against intestinal ischemia/reperfusion complications.


Subject(s)
Intestines/blood supply , Reperfusion Injury/pathology , alpha-2-HS-Glycoprotein/pharmacology , Animals , Autophagic Cell Death/drug effects , Autophagic Cell Death/immunology , Beclin-1/metabolism , Collagen/metabolism , Disease Models, Animal , Enteritis/drug therapy , Enteritis/pathology , Intestines/drug effects , Intestines/pathology , Jejunal Diseases/drug therapy , Jejunal Diseases/pathology , Jejunum/blood supply , Jejunum/drug effects , Jejunum/physiology , Male , Oxidative Stress/drug effects , Oxidative Stress/physiology , Protective Agents/pharmacology , Rats , Reperfusion Injury/etiology , Reperfusion Injury/prevention & control
13.
Biochimie ; 178: 124-136, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32949677

ABSTRACT

Although the jejunum is the main intestinal compartment responsible for lipid digestion and absorption, most of the studies assessing the impact of dietary lipids on the intestinal microbiota have been performed in the ileum, colon and faeces. This lack of interest in the jejunum is due to the much lower number of microbes present in this intestinal region and to the difficulty in accessing its lumen, which requires invasive methods. Recently, several recent publications highlighted that the whole jejunal microbiota or specific bacterial members are able to modulate lipid absorption and metabolism in enterocytes. This information reveals new strategies in the development of bacterial- and metabolite-based therapeutic interventions or nutraceutical recommendations to treat or prevent metabolic-related disorders, including obesity, cardiovascular diseases and malnutrition. This review is strictly focused on the following triad: dietary lipids, the jejunal epithelium and the jejunal microbiota. First, we will describe each member of the triad: the structure and functions of the jejunum, the composition of the jejunal microbiota, and dietary lipid handling by enterocytes and by microorganisms. Then, we will present the mechanisms leading to lipid malabsorption in small intestinal bacterial overgrowth (SIBO), a disease in which the jejunal microbiota is altered and which highlights the strong interactions among this triad. We will finally review the recent literature about the interactions among members of the triad, which should encourage research teams to further explore the mechanisms by which specific microbial strains or metabolites, alone or in concert, can mediate, control or modulate lipid absorption in the jejunum.


Subject(s)
Dietary Fats/metabolism , Gastrointestinal Microbiome , Intestinal Mucosa/metabolism , Intestinal Mucosa/physiology , Jejunum/metabolism , Jejunum/microbiology , Animals , Humans , Intestinal Absorption/physiology , Intestinal Diseases/complications , Intestinal Diseases/microbiology , Jejunum/anatomy & histology , Jejunum/physiology
14.
Exp Biol Med (Maywood) ; 245(14): 1194-1199, 2020 08.
Article in English | MEDLINE | ID: mdl-32611198

ABSTRACT

IMPACT STATEMENT: Localization of a specific subtype of the muscarinic acetylcholine receptor in the crypt stem cell compartment suggests a critical role in intestinal mucosal homeostasis. Here we demonstrate the localization of the M1 muscarinic acetylcholine receptor to the stem cell compartment and demonstrate increase morphometric and proliferative parameters when this is stimulated in vivo. These data provide novel information about this complex signaling microenvironment and offer potential future therapeutic targets for future study.


Subject(s)
Cell Proliferation/physiology , Intestinal Mucosa/metabolism , Jejunum/metabolism , Receptor, Muscarinic M1/metabolism , Receptors, Cholinergic/metabolism , Stem Cells/metabolism , Acetylcholine/metabolism , Animals , Homeostasis/physiology , Intestinal Mucosa/physiology , Jejunum/physiology , Male , Mice , Mice, Inbred C57BL , RNA, Messenger/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/physiology , Stem Cells/physiology
15.
Zool Res ; 41(4): 449-454, 2020 Jul 18.
Article in English | MEDLINE | ID: mdl-32521575

ABSTRACT

Intestinal biopsy is a basic experimental method for studying pathological changes in the intestinal tract during human immunodeficiency virus (HIV) infection. In this study, jejunal resection and anastomosis were successfully performed in 12 Chinese rhesus macaques ( Macaca mulatta). The sampled gut tissues were then examined by hematoxylin and eosin (H&E) staining, electron microscopy, flow cytometry, immunofluorescence detection, and RNA quality analysis to ensure suitability for histological, physiological, pathological, and immunological detection, as well as mechanistic analysis at the cellular and molecular level. Importantly, the surgery did not affect the ratio or number of immune cells in peripheral blood or the concentration of lipids, proteins, and vitamins in plasma, which are important indicators of nutritional status. Our results thus indicated that jejunal resection and anastomosis are feasible, and that immune homeostasis and intestinal barrier integrity are not altered by surgery. All macaques recovered well (except for one), with no postoperative complications. Therefore, this animal surgery may be applicable for longitudinal intestinal research related to diseases such as acquired immunodeficiency syndrome (AIDS).


Subject(s)
Anastomosis, Surgical/veterinary , Jejunum/surgery , Macaca mulatta/surgery , Animals , Homeostasis/immunology , Immune System/physiology , Jejunum/physiology , Monkey Diseases
16.
J Anim Physiol Anim Nutr (Berl) ; 104(5): 1444-1453, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32592200

ABSTRACT

The aim of the study was to determine the influence of the effective microorganisms (EM) on performance parameters, intestinal morphology and gene expression in the jejunal mucosa in pigs under different feeding regimes. The study group comprised of 150 piglets divided into three feeding groups: C, E1 and E2. Feeding groups included: C-standard fodder, blend with a full share of post-extracted soy meal, E1-in the phase I of fattening: pea and lupin/soybean 50/50%; in the phase II of fattening: pea and lupin/soybean 75/25%, and E2-in the phase I of fattening: pea and lupin/soybean 50/50%; in the phase II of fattening: pea and lupin 100%. The experimental factor was addition of a probiotic EM Carbon Bokashi to the diets (C + EM, E1 + EM and E2 + EM). After slaughter, histological evaluation and gene expression analysis were performed. The highest intestinal villi were reported in E2 + EM. A higher intestinal absorption area was demonstrated in groups C + EM and E2 + EM. An interaction between feeding and EM Bokashi supplementation was found in villus surface area crypt depth, villus height/crypt depth and number of goblet cells. Mucosa thickness and number of goblet cells was the largest in E2 + EM. Gene expression of FABP4 increased in E1, and GLUT2 decreased in E2. Gene expression of IL10 and FABP4 increased in E2 + EM. The results indicate that the E2 diet is more optimal for EM Bokashi supplementation, because in this group, EM positively influenced the morphological characteristics of the porcine jejunum and caused an increase in the expression of genes related to the metabolism and functioning of the gastrointestinal tract.


Subject(s)
Animal Feed/analysis , Bacteria/metabolism , Gene Expression Regulation/physiology , Jejunum/anatomy & histology , Swine/physiology , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary , Female , Gastrointestinal Microbiome , Intestinal Mucosa/metabolism , Jejunum/microbiology , Jejunum/physiology , Male , Saccharomyces cerevisiae/physiology , Swine/genetics , Swine/growth & development , Weight Gain
17.
Nagoya J Med Sci ; 82(2): 291-300, 2020 May.
Article in English | MEDLINE | ID: mdl-32581408

ABSTRACT

The purpose of this study was to assess the correlation between tissue volume and blood flow of the flap in an animal model. Using animal model, tissue volume can be attenuated, and precise change of blood flow could be evaluated. We further investigate the relationship between blood flow and vascular density in the tissue. In this study, we assessed flap conductance (ml/min/mm Hg) as to evaluate the conductivity of blood flow into the flap. Japanese white rabbit was used (n = 7) for this study. The amount of blood flow of jejunal and latissimus dorsi muscle (LD) flaps was measured while removing the distal portion of the flap sequentially. Conductance at each time was calculated from blood pressure and blood flow volume. The tissue volume at each time was also measured. The correlation between conductance and volume was analyzed using a linear mixed model. Immunohistochemical evaluation of microvessel densities (MVD) in these tissues was also performed for CD31/PECAM1 positive area. Conductance and tissue volume were significantly correlated in both jejunal and LD flaps. As the volume increases by 1 cm3, the conductance increased significantly by 0.012 ml/min/mm Hg in jejunum, and by 0.0047 ml/min/mm Hg in LD. Mean MVD was 1.15 ± 0.52% in the jejunum and 0.37 ± 0.29% in the LD muscle. In this study, we revealed that flap conductance is proportional to volume and proportional constant is different between the type of tissue. It suggests that the difference of MVD creates the unique conductance of each tissue.


Subject(s)
Free Tissue Flaps/blood supply , Jejunum/blood supply , Superficial Back Muscles/blood supply , Animals , Free Tissue Flaps/physiology , Free Tissue Flaps/transplantation , Jejunum/physiology , Jejunum/transplantation , Microvascular Density , Organ Size , Rabbits , Superficial Back Muscles/physiology , Superficial Back Muscles/transplantation , Surgical Flaps/blood supply , Surgical Flaps/physiology , Vascular Resistance
18.
J Nutr ; 150(7): 1782-1789, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32359147

ABSTRACT

BACKGROUND: Methionine is an essential amino acid (AA) with many fundamental roles. Humans often supplement l-Met, whereas dl-Met and dl-2-hydroxy-4-(methylthio)butanoic acid (dl-HMTBA) are more frequently used to supplement livestock. OBJECTIVES: The study aimed to investigate whether dietary Met source alters the absorptive capacity for Met isomers in the small intestine of piglets. METHODS: A total of 27 male 10-wk-old piglets in 3 feeding groups received a diet supplemented with 0.21% dl-Met, 0.21% l-Met, or 0.31% dl-HMTBA to meet the Met + cystine requirement. After ≥10 d, absorptive fluxes of d-Met or l-Met were measured at a physiological concentration of 50 µM and a high concentration of 5 mM in duodenum, middle jejunum, and ileum ex vivo. Data were compared by 2-factor ANOVA. RESULTS: Across diets, fluxes of both Met isomers at both tested concentrations increased from duodenum to ileum by a factor of ∼2-5.5 (P < 0.05). Pigs supplemented with dl-Met had greater (P < 0.085) absorptive fluxes at 50 µM l-Met (0.50, 2.07, and 3.86 nmol · cm-2 · h-1) and d-Met (0.62, 1.41, and 1.19 nmol · cm-2 · h-1) than did pigs supplemented with dl-HMTBA (l-Met: 0.28, 0.76, and 1.08 nmol · cm-2 · h-1; d-Met: 0.34, 0.58, and 0.64 nmol · cm-2 · h-1) in duodenum, jejunum, and ileum, respectively. Only in jejunum of dl-Met-fed pigs, fluxes at 50 µM l-Met were reduced by the omission of luminal Na+ (from 3.27 to 0.86 nmol · cm-2 · h-1; P < 0.05) and by a cocktail of 22 luminal AAs (to 1.05 nmol · cm-2 · h-1; P < 0.05). CONCLUSIONS: Dietary supplementation of dl-Met increases the efficiency of l-Met and d-Met absorption at physiologically relevant luminal Met concentrations along the small intestine of pigs, including a very prominent induction of an Na+-dependent transport system with preference for l-Met in the mid-jejunum. Dietary supplementation with dl-Met could be a promising tool to improve the absorption of Met and other AAs.


Subject(s)
Jejunum/drug effects , Jejunum/physiology , Methionine/pharmacology , Sodium/pharmacology , Swine , Amino Acids , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Biological Transport , Diet/veterinary , Dietary Supplements , Male , Methionine/administration & dosage , Sodium/administration & dosage
19.
Poult Sci ; 99(5): 2727-2735, 2020 May.
Article in English | MEDLINE | ID: mdl-32359610

ABSTRACT

In this study, the aim was to investigate effects of chronic heat stress (CHS) on the mRNA levels of proinflammatory cytokines (interleukin [IL]-6, IL-8, IL-1ß, and tumor necrosis factor alpha [TNF-α]), toll-like receptors (TLR2 and TLR4), heat shock proteins (Hsp70, heat shock transcription factor [HSF]-1, and HSF3) and antioxidant enzymes (catalase, glutathione peroxidase, NADPH oxidase, and superoxide-dismutase) in the jejunal mucosae of broiler chickens subjected to thermal manipulation (TM) during embryogenesis. TM was carried out at 39°C and 65% relative humidity (RH) for 18 h daily from embryonic days 10 to 18. Control group was incubated at 37.8°C and 56% RH. CHS was induced by raising the temperature to 35°C for 7 D throughout posthatch days 28 to 35. On post-hatch-day 28 (day zero of CHS) and after 1, 3, 5, and 7 D of CHS, the jejunal mucosae were collected from both groups to evaluate the mRNA levels by real-time reverse transcription-PCR analysis. On day zero of CHS, the mRNA levels of antioxidant enzymes, TLRs, HSF3, IL-1ß, and TNF-α were not significantly different between TM and control groups, while the levels of IL-6, IL-8, and HSF1 were lower and the level of Hsp70 was higher in TM. However, during CHS, the mRNA levels of antioxidant enzymes, IL-1ß, TNF-α, TLR4, and HSF1 were significantly lower in TM than in controls, while the levels of TLR2 and IL-8 were significantly higher in TM than in controls. In addition, TM led to significant increase of mRNA levels of IL-6 and HSF3 after 1 D and Hsp70 after 3 D of CHS and to significant decrease of mRNA levels of IL-6 after 3 and 5 D, HSF3 after 7 D, and Hsp70 after 5 D of CHS. Results of this study suggest that TM led to altered posthatch antioxidant, immunological, and Hsp response to CHS in the jejunal mucosae of broiler chickens, probably indicating that TM may mitigate the adverse effects of CHS.


Subject(s)
Avian Proteins/genetics , Chickens/physiology , Heat-Shock Response/physiology , Ovum/physiology , RNA, Messenger/genetics , Animals , Avian Proteins/metabolism , Chick Embryo/physiology , Female , Hot Temperature/adverse effects , Intestinal Mucosa/physiology , Jejunum/physiology , RNA, Messenger/metabolism
20.
Neurogastroenterol Motil ; 32(9): e13874, 2020 09.
Article in English | MEDLINE | ID: mdl-32431019

ABSTRACT

BACKGROUND: Green kiwifruit is a fiber-rich fruit that has been shown effective for treatment of constipation. However, fermentation of fibers by colonic bacteria may worsen commonly associated gas-related abdominal symptoms. AIM: To determine the effect of green kiwifruit on transit and tolerance to intestinal gas in humans. METHODS: In 11 healthy individuals, two gas challenge tests were performed (a) after 2 weeks on a low-flatulogenic diet and daily intake of 2 green kiwifruits and (b) after 2 weeks on a similar diet without intake of kiwifruits. The gas challenge test consisted in continuous infusion of a mixture of gases into the jejunum at 12 mL/min for 2 hours while measuring rectal gas evacuation, abdominal symptoms, and abdominal distension. During the 2 weeks prior to each gas challenge test (on-kiwifruit and off-kiwifruit), the number and consistency of stools, and abdominal symptoms were registered. KEY RESULTS: Intake of kiwifruits was associated with more bowel movements per day (1.8 ± 0.1 vs 1.5 ± 0.1 off-kiwifruit; P = .001) and somewhat looser stools (Bristol score 3.3 ± 0.2 vs 2.8 ± 0.1 off-kiwifruit; P = .072) without relevant abdominal symptoms. Gas infusion produced similar gas evacuation (1238 ± 254 mL and 1172 ± 290 mL; P = .4355), perception of symptoms (score 1.2 ± 0.2 and 1.3 ± 0.3; P = .2367), and abdominal distension (17 ± 7 mm and 17 ± 6 mm; P = .4704) while on-kiwifruit or off-kiwifruit. CONCLUSIONS AND INFERENCES: In healthy subjects, green kiwifruit increases stool frequency without relevant effects on intestinal gas transit and tolerance. If confirmed in patients, these fruits may provide a natural and well-tolerated treatment alternative for constipation.


Subject(s)
Actinidia , Constipation/therapy , Fruit , Gastrointestinal Transit/physiology , Jejunum/physiology , Adolescent , Female , Gases , Humans , Male , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...